CS 335: Bottom-up Parsing

Swarnendu Biswas

Semester 2022-2023-1|
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Rightmost Derivation of abbcde
S - aABe

A - Abc | b S - aABe
B—d — aAde
— aAbcde
— abbcde
m s m s rm s m s
a A B e a A B e a A B e a A B e

d A b ¢ d A b ¢ d

l

b

Bottom-up Parsing

4 A
Constructs the parse tree starting from the leaves and working up

toward the root

_ ,
S~ aABe
A — Abc|b S — aABe abbcde
G20 — aAde — aAbcde
— aAbcde — aAde
— abbcde — aABe }
- S reverse of

rightmost
derivation

Bottom-up Parsing

abbcde = a

A b

l

b

S - aABe
A - Abc | b
B —->d

c d e = a A

Input string: abbcde

abbcde
— aAbcde
— aAde
— aABe
- S

Reduction

* Bottom-up parsing reduces a string w to the start symbol S

* At each reduction step, a chosen substring that is the RHS (or body) of a
production is replaced by the LHS (or head) nonterminal

Rightmost derivation

S:%:h>h =m1=m—w
rm rm T'm rm

Bottom-up Parser

Handle

* Handle is a substring that matches the body of a production
* Reducing the handle is one step in the reverse of the rightmost derivation

EoE+T|T _ Right Sentential Form__Handle ____Reducing Production
T->Tx*F|F id; * id, id, F>id
F—- (E)|id F id; F T—>F
T *id, id,, F-id
T *F T+ F T->TxF
T T E-T

Although T is the body of the production E = T, T is not a handle in the sentential form T * id,.

The leftmost substring that matches the body of some production need not be a handle.

CS 335 Swarnendu Biswas

Handle

e If S =" aAw = afflw, then A —
rm rm
£ is a handle of affw

 String w right of a handle must
contain only terminals o ./ﬁ\ W

A handle A — [in the parse tree for
afw

CS 335 Swarnendu Biswas

Handle

If grammar G is unambiguous, then every right sentential form has
only one handle

If G is ambiguous, then there can be more than one rightmost
derivation of afw

CS 335 Swarnendu Biswas

Shift-Reduce Parsing

Shift-Reduce Parsing

* The input string (i.e., being parsed) consists of two parts
* Left part is a string of terminals and nonterminals, and is stored in stack
* Right part is a string of terminals read from an input buffer
* Bottom of the stack and end of input are represented by $

* Type of bottom-up parsing with two primary actions, shift and reduce
* Other obvious actions are accept and error

e Shift-Reduce actions

 Shift: shift the next input symbol from the right string onto the top of the
stack

* Reduce: identify a string on top of the stack that is the body of a production,
and replace the body with the head

Shift-Reduce Parsing

cinitial T T S
$ w$

G 4 <D

+ Final goal R T S
$S $

_ . E-E+T|T
Shift-Reduce Parsing T—TxF|F
F - (E)|id

 stack | put | Adion

$ id, xid,$ Shift

$id, *+ id,$ Reduce by F — id

$F *id,$ ReducebyT — F

$T +id,$ Shift

$T * id,$ Shift

$T * id, $ Reduce by F — id

$T « F $ ReducebyT - T *F

$T $ ReducebyE —» T

$E $

Accept Or report an error in
case of a syntax error

Handle on Top of the Stack

* |s the following scenario possible?

$ afy w$ Reduceby A =y
$ afA w$ Reduce by B - B
$aBA w$

Possible Choices in Rightmost Derivation

1. S = aAz = afByz = afyyz 2. S = aBxAz = aBxyz = ayxyz

S S

Handle on Top of the Stack

* |s the following scenario possible?

4 p
Handle always eventually appears on top of the stack, never
inside

\ y

Shift-Reduce Actions

* Shift: shift the next input symbol from the right string onto the top of
the stack

e Reduce: identify a string on top of the stack that is the body of a
production, and replace the body with the head

How do you decide when to shift and when to reduce?

CS 335 Swarnen du Biswas

Steps in Shift-Reduce Parsers

General shift-reduce technique

If there is no handle on the stack, then shift
If there is a handle on the stack, then reduce

* Bottom up parsing is essentially the process of detecting handles and
reducing them

* Different bottom-up parsers differ in the way they detect handles

CS 335 Swarnen du Biswas

Challenges in Bottom-up Parsing

WAL EUECATERN « Both shift and reduce are valid,
pick when there is a

fbaies implies a shift-reduce conflict

Which rule to use if
reduction is possible
by more than one
rule?

e Reduce-reduce conflict

CS 335 Swarnen du Biswas

E>E+E|E+E|id

Shift-Reduce Conflict

id + id = id id + id = id

id + id xid$ Shift id + id * id$ Shift
$E + E *id$ ReducebyE - E+ E $E + E * id$ Shift
$E +id$ Shift $E + E * id$ Shift
$E * id$ Shift $E + E *id $ Reduce by E — id
$E * id $ ReducebyE - id $E + E *x E $ ReducebyE - E *xE
$E x E $ ReducebyE - E +E $E + E $ ReducebyE - E+E
$E $ $E $

Shift-Reduce Conflict

Stmt — if Expr then Stmt
| if Expr then Stmt else Stmt
| other

..if Expr then Stmt else ... $

What is a correct thing to do for
this grammar — shift or reduce?
E.g., we can prioritize shifts.

M->R+R|R+c|R

Reduce-Reduce Conflict Roc
c+c c+c

c +c$ Shift c + c$ Shift
$C +c$ ReducebyR — ¢ $C +c$ ReducebyR — ¢
$R +c$ Shift $R +c$ Shift
$R + c$ Shift $R + c$ Shift
$R + ¢ $ ReducebyR — ¢ $R + ¢ $ ReducebyM - R + ¢
$R + R $ ReducebyR - R+ R $M $
$M $

LR Parsing

LR(k) Parsing

* Popular bottom-up parsing scheme

 Lis for left-to-right scan of input, R is for reverse of rightmost derivation, k is
the number of lookahead symbols

* LR parsers are table-driven, like the non-recursive LL parser
* LR grammar is one for which we can construct an LR parsing table

Popularity of LR Parsing

Can recognize almost all language constructs with CFGs

Most general nonbacktracking shift-reduce parsing method

Works for a superset of grammars parsed with predictive or LL parsers

e LL(k) parsing predicts which production to use having seen only the first k tokens of the right-
hand side

e LR(k) parsing can decide after it has seen input tokens corresponding to the entire right-hand
side of the production

CS 335 Swarnendu Biswas

Block Diagram of LR Parse

CS 335

Stack

Input

P

a

a;

LR Parsing

Program

ACTION

Parse Table

Output

|

The LR parsing driver is the same for all LR parsers, only the parsing
table (including ACTION and GOTO) changes across parser types

|

Swarnendu Biswas

LR Parsing

* Remember the basic questions: when to shift and when to reduce!

* Information is encoded in a DFA constructed using canonical LR(O)
collection
|. Augmented grammar G’ with new start symbol S" and rule §' - S
Il. Define helper functions Closure() and Goto()

LR(O) Item

* An LR(O) item (also called
item) of a grammar G is a
production of G with a dot at
some position in the body

* An item indicates how much
of a production we have seen

* Symbols on the left of “¢” are
already on the stack

* Symbols on the right of “e” are
expected in the input

I T

A — oXYZ
A > XY/
A - XYeZ
A > XYZe

A- XYZ

e A — ¢XY/ indicates that we expect a
string derivable from XY Z next in the
input

* A —» XeYZ indicates that we saw a
string derivable from X in the input,
and we expect a string derivable from
YZ next in the input

e A — egeneratesonlyoneitem A4 — o

Closure Operation

e Let I be a set of items for a
grammar G

e Closure(I) is constructed as
follows:

1. Add every item in [to Closure(I)

2. IfA—> aeBf isin Closure(/) and
B — yisarule, thenadd B — ey

to Closure([) if not already
added

3. Repeat until no more new items
can be added to Closure([)

E'>E

E-E+T|T
T >TxF|F
F - (E)|id

Suppose [= {E' — oE }
Closure(I) = {

E' > oF,

E - oFE 4+ T,

E — oT,

T — oT % F,

T — oF,

F - «(E),

F — eid

Kernel and Nonkernel Items

* If one B-production is added to Closure(I) with the dot at the left
end, then all B-productions will be added to the closure

* Kernel items
* |nitial item S’ — oS, and all items whose dots are not at the left end

* Nonkernel items
 All items with their dots at the left end, except for S’ — S

Goto Operation

e Suppose I is a set of items and X is a grammar symbol

* Goto(/, X) is the closure of set all items [A = aXef] such that [A —
aeXf]isinl
 If [is a set of items for some valid prefix a, then Goto([,X) is set of valid items
for prefix aX

* Intuitively, Goto(I, X) defines the transitions in the LR(0) automaton
* Goto(I, X) gives the transition from state I under input X

Example of Goto

E' - E
E - F

T >T*F|F
F- (E)]|id

+T|T

Suppo

sel = {
E' > Eoe,
E—>Ee+T

Goto(l, +) ={
E = E + T,
T — o x F,
T — oF,
F — o(E),
F — id

Canonical Collection of Sets of LR(0) ltems

C = Closure({S’ — S})
repeat
for each set of items I in C
for each grammar symbol X
if Goto(I, X) is not empty and not in C
add Goto(/, X)to C
until no new sets of items are added to C

Canonical Collection of Sets of LR(0) ltems

 Compute the canonical

B~ E llection for th '
ES>E+T | T colliection ror e eXpreSSIOn
T—>T*F|F grammar

F- (E)]|id

Canonical Collection of Sets of LR(0) ltems

I, = Closure({E’' —» «EY)={ I, = Goto(l,, T)= { I, = Goto(lyp, "(")= {
E' - oF, E - To, F — (eE),
E - oE + T, T > TexF E — oF + T,
E — oT, } E — oT,

T - T % F, T — oT x F,
T — oF, I; = Goto(ly, F)= { T — oF,
F — o(E), T — Fe F — o(E),
F — eid, } F — eid,
} }
Iz = Goto(l,id)= {

I, = Goto(ly,E) = { F —ide I; = Goto(l,,*) = {
E' — Eo, } T - T x oF,
E—Ee+T F - o(E),

) F — eid

Canonical Collection of Sets of LR(0) ltems

I = Goto(I;, +)={

E = E + oT,

T - T xF,
T — oF,

F — o(E),
F — eid,

}
Ig = Goto(l,, E)= {

E—>FEe+T,

F - (E9)

19 — GOtO(I6, T)= {

E > E + To,
T > TexF

}

110 — GOtO(I7,F)= {
T =T *Foe,

}

111 == GOtO(Ig, ")")= {
F — (E)e

}

I, = Goto(l,, T)
I35 = Goto(l,, F)
I, = Goto(l,, "(")
Is = Goto(l,,id)
I3 = Goto(lg, F)
I, = Goto(Ig, "(")
Is = Goto(l4,id)
1, = Goto(I;,"(")
I = Goto(I,id)
I = Goto(lg, +)
I, = Goto(lq,*)

LR(0) Automaton

* An LR parser makes shift-reduce decisions by maintaining states
e Canonical LR(0O) collection is used for constructing a DFA for parsing

* States represent sets of LR(0) items in the canonical LR(0) collection

* Start state is Closure({S’ — ¢S}), where S’ is the start symbol of the
augmented grammar

* State j refers to the state corresponding to the set of items I;

Each state is associated with a unique
LR(0) Automaton unft/ymbl o]

I

CS 335 Swarnendu Biswas

Use of LR(O) Automaton

 How can LR(0) automata help with shift-reduce decisions?

* Suppose string y of grammar symbols takes the automaton from start
state S to state S;
* Shift on next input symbol a if S; has a transition on a

* Otherwise, reduce
* Items in state S; help decide which production to use

Structure of LR Parsing Table

* Assume S; is top of the stack and a; is the current input symbol
* Parsing table consists of two parts: an ACTION and a GOTO function

* ACTION table is indexed by state and terminal symbols, ACTIONIS;,
a;] can have four values
i. Shift a; to the stack, go to state §;
ii. Reduce by rule k
iii. Accept
iv. Error (empty cell in the table)

 GOTO table is indexed by state and nonterminal symbols

Constructing LR(O) Parsing Table

1) Construct LR(0) canonical collection C = {I,, I1, ..., I,,} for grammar
Gl

2) State i is constructed from I;
a) If[A - aeaf]isinl; and Goto(l;, a) = I;, then set ACTION[i, a] = “Shift j”
b) If [A — ae]isin I;, then set Action [i, a] = “Reduce A — a” forall a
c) If[S" — Se]isin[;, then set Action [i, $] = “Accept”

3) If Goto(l;, A) = I;, then GOTO[i, A] = j

4) All entries left undefined are “errors”

LR(O) Parsing Table

O 00 N o o Ao W N —», O

=
~ O

ACTION

+ * () $
s5 s4

s6 acc
T2 T2 S7,12 T2 T2 T2
r4 r4 r4 r4 r4 r4
s5 s4
76 76 76 6 6 6
s5 s4
s5 s4

s6 s11
rl rl s7,rl rl rl rl
73 73 73 73 73 73
r5 r5 r5 r5 r5 r5

E T F
1 2 3
8 2 3
9 3

10

Shift-Reduce Parser with LR(0) Automaton
e L

Popped 5,
05 pushed 3 since $id
I3 = Goto(/y, F)

03 $F

02 $T
027 $T
0275 $T +id
02710 $T + F
02 $T

[

While the stack consisted of symbols in the shift-reduce parser,

here the stack contains states from the LR(0) automaton

J

id * id$
* id$

* id$

* id$
id$

$
$
$
$

Shift

Reduce by F — id
Reduce by T — F
Shift

Shift

Reduce by F — id
ReducebyT - T * F
Reduce by E - T
Accept

Viable Prefix

e Consider E-T->T*F->Txid> F *xid » id * id

* id * is a prefix of a right sentential form, but it can never appear on
the stack

* Always reduce by F — id before shifting * (see previous slide)
* Not all prefixes of a right sentential form can appear on the stack

* A viable prefix is a prefix of a right sentential form that can appear on
the stack of a shift-reduce parser

* a is a viable prefix if 3w such that aw is a right sentential form
* There is no error as long as the parser has viable prefixes on the stack

Example of a Viable Prefix

| stack | _Input

S = X1 X,X3X, $ X1X,X3$
A= XX, X, X, X:$
Letw = X, X, X5 S, Xz

Y X,

$AX, $
[X1X,X5 can never appearontﬁ

Suppose there is a production A = (1 ,, and afis on the stack.
* (3, # € implies the handle 3; 3, is not at the top of the stack yet, so shift
* (3, = € implies then the parser can reduce by the handle A — ;

Challenges with LR(O) Parsing

* An LR(0) parser works only if each state with a reduce action has only
one possible reduce action and no shift action

({ {
L—>L,Se L—S,Le
} h =l § = o1 0= 5
} }
Ok Shift-reduce conflict Reduce-reduce conflict

 Takes shift/reduce decisions without any lookahead token
* Lacks the power to parse programming language grammars

Challenges with LR(O) Parsing

e Consider the following grammar for adding numbers

S—>S+E|E S>E+S|E
E — num E — num
Left associative Right associative

S>FEe+ S
S > Ee

Shift-reduce conflict

CS 335 Swarnendu Biswas

Canonical Collection of Sets of LR(0) ltems

FIRST(S) = FIRST(E) = {num)}
FOLLOW(S) = {$}
FOLLOW(E) = {+, $}

CS 335

I, = Closure({S'— S})= {

S' > S,
S > eF + S,
S — oF,
E — enum
}
I; = Goto(l,,S) ={
S' > Se
}

I35 = Goto(ly, num)= {

E — nume
}
I, = Goto(l,, +)={
S > E+eS
}
12 — GOtO(Io, E)= {
S > Ee+S,
S — Ee

}

Simple LR Parsing

Block Diagram of LR Parser

Stack

CS 335

Input | a4 a; R e $

LR Parsing

Sm » Output
Program
Sm-1)\
e Same driver program is used for
all LR parsers
e Different LR parsing techniques
; produce different parse tables y

Parse Table

Swarnendu Biswas

LR Parsing Algorithm

* The parser driver is same for all LR parsers
* Only the parsing table changes across parsers

* A shift-reduce parser shifts a symbol, and an LR parser shifts a state

* By construction, all transitions to state j is for the same symbol X

* Each state, except the start state, has a unique grammar symbol associated
with it

SLR(1) Parsing

e Uses LR(0) items and LR(0) automaton, extends LR(0) parser to
eliminate a few conflicts

* For each reduction A — (, look at the next symbol ¢
* Apply reduction only if c € FOLLOW(A) orc = eand S = yA

Constructing SLR Parsing Table

1) Construct LR(0) canonical collection C = {I,, I1, ..., I,,} for grammar
Gl
2) State i is constructed from I;
a) If[A - aeaf]isinl; and Goto(l;, a) = I;, then set ACTION[i, a] = “Shift j”
b) If [A - ae]isinI;, then set ACTION[i, a] = “Reduce A — a” forall a in
FOLLOW(A)
c) If[S" — Se]isin[;, then set Action [i, $] = “Accept”

3) If Goto(l;, A) = I;, then GOTO[i, A] = j

4) All entries left undefined are “errors”

Constraints on when
reductions are applied

SLR Parsing for Expression Grammar

BT " - s/ means shift and stack state i

o U1 A W N P

E-E+T * 7j means reduce by rule #j
E-T * acc means accept
=1 ao * blank means error
T - F

FIRST(E) = FIRST(T) = FIRST(F) = {(,id}
F - (E)
F - id FOLLOW(E) = {$,+,)}

FOLLOW(T) = {$,+,)}
FOLLOW(F) = {$, +,X,)}

Canonical Collection of Sets of LR(0) ltems

I, = Closure({E’' —» «EY)={ I, = Goto(l,, T)= { I, = Goto(lyp, "(")= {
E' - oF, E - To, F — (eE),
E - oE + T, T > TexF E — oF + T,
E — oT, } E — oT,

T - T % F, T — oT x F,
T — oF, I; = Goto(ly, F)= { T — oF,
F — o(E), T — Fe F — o(E),
F — eid, } F — eid,
} }
Iz = Goto(l,id)= {

I, = Goto(ly,E) = { F —ide I; = Goto(l,,*) = {
E' — Eo, } T - T x oF,
E—Ee+T F - o(E),

) F — eid

Canonical Collection of Sets of LR(0) ltems

I = Goto(I;, +)={

E = E + oT,

T - T xF,
T — oF,

F — o(E),
F — eid,

}
Ig = Goto(l,, E)= {

E—>FEe+T,

F - (E9)

19 — GOtO(I6, T)= {

E > E + To,
T > TexF

}

110 — GOtO(I7,F)= {
T =T *Foe,

}

111 == GOtO(Ig, ")")= {
F — (E)e

}

I, = Goto(l,, T)
I35 = Goto(l,, F)
I, = Goto(l,, "(")
Is = Goto(l,,id)
I3 = Goto(lg, F)
I, = Goto(Ig, "(")
Is = Goto(l4,id)
1, = Goto(I;,"(")
I = Goto(I,id)
I = Goto(lg, +)
I, = Goto(lq,*)

LR(0) Automaton

SLR Parsing Table

m ACTION

+ * () $
0 s5 s4
1 s6 acc
2 T2 s7 T2 T2
3 r4 r4 r4 r4
4 s5 s4
5 76 76 6 6
6 s5 s4
7 s5 s4
8 s6 s11
9 rl s7 rl rl
10 73 73 73 73
11 r5 r5 r5 r5

E T F
1 2 3
8 2 3
9 3

10

LR Parser Configurations

* A LR parser configuration is a pair <Sg, S1,..., Sy, AjAj41... Ap$>
 Left half is stack content, and right half is the remaining input

* Configuration represents the right sentential form X, X, ... X,,,a;a;.1...
an

LR Parsing Algorithm

* If ACTION[s,,,, a;] = shift s, new configuration is <sg, S1,..., S;S, Aj41 -
a,$>

* If ACTION[s,,,, a;] =reduce A — 5, new configuration is <sg, 51,...,
Sm—7, AjA;11... A, $>, where r = |B| and s = GOTO[s,,,_,, A]

* If ACTION[s,,,, a;] = accept, parsing is successful
* If ACTION[s,,, a;] = error, parsing has discovered an error

LR Parsing Program

Let a be the first symbol of input w$

while (1)
let s be the top of the stack
if ACTION[a] == shift ¢

push t onto the stack
let a be the next 1nput symbol
else if ACTION[s, a] == reduce A-p
pop |B| symbols off the stack
push GOTO[t, A] onto the stack
output production A-p
else if ACTION[s, a] == accept
break
else
invoke error recovery

Moves of an LR Parser on id * id + id

S Smbos L nput L Action

id * id + id$ Shift

2 05 id *id + id$ Reduce by F - id

3 03 F *id + id$ ReducebyT — F

4 02 T *id + id$ Shift

5 027 T * id + id$ Shift

6 0275 T *id +id$ Reduce by F — id

7 02710 T *F +id$ ReducebyT - T * F
8 02 T +id$ ReducebyE —» T

9 01 E +id$ Shift

10 016 E + id$ Shift

Moves of an LR Parser on id * id + id

Sl Symbols __lnput______Action__

0165 E+id $ ReducebyF - id
12 0163 E+F $ ReducebyT — F
13 0169 E+T $ ReducebyE - E+T
14 01 E $ Accept

Limitations of SLR Parsing

* If an SLR parse table for a grammar does not have multiple entries in
any cell then the grammar is unambiguous

e Every SLR(1) grammar is unambiguous, but there are unambiguous
grammars that are not SLR(1)

Limitations of SLR Parsing

Unambiguous grammar Example Derivation
S=>L=R=>*R =R

S—->L=R|R

L— xR |id

R—-L

FIRST(S) = FIRST(L) = FIRST(R) = {*,id}

FOLLOW(S) = FOLLOW(L) = FOLLOW(R)
= {=$}

Canonical LR(O) Collection

I, = Closure(S" — ¢S)={
S’ —> oS,
S > el =R,
S > oR,
L — xR,
L — eid,
R — oL

}

I; = Goto(l,,S) ={
S' > Se

}

12 — GOtO(Io, L)= {
S > Le =R,
R — Le

13 — GOtO(Io,R)Z {

S = Re

}

I, =Goto(ly, R)= {
L - xeR,
R — o],
L — exR,
L — eid

}

I = Goto(l,, ‘=)= {
S > L = eR,
R — o],
L — exR,
L — eid

}

Is = Goto(l,,id)= {

L — eid

}

I; =Goto(l4, R)= {
L —>%* Re

}

18 = GOtO(I4, L)= {
R — Le

}

19 == G0t0(16,R)= {
S > L =Re

}

SLR Parsing Table

0
1
2
3
4
5
6
7
8
9

ACTION
= * id $
s4 s5
acc
s6, 16 r6
s4 s5
r5 r5
s4 s5
r4 r4
76 6
T2

S L R
1 2 3
8 7
8 9

Shift-Reduce Conflict with SLR Parsing

I, = Closure(S" —.5)={ I; = Goto(ly, R)={ Iz = Goto(ly,id)= {
S’ > oS, S > Re L — eid
S — ¢l =R, } }
C . oR [—Gatall. R\— L —Gatall. R\— r\
1. ACTION|[2,=] = Shift 6, or
y | 2. ACTION[2,=] = Reduce R = L since " =" € FOLLOW(R)
A , J
S' - S-MGoto(lz, =)= { Iy = Goto(lg, R)= {
} S = L = *R, S = L =Re
I, = Goto(ly, L)= { R — o], }
S > Le =R, L — xR,
R Le L — eid

Moves of an LR Parser on id=id

id=id$ Shift 5 id=id$ Shift 5
0id 5 =id$ Reduce by L — id 0id 5 =id$ Reduce by L — id
0L2 =id$ ReducebyR — L 0L2 =id$ Shift 6
OR3 =id$ Error 0L2=6 id$ Shift 5
0L2=6id5 $ ReducebyL — id
No right sentential form } OL2=6LS8 $ ReducebyR - L
begins with R = - 0L2=6R9 $ ReducebyS — L = R
0S1 $ Accept

Moves of an LR Parser on id=id

! State i calls for a reduction by A — « if the set of items I; contains !

item [A — ae] and a € FOLLOW(A)

* Suppose [A is a viable prefix on top of the stack

* There may be no right sentential form where a follows A
\ e Parser should not reduce by A — «a /

0L2=6R9 $ ReducebyS —> L =R

0S1 $ Accept

Moves of an LR Parser on id=id

id=id$ Shift 5 id=id$ Shift 5

SLR parsers cannot remember the left context

e SLR(1) states only tell us about the sequence on top of the stack, n
ot what is below on the stack

0L2=6LS $ ReducebyR — L
0L2=6R9 $ ReducebyS —> L =R

0S1 $ Accept

CS 335 Swarnendu Biswas

Canonical LR Parsing

LR(1) Item

* An LR(1) item of a CFG G is a string of the form [A — aef, a], with a
as one symbol lookahead

« A > af isaproductioninG,anda € T U {$}

* Suppose [A = aef5, a] where § # €, then the lookahead is not
required

* If [A = ae, a], reduce only if next input symbol is a

* Set of possible terminals will always be a subset of FOLLOW(A), but can be a
proper subset

LR(1) Item

* An LR(1) item [A = aef,al is
valid for a viable prefix y if there

is a derivation
Stack

S =""0Aw = dafw
rm rm
where
i. Yy =0a,and

ii. aisthe first symbolin w, or,
w=canda=9$

CS 335 Swarnen du Biswas

Input

LR Parsing

Program

Constructing LR(1) Sets of ltems

Closure(!)

repeat
for each item [A = a*Bf,a]in I
for each production B —» y in G’
for each terminal b in FIRST(fa)
add [B — ey,b]| toset]
until no more items are added to [

return |

Goto(/, X)

initialize | to be the empty set
for each item [A = aeXf,a]in I
add item [A = aXef,a] toset]

return Closure(/)

Constructing LR(1) Sets of ltems

ltems(G'):
C = Closure({[S" — S, $]})
repeat
for each set of items [in C
for each grammar symbol X
if Goto(I, X) # ¢ and Goto(I, X) € C
add Goto(/, X) to C
until no new sets of items are added to C

Example Construction of LR(1) ltems
Rule# |Production Io = Closure([S’ - *5, $])= {

/ S’—).S’$’
0) S-S S—).CC’$’
1 S - CC C — .CC,C/d,
2 C —>cC \ C - ed,c/d
3 C—-d

I; = Goto(ly,S) ={

S > Se §
generates the regular)
language c*dc*d

Example Construction of LR(1) Items

I, = Closure([S’" —.5,%])={ I; = Goto(ly,)= { I, = Goto(l,, ¢c)= {
S' > oS §, C - ceC,c/d, C - coC,§$,
S — ¢(CC,$, C - ocC,c/d, C - ocC,$,
C - «cC,c/d, C - ed,c/d C > ed$
C - ed,c/d } }
}
I, = Goto(ly, d) = { I, = Goto(l,,d) = {
I, = Goto(ly,S) ={ C - de,c/d C > de$
S’ — Se,$ } }
}
Is = Goto(I,,C) = { Ig = Goto(I3,C) = {
I, = Goto(Iy, C)= { C - CCe,$ C - cCe,c/d
S > CeC,3$,))
C - ocC,$,
C > ed$ Iy = Goto(Ig, C)= {
} C > cCe,$

}

LR(1) Automaton

CS 335 Swarnen du Biswas

Construction of Canonical LR(1) Parsing Tables

* Construct C' = {ly, I, ..., I,}

e State i of the parser is constructed from [;
* If [A > aeaf, b] isin I; and Goto(l;,a) = [;, then set ACTION[i, a]="shift j”
* If[A > ae,a]isinl;, A+ S, then set ACTION[i,a]="reduce A — a*”
« If [S" = Se,$]isin I;, then set ACTION[i,$]="accept”

e |f GOtO(Ii, A)= I], then GOTO[l, A] =j

* Initial state of the parser is constructed from the set of items
containing [S' — S, $]

Canonical LR(1) Parsing Table

“ ACTION GOTO

C d $ S C

0 s3 s4 1 2
1 acc

2 s6 s7 5
3 s3 s4 8
4 73 73

5 rl

6 s6 s7 9
7 73

8 T2 T2

9 T2

Moves of a CLR Parser on cdcd

S Smbos L nput L Action

cdcd$ Shift
2 03 c dcd$ Shift
3 034 cd cd$ ReducebyC — d
4 038 cC cd$ Reduce by C — cC
5 02 C cd$ Shift
6 026 Cc d$ Shift
7 0267 Ccd $ ReducebyC — d
8 0269 CcC $ Reduce by C — cC
9 025 CC $ ReducebyS — CC
10 01 S $ Accept

Canonical LR(1) Parsing

* If the parsing table has no multiply-defined cells, then the
corresponding grammar G is LR(1)

e Every SLR(1) grammar is an LR(1) grammar
* Canonical LR parser may have more states than SLR

LALR Parsing

Example Construction of LR(1) Items

Iy = Closure([S' —.S5,$])={ I3 = Goto(I, c)= {
S' > oS §, C — c*C,c/d,
S — ¢(CC,$, C — ocC,c/d,
C — ocC,c/d, C-edc/d
C - ed,c/d }
}
I, = Goto(I,,d) = {
I; = Goto(ly, S) ={ C—->de,c/d
S — Se, § }
}
Is = Goto(I,,C) = {
I, = Goto(l,, C)= { C - CCe$
S — CeC,$, }
C — ocC,$,
C ol od’$

} I5 and I, I, and I, and Ig and Iq

only differ in the second components

CS 335 Swarnendu Biswas

I = Goto(I,, c)= {

C - ceC,§$,
C - oc(C,§$,
C - od,$

}

I, = Goto(I,,d) = {
C—de$

}

Ig = Goto(I3,C) = {
C - cCe,c/d

}

I9 = Goto(I¢, C)= {
C > cCe$

}

Lookahead LR (LALR) Parsing

* CLR(1) parser has a large number of states

* Lookahead LR (LALR) parser

* Merge sets of LR(1) items that have the same core (set of LR(0) items, i.e.,
first component)

* LALR parsers have fewer states, same as SLR

* LALR parser is used in many parser generators (e.g., Yacc and Bison)

Construction of LALR Parsing Table

* Construct C = {l,, I, ..., I, }, the collection of sets of LR(1) items

* For each core present in LR(1) items, find all sets having the same
core and replace these sets by their union

e Let C' = {Jy,J1, ---,Jn} e the resulting sets of LR(1) items (also called
LALR collection)

* Construct ACTION table as was done earlier, parsing actions for state i
is constructed from J;

elet/] =1, UIl, U---U I, where the cores of I, I,, ..., I;, are same
* Cores of Goto(/4, X), Goto(I,, X), ..., Goto([, X) will also be the same
* Let K = Goto(I, X) U Goto(l,, X) U ...U Goto(I,, X), then Goto(/,X) =K

LALR Grammar

* If there are no parsing action conflicts, then the grammar is LALR(1)

Rule# | Production

0
1
2
3

I36 = Goto(ly,)= {

) C - ecC,c/d/$,
S—->CC C - ed,c/d/$
C > cC J

C—d I, = Goto(ly, d) = {

C > de,c/d/$
}

C - ceC,c/d/$,

Igg = Goto(l3, C) = {

}

C - cCe,c/d/$

LALR Parsing Table
“

C d $ S C

0 s36 s47 1 2
1 acc
2 s36 s47 5
36 s36 s47 89
47 73 73 73
5 rl

89 T2 T2 T2

Moves of a LALR Parser on cdcd

S Smbos L nput L Action

cdcd$ Shift
2 0 36 C dcd$ Shift
3 03647 cd cd$ ReducebyC — d
4 036 89 cC cd$ Reduce by C - cC
5 02 C cd$ Shift
6 0236 Cc d$ Shift
7 023647 Ccd $ ReducebyC — d
8 023689 CcC $ Reduce by C — cC
9 025 CC $ ReducebyS — CC
10 01 S $ Accept

Notes on LALR Parsing Table

* LALR parser behaves like the CLR parser excepting difference in stack
states

* Merging LR(1) items can never produce shift/reduce conflicts

* Suppose there is a shift-reduce conflict on lookahead a due to items [B —
feay,b] and [A = ase, a]
* But merged state was formed from states with same cores, which implies

|B — [eay,c]and [A — ae, a] must have already been in the same state, for
some value of ¢

* Merging items may produce reduce/reduce conflicts

Reduce-Reduce Conflicts due to Merging

LR(1) grammar {[A - ce,d], [B - cee]} {[A—>cee], [B—ced]}
S'"> S
S — aAd | bBd|aBe|bAe
A—-c {[A - ce,d/c], [B— ce,d/e]}
B -c
acd, ace, bcd, bce

Dealing with Errors with LALR Parsing

* Consider an erroneous input ccd

O 00 N o uu A W N P, O

s3

s6

s3

r3

s6

r2

CLR Parsing Table

s4

s7

s4

r3

s7

r2

acc

rl

r3

T2

1

2

0
1
2
36
47
5
89

s36

s36

s36

r3

r2

4| poducion

0 S'>S
1 S—->CC
2 C - cC
3 C->d

LALR Parsing Table

MCd$SC MCd$SC

s47

s47

s47

r3

r2

1 2
acc
5
89
r3
rl
T2

Comparing Moves of CLR and LALR Parsers

* Consider an erroneous input ccd

CLR Parsing Table LALR Parsing Table
mmm mmm
ccd$ Shift ccd$ Shift
03 C cd$ Shift 036 C cd$ Shift
033 cc d$ Shift 03636 cc d$ Shift
0334 ccd $ Error 0363647 ccd Reduce by C — d

0363689 ccC Reduce by C = ¢C

03689 cC Reduce by C — cC

©®©r B A A

02 C Error

Comparing Moves of CLR and LALR Parsers

* Consider an erroneous input ccd

1D Dorclog TahlA | Al u—\rrinn TahlA

4 “

* CLR parser will not even reduce before reporting an error

* SLR and LALR parsers may reduce several times before reporting an
error, but will never shift an erroneous input symbol onto the stack

U o0 J0 O Y CCC 3 nReuucc Py C 7 cC

0 36 89 cC $ Reduce by C — cC

02 C $ Error

Using Ambiguous Grammars

Dealing with Ambiguous Grammars

I, = Goto(ly, '(')={ Is = Goto(l,, ‘*') = {

/ E - (°E), E — E x oF,
E_)E . E - oF + E, E - oFE + E,
E-E+E|ExE|(E)]|id E - oE xE, E - ¢E +E,

E - «(E), E - o(E),
E — eid E — eid

I, = E' - oE})= } }

0 Closubf‘?(i - H=A I, = Goto(l,, id)= { I, = Goto(l,, E) = {
E— oE+E E - ide E— (Ee),
E—>°E*E, } E - FEe+ E,
E = o(E), I, = Goto(ly, ‘+') = { E - Ee*E,
E o oid E—E+¢E,)

| E - ¢FE + E, I; = Goto(l,, E) = {

_ _ E - oE x E E > E+ Ee
I, = Goto(ly, E) = ’ ’
1 E9—> Eo,{ E - 0.(E)’ E — Ee + E,

E—>Ee+E, } E— eid E - EexE
E—EexE o }
} 19 — GOtO(16J)): { 18 = GOtO(Is, E) = {
E— (E)e E —> E xEo,
Does not specify the associativity and } E - FEe + E,
precedence of the two operators E > EexFE

SLR(1) Parsing Table

0
1
2
3
4
5
6
7
8
9

id
S3

s3

s3
s3

ACTION
+ * () $
S2
s4 s5 acc
s2
r4 r4 r4 r4
s2
s2
s4 s5 s9
s4,rl s5,rl rl rl
s4,r2 s5,r2 r2 T2
73 r3 r3 r3

Moves of an SLR Parser on id + id * id

2 03

3 01

4 014
5 0143
6 0147

id + id * id$
id +id * id$
E +id * id$
E + id * id$
E+id * id$

E+E * id$

Shift 3
Reduce by E — id
Shift 4
Shift 3

Reduce by E — id

What can the parser do to
resolve the ambiguity?

SLR(1) Parsing Table

id + X () $ E
0 s3 S2 1
1 s4 s5 acc
2 s3 s2 6
3 r4 T4 r4 T4
s2 7
{ Why did the parser make these choices? s2 8
6 s9
7 rl rl
3 r2 r2 2 T2
9 r3 r3 r3 r3

summary

Comparison across LR Parsing Techniques

e SLR(1) = LR(O) items + FOLLOW
e SLR(1) parsers can parse a larger number of grammars than LR(0)

* Any grammar that can be parsed by an LR(0) parser can be parsed by an
SLR(1) parser

* SLR(1) < LALR(1) < LR(1)

* SLR(k) < LALR(k) < LR(k)

* LL(k) < LR(k)

* Ambiguous grammars are not LR

Summary

e Bottom-up parsing is a more powerful technique compared to top-
down parsing
* LR grammars can handle left recursion
* Detects errors as soon as possible, and allows for better error recovery

* Automated parser generators such as Yacc and Bison implement LALR
parsing

References

* A. Aho et al. Compilers: Principles, Techniques, and Tools, 2"? edition, Chapter 4.5-4.8.

» K. Cooper and L. Torczon. Engineering a Compiler, 2"d edition, Chapter 3.4.

