
CS 636: Transactional
Memory
Swarnendu Biswas

Semester 2020-2021-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Challenges with Concurrent Programming

CS 636 Swarnendu Biswas

Less synchronization More synchronization

Deadlock
Order, atomicity &

sequential consistency
violations

Poor performance: lock
contention, serialization

Concurrent and
correct

Task Parallelism

• Different tasks run on the same data
• Threads execute computation

concurrently

• E.g., pipelines

• Explicit synchronization is used to
coordinate threads

CS 636 Swarnendu Biswas

program
start

output

10 1 4 2 9 5 7 8

m
in

m
ax

m
ea

n

HashMap in Java

public Object get(Object key) {

int idx = hash(key); // Compute hash to find bucket

HashEntry e = buckets[idx];

while (e != null) { // Find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

CS 636 Swarnendu Biswas

• no lock overhead
• not thread-safe

Synchronized HashMap in Java

public Object get(Object key) {
synchronized (mutex) { // mutex guards all accesses

return myHashMap.get(key);
}

}

CS 636 Swarnendu Biswas

• Thread-safe, uses explicit coarse-grained locking

Coarse-Grained and Fine-Grained Locking

Coarse-grained

• Pros: Easy to implement

• Cons: limits concurrency, poor scalability

Fine-grained

• Idea: Use a separate lock per bucket

• Pros: thread safe, more concurrency, better performance

• Cons: difficult to get correct, more error-prone

CS 636 Swarnendu Biswas

Data Parallelism

• Same task applied on many data items in parallel
• E.g., processing pixels in an image

• Useful for numeric computations

• Not an universal programming model

CS 636 Swarnendu Biswas

10 1 4 2 9 5 7 8

11 2 5 3 10 6 8 9

⊕⊕ ⊕⊕ ⊕ ⊕ ⊕ ⊕

Task vs Data Parallelism

Task Parallelism

• Different operations on same or
different data

• Parallelization depends on task
decomposition

• Speedup is usually less since it
may require synchronization

Data Parallelism

• Same operation on different
data

• Parallelization proportional to
the input data size

• Speedup is usually more

CS 636 Swarnendu Biswas

Combining Task and Data Parallelism

Processing in
graphics

processors

Task parallelism
through pipelining

• Each task could apply a
filter in a series of
filters

Data parallelism for
a given filter

• Apply the filter
computation in parallel
for all pixels

CS 636 Swarnendu Biswas

https://www.zdnet.com/article/understanding-task-and-data-parallelism-3039289129/

Abstraction and Composability

CS 636 Swarnendu Biswas

Programming languages provide abstraction and composition

• Procedures, ADTs, and libraries

Abstraction
• Simplified view of an entity or a problem

• Example: procedures, ADT

Composability
• Join smaller units to form larger, more complex unit

• Example: library methods

Abstraction and Composability

CS 636 Swarnendu Biswas

Programming languages provide abstraction and composition

• Procedures, ADTs, and libraries

Abstraction
• Simplified view of an entity or a problem

• Example: procedures, ADT

Composability
• Join smaller units to form larger, more complex unit

• Example: library methods

• Parallel programming lacks abstraction mechanisms
• Low-level parallel programming models, such as threads

and explicit synchronization, are unsuitable for
constructing abstractions

• Explicit synchronization is not composable

Locks are difficult to program!

• If a thread holding a lock is delayed, other contending threads cannot
make progress
• All contending threads will possibly wake up, but only one can make progress

• Lost wakeups – missed notify for condition variable

• Deadlocks

• Priority inversion

• Lock convoying

• Locking relies on programmer conventions

CS 636 Swarnendu Biswas

Locking relies on programmer conventions!

• If a thread holding a lock is delayed, other contending threads cannot
make progress
• All contending threads will possibly wake up, but only one can make progress

• Deadlocks

• Priority inversion

• Locking relies on programmer conventions

CS 636 Swarnendu Biswas

/*

* When a locked buffer is visible to the I/O layer

* BH_Launder is set. This means before unlocking

* we must clear BH_Launder,mb() on alpha and then

* clear BH_Lock, so no reader can see BH_Launder set

* on an unlocked buffer and then risk to deadlock.

*/

Actual comment
from Linux Kernel

Bradley Kuszmaul, and Maurice Herlihy and Nir Shavit

Lock-based Synchronization is not
Composable
class HashTable {

void synchronized insert(T elem);

boolean synchronized remove(T elem);

}

You want to add a new method:
boolean move(HashTable tab1, HashTable tab2, T elem)

=> remove()

=> insert()

CS 636 Swarnendu Biswas

Lock-based Synchronization is not
Composable
class HashTable {

void synchronized insert(T elem);

boolean synchronized remove(T elem);

}

You want to add a new method:
boolean move(HashTable tab1, HashTable tab2, T elem)

=> remove()

=> insert()

CS 636 Swarnendu Biswas

• Option: Add new methods such as LockHashTable() and
UnlockHashTable()
• Breaks the abstraction by exposing an implementation detail

• Lock methods are error prone
• A client that locks more than one table must be careful to lock

them in a globally consistent order to prevent deadlock

Choosing the right locks!

• Locking schemes for 4 threads may not be the most efficient at 64
threads
• Need to profile the amount of contention

CS 636 Swarnendu Biswas

What about hardware atomic primitives?

Transactional Memory

CS 636 Swarnendu Biswas

Transactional Memory

• Transaction: A computation sequence that executes as if without
external interference
• Computation sequence appears indivisible and instantaneous

• Proposed by Lomet [‘77] and Herlihy and Moss [‘93]

CS 636 Swarnendu Biswas

Advantages of Transactional Memory (TM)

• Provides reasonable tradeoff between abstraction and performance
• No need for explicit locking

• Avoids lock-related issues like lock convoying, priority inversion, and deadlocks

CS 636 Swarnendu Biswas

boolean move(HashTable tab1, HashTable tab2, T elem) {
atomic {
boolean res = tab1.remove(elem);
if (res)
tab2.insert(elem);

}
return res;

}

Advantages of TM

Programmer says what needs to be atomic
• TM system/runtime implements synchronization

Declarative abstraction
• Programmer says what work should be done

• Programmer says how work should be done with imperative abstraction

Easy programmability (like coarse-grained locks)
• Performance goal is like fine-grained locks

CS 636 Swarnendu Biswas

Basic TM Design

• Transactions are executed speculatively

• If the transaction execution completes without a conflict, then the
transaction commits
• The updates are made permanent

• If the transaction experiences a conflict, then it aborts

CS 636 Swarnendu Biswas

Database Systems as a Motivation

CS 636 Swarnendu Biswas

• Database systems have successfully exploited parallel hardware for
decades

• Achieve good performance by executing many queries simultaneously
and by running queries on multiple processors when possible

Database Systems as a Motivation

Atomicity

Consistency

Isolation

Durability

CS 636 Swarnendu Biswas

TM vs Database Transactions

Database Transactions

• Application level concept

• Durable

• Operations involve mostly disk
accesses

TM

• Supported by language runtime
or hardware

• Not durable

• Operations are from main
memory, performance is critical

CS 636 Swarnendu Biswas

Properties of TM execution

Tx Atomic Appears to happen
instantaneously

Commit Appears atomic

Abort Has no side effects

Serializable Appear to happen serially in
order

Isolation Other code cannot observe
writes before commit

CS 636 Swarnendu Biswas

TM Execution Semantics

Thread 1

atomic {

a = a – 20;

b = b + 20;

c = a + b;

a = a – b;

}

Thread 2

atomic {

c = c + 40;

d = a + b + c;

}

CS 636 Swarnendu Biswas

Thread 1’s updates to a,
b, and c are atomic

Thread 2’s either sees ALL
updates to a, b, and c from

T1 or NONE

No data race due to
TM semantics

Linked-List-based Double Ended Queue

CS 636 Swarnendu Biswas

Left
sentinel

10 20 90
Right

sentinel

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
atomic {
QNode *leftSentinel = q->left;
QNode *oldLeftNode = leftSentinel->right;
qn->left = leftSentinel;
qn->right = oldLeftNode;
leftSentinel->right = qn;
oldLeftNode->left = qn;

}
}

Linked-List-based Double Ended Queue

CS 636 Swarnendu Biswas

Left
sentinel

10 20 90
Right

sentinel

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
atomic {
QNode *leftSentinel = q->left;
QNode *oldLeftNode = leftSentinel->right;
qn->left = leftSentinel;
qn->right = oldLeftNode;
leftSentinel->right = qn;
oldLeftNode->left = qn;

}
}

• Challenges with a lock-based implementation
• A single lock would prevent concurrent operations at both ends
• Need to be careful to avoid deadlocks with multiple locks
• Take care of corner cases (for example, only one element is left)

Atomicity violation

if (thd->proc_info)

fputs(thd->proc_info, …)

…

thd->proc_info = NULL;
…

CS 636 Swarnendu Biswas

MySQL
ha_innodb.cc

ti
m

e

Fixing Atomicity Violations with TM

atomic {
if (thd->proc_info)

fputs(thd->proc_info, …)
}

atomic {
thd->proc_info = NULL;

}

CS 636 Swarnendu Biswas

No data race due to
TM semantics

ti
m

e

Fixing Atomicity Violations with TM

atomic {
if (thd->proc_info)

fputs(thd->proc_info, …)
}

atomic {
thd->proc_info = NULL;

}

CS 636 Swarnendu Biswas

No data race due to
TM semantics

ti
m

e

Transactional HashMap

Pros

• Thread-safe, easy to
program

• No lock-related issues

Cons

• Good performance and
scalability depends on
the TM implementation

CS 636 Swarnendu Biswas

synchronized in Java

synchronized

• Provides mutual exclusion
compared to other blocks on the
same lock

• Nested blocks can deadlock if
locks are acquired in wrong
order

TM Transaction

• A transaction is atomic w.r.t. all
other transactions in the system

• Nested transactions never
deadlock

CS 636 Swarnendu Biswas

TM Interface

void startTx();
bool commitTx();
void abortTx();

T readTx(T *addr);
void writeTx(T *addr, T val);

CS 636 Swarnendu Biswas

• Set of variables read by the Tx

Read set

• Set of variables written by the Tx

Write set

Functions can be overloaded by types or
we can use generics

Linked-List-based Double Ended Queue

CS 636 Swarnendu Biswas

Left
sentinel

10 20 90
Right

sentinel

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
do {
StartTx();
QNode *leftSentinel = ReadTx(&(q->left));
QNode *oldLeftNode = ReadTx(&(leftSentinel->right));
WriteTx(&(qn->left), leftSentinel);
WriteTx(&(qn->right), oldLeftNode);
WriteTx(&(leftSentinel->right), qn);
WriteTx(&(oldLeftNode->left), qn);

} while (!CommitTx());
}

• Similar to sequential code
• No explicit locks

Transactions cannot replace all uses of locks!

Thread 1

do {

startTx();

writeTx(&x, 1);

} while (!commitTx());

Thread 2

do {

startTx();

int tmp = readTx(&x);

while (tmp == 0) {}

} while (!commitTx());

CS 636 Swarnendu Biswas

Concurrency in TM

• Two levels
• Among Txs from concurrent thread

• Among individual Tx operations

CS 636 Swarnendu Biswas

rdTx p wrTx q
commit

Tx
startTx

Thread 1

Thread 2

rdTx x wrTx y
commit

Tx
startTx

Design Choices
• Concurrency Control

• Version Management

• Conflict Detection

CS 636 Swarnendu Biswas

TM Terminology

CS 636 Swarnendu Biswas

A conflict occurs when two transactions perform conflicting
operations on the same memory location

Let 𝑅𝑖 and 𝑊𝑗 be the read and write sets of Tx 𝑖. Then a conflict occurs if
and only if
• 𝑅𝑖 ∩𝑊𝑗 ≠ ∅, or

• 𝑊𝑖 ∩𝑊𝑗 ≠ ∅, or

• 𝑊𝑖 ∩ 𝑅𝑗 ≠ ∅

TM Terminology

CS 636 Swarnendu Biswas

The conflict is detected when the underlying TM system
determines that the conflict has occurred

The conflict is resolved when the underlying TM system takes
some action to avoid the conflict
• Delay or abort one of the conflicting transactions

A conflict, its detection, and its resolution can occur at different
times

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS 636 Swarnendu Biswas

Location
Value
read

Value
written

Location
Value
read

Value
written

bal = 1000

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS 636 Swarnendu Biswas

Location
Value
read

Value
written

Location
Value
read

Value
written

bal 1000

1

bal = 1000

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS 636 Swarnendu Biswas

Location
Value
read

Value
written

bal 1000

Location
Value
read

Value
written

bal 1000

2

bal = 1000

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS 636 Swarnendu Biswas

Location
Value
read

Value
written

bal 1000 1100

Location
Value
read

Value
written

bal 1000

3

bal = 1000

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS 636 Swarnendu Biswas

Location
Value
read

Value
written

bal 1000 1100

Location
Value
read

Value
written

bal 1000

3

Thread 1’s Tx ends, updates are
committed, value of bal is written

to memory; Tx log is discarded

bal = 1100

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS 636 Swarnendu Biswas

Location
Value
read

Value
written

bal 1000 900

4

bal = 1100

TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}

CS 636 Swarnendu Biswas

Location
Value
read

Value
written

bal 1000 900

4

bal = 1100

Thread 2’s Tx ends, but Tx commit fails,
because value of bal in memory does

not match the read log; Tx needs to rerun

Concurrency Control

• Occurrence, detection, and resolution happen at the same time
during execution

• Claims ownership of data before modifications

Pessimistic

• Conflict detection and resolution can happen after the conflict occurs

• Multiple conflicting transactions can continue to keep running, as
long as the conflicts are detected and resolved before the Txs commit

Optimistic

CS 636 Swarnendu Biswas

Pessimistic Concurrency Control

CS 636 Swarnendu Biswas

time

rdTx p wrTx q wrTx rstartTx
commit

Tx

rdTx p wrTx qstartTx wrTx r
commit

Tx

Conflict occurs, is detected, and is resolved by
delaying Thread 2’s Tx

Thread 1

Thread 2

Time of locking

When the Tx first accesses a location

When the Tx is about to commit

CS 636 Swarnendu Biswas

Optimistic Concurrency Control

CS 636 Swarnendu Biswas

time

rdTx p wrTx q wrTx rstartTx

Conflict
occurs

Thread 1

Thread 2

rdTx p wrTx q wrTx rstartTx

Conflict
detected and
resolved by
aborting the

Txs and
reexecuting
one or both

of them

Concurrency Control

Pessimistic

• Usually claims exclusive ownership of
data before accessing

• Effective in high contention cases

• Needs to avoid or detect and recover
from deadlock situations

Optimistic

• Avoids claiming exclusive ownership
of data, provides more conflict
resolution choices

• Effective in low contention cases

• Needs to avoid livelock situations
through contention management
schemes

CS 636 Swarnendu Biswas

Hybrid Concurrency Control

Use pessimistic control for writes and optimistic control for reads

Use optimistic control TM with pessimistic control of irrevocable Txs

• Irrevocable Tx means that the changes cannot be rolled back

• A Tx that has performed I/O or a Tx that has experienced frequent
conflicts in the past

CS 636 Swarnendu Biswas

Version Management

TMs need to track updates for conflict
resolution

Eager

• Tx directly updates data in memory (direct update)

• Maintains an undo log with overwritten values

• Values in the undo log are used to revert updates on an abort

Which concurrency control type should we use,
pessimistic or optimistic?

CS 636 Swarnendu Biswas

Eager version
management

Upon
commit

On abort

Flush undo
log

Write back
undo log

Version Management

Lazy

• Tx updates data in a private redo log

• Updates are made visible at commit
(deferred update)

• Tx reads must lookup redo logs

• Discard redo log on an abort

CS 636 Swarnendu Biswas

Lazy version
management

Upon
commit

On abort

Write back
redo log

Flush redo
log

Conflict Detection

CS 636 Swarnendu Biswas

Pessimistic concurrency control is straightforward

How do you check for conflicts in optimistic concurrency control?

Conflict Detection

CS 636 Swarnendu Biswas

Pessimistic concurrency control is straightforward

How do you check for conflicts in optimistic concurrency control?
• Validation operation – Successful validation means Tx had no

conflicts

Conflict Detection in Optimistic Concurrency
Control

Conflict granularity

• Object or field in software TM, line offset or whole cache line in hardware TM

• What are the tradeoffs?

Time of conflict detection

• Just before access (eager), during validation, during final validation before
commit (lazy)

• Validation can occur at any time, and can occur multiple times

Conflicting access types

• Among concurrent ongoing Txs, or between active and committed Txs

CS 636 Swarnendu Biswas

Object Layout

CS 636 Swarnendu Biswas

Object layout

HEADER

field1

field2

field3

Object Model in Jikes RVM

https://www.jikesrvm.org/JavaDoc/org/jikesrvm/objectmodel/ObjectModel.html

Issues with Conflict Granularity

Thread 1

do {

startTx();

tmp = readTx(&x);

writeTx(x, 10);

} while (!commitTx());

Thread 2

…

y = 20;

…

CS 636 Swarnendu Biswas

x = 0
y = 0

• Detect conflicts at the granularity of objects or fields
• A hardware technique can detect conflicts at the line/block

level or at the level of individual byte offsets
• What are the tradeoffs?

Transaction Semantics

CS 636 Swarnendu Biswas

Concurrency in TM

• Two levels
• Among Txs from concurrent thread

• Among individual Tx operations

CS 636 Swarnendu Biswas

rdTx p wrTx q
commit

Tx
startTx

Thread 1

Thread 2

rdTx x wrTx y
commit

Tx
startTx

Serializability

CS 636 Swarnendu Biswas

time

Thread 1

Thread 2

rdTx p wrTx q commitTxstartTx

rdTx x wrTx y
commit

Tx
startTx

The result of executing concurrent transactions must be
identical to a result in which these transactions executed serially

Serializability

• Widely-used correctness condition in databases

• The TM system can reorder transactions

• Serializability requires the Txs appear to run in serial order
• Does not require that the order has to be real-time

• Strict serializability
• If transaction TA completes before transaction TB starts, then TA must occur

before TB in the equivalent serial execution

CS 636 Swarnendu Biswas

Strict Serializability

CS 636 Swarnendu Biswas

time

Thread 1

Thread 2

rdTx p wrTx q commitTxstartTx

rdTx x wrTx y
commit

Tx
startTx

Limitations of Strict Serializability

CS 636 Swarnendu Biswas

time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

What value of y
will be retured?

Linearizability

CS 636 Swarnendu Biswas

time

rdTx p wrTx q
commit

Tx
startTx

Thread 1

Thread 2

rdTx x wrTx y
commit

Tx
startTx

Linearizability

• A method call is the interval that starts with an invocation event and
ends with a response event
• A method call is pending if the response event has not yet occurred

• Linearizability of an operation: each operation appears to execute
atomically at some point between its invocation and its completion

• Linearizability of a transaction: a transaction is a single operation
extending from the beginning of startTx() until the completion of
its final commitTx()

CS 636 Swarnendu Biswas

Can Linearizability help with this?

CS 636 Swarnendu Biswas

time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

Allows “rdTx y” to see the
write to y from Thread 1

Can Linearizability help with this?

CS 636 Swarnendu Biswas

time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

If each transaction appears to execute atomically at a single
instant, then conflicts between transactions will not occur

Snapshot Isolation (SI)

• Can potentially allow greater concurrency between Txs

• Many database implementations actually provide SI

Weaker isolation requirement than serializability

SI allows a Tx’s reads to be serialized before the Tx’s writes

All reads must see a valid snapshot of memory

Updates must not conflict

CS 636 Swarnendu Biswas

Example of SI

Thread 1

do {

startTx();

int tmp_x = readTx(x);

int tmp_y = readTx(y);

int tmp = tmp_x + tmp_y + 1;

writeTx(x, tmp);

} while (!commitTx());

Thread 2

do {

startTx();

int tmp_x = readTx(x);

int tmp_y = readTx(y);

int tmp = tmp_x + tmp_y + 1;

writeTx(y, tmp);

} while (!commitTx());

CS 636 Swarnendu Biswas

x = 0
y = 0

What are possible values of x and y after execution?
• With serializability
• With SI

Understanding SI

int t = x + 1; (1)

x = t;

x = 1;

int t = y; (0)

int t = x + 1; (1)

x = t;

y = 1;

int t = x; (0)

CS 636 Swarnendu Biswas

Sequentially consistent but not SI

SI but not sequentially consistent and not serializable

x = 0
y = 0

Data races are there
for a purpose!

M. Zhang et al. Avoiding Consistency Exceptions Under Strong Memory Models. ISMM 2017.

Understanding SI

• Semantics of SI may seem unexpected when compared with simpler
models based on serial ordering of complete transactions

• Potential increased concurrency often does not manifest as a
performance advantage when compared with models such as strict
serializability

CS 636 Swarnendu Biswas

Other TM Considerations

CS 636 Swarnendu Biswas

Consistency During Transactions

• Semantics such as serializability characterize the behavior of
committed Txs

• What about the Txs which fail to commit?
• Tx may abort or may be slow to reach commitTx()

CS 636 Swarnendu Biswas

Inconsistent Reads and Zombie Txs

Thread 1

do {
startTx();
int tmp1 = readTx(&x);

int tmp2 = readTx(&y);
while (tmp1 != tmp2) {}

} while (!commitTx());

Thread 2

do {
startTx();
writeTx(&x, 10);
writeTx(&y, 10);

} while (!commitTx());

CS 636 Swarnendu Biswas

x = 0
y = 0

Assume eager version
management and lazy

conflict detection

Inconsistent Reads and Zombie Txs

Thread 1

do {
startTx();
int tmp1 = readTx(&x);

int tmp2 = readTx(&y);
while (tmp1 != tmp2) {}

} while (!commitTx());

Thread 2

do {
startTx();
writeTx(&x, 10);
writeTx(&y, 10);

} while (!commitTx());

CS 636 Swarnendu Biswas

x = 0
y = 0

Assume eager version
management and lazy

conflict detection

Validation only during commit is
insufficient for this TM design

Considerations with Zombie Txs

• A Tx that is inconsistent but is not yet detected is called a zombie Tx

• Careful handling of zombie Txs are required, especially for unsafe languages
like C/C++
• Inconsistent values can potentially be used in pointer arithmetic to access unwanted

memory locations

• Possible workarounds: perform periodic validations
• Increases run-time overhead, validating 𝑛 locations once requires 𝑛 memory

accesses
• Couples the program to the TM system

• A TM using eager updates allows a zombie transaction’s effects to become visible to other
transactions

• A TM using lazy updates only allows the effects of committed transactions to become visible

CS 636 Swarnendu Biswas

Challenges with Mixed-Mode Accesses

• TM semantics must consider the interaction between transactional
and non-transactional memory accesses

• Many TMs do not detect conflicts between transactional and non-
transactional accesses
• Can lead to unexpected behavior with zombie Txs

• Requires the non-Tx thread to participate in conflict detection

CS 636 Swarnendu Biswas

Challenges with Mixed-Mode Accesses

Weak atomicity

• Provides Tx semantics only among Txs

• Checks for conflicts only among Txs

Strong atomicity

• Guarantees Tx semantics among Txs and non-Txs

Often referred to as weak and strong isolation (inspired by databases)

CS 636 Swarnendu Biswas

Think of Challenges with Weak Atomicity

• Data races between Tx and non-Tx code

• Mismatched conflict detection granularity
• Tx detects conflicts at a coarser granularity

• Complicated sharing idioms
• Use a Tx to initialize shared data, expect other threads to read the data

transactionally

CS 636 Swarnendu Biswas

Lock-Based Synchronization

Item item;

synchronized(list) {

item = list.removeFirst();

}

int r1 = item.val1;

int r2 = item.val2;

synchronized(list) {

if (!list.isEmpty()) {

Item item = list.getFirst();

item.val1++;

item.val2++;

}

}

CS 636 Swarnendu Biswas

Thread 1 Thread 2

java.util.LinkedList list is shared

Initially list == [Item{val1==0,val2==0}]

T. Shpeisman et al. Enforcing Isolation and Ordering in STM. PLDI 2007.

Can we safely replace synchronize with atomic?

Item item;

weakly_atomic(list) {

item = list.removeFirst();

}

int r1 = item.val1;

int r2 = item.val2;

weakly_atomic(list) {

if (!list.isEmpty()) {

Item item = list.getFirst();

item.val1++;

item.val2++;

}

}

CS 636 Swarnendu Biswas

Thread 1 Thread 2

T. Shpeisman et al. Enforcing Isolation and Ordering in STM. PLDI 2007.

java.util.LinkedList list is shared

Initially list == [Item{val1==0,val2==0}]

Few Issues to Consider with Weak Isolation

Non-repeatable reads

Intermediate lost updates

Intermediate dirty reads

Granular lost updates

…

…

CS 636 Swarnendu Biswas

CS 636 Swarnendu Biswas

Thread 1 Thread 2

atomic {
r1 = x;

r2 = x;
}

x = 1;

Thread 1 Thread 2

atomic {
r = x;

x = r+1;
}

x = 10;

Initially x = 0

Thread 1 Thread 2

atomic {
x++;

x++;
}

r = x;

Initially x is even

• A non-repeatable read can occur if a Tx reads the same variable
multiple times, and a non-Tx write is made to it in between

• Unless the TM buffers the value seen by the first read, the
transaction will see the update

• An intermediate lost update can occur if a non-Tx write
interposes in a transactional read-modify-write sequence; the
non-Tx write can be lost, without being seen by the Tx read

• An intermediate dirty read can occur with a TM using eager
version management in which a non-Tx read sees an
intermediate value written by a transaction, rather than the
final, committed value

Single-Lock Atomicity for Transactions

• How do we provide semantics for mixed-mode accesses?

• A program executes as if all transactions acquire a single, program-
wide mutual exclusion lock

• There are many other proposed models like DLA and TSC

CS 636 Swarnendu Biswas

Thread 1 Thread 2

startTx();
while (True) {}
commitTx();

startTx();
int tmp = readTx(&x);
commitTx();

What will
happen here

with SLA?

Nested Transactions

• Nested parallelism is important
• Utilizes increasing number of cores
• Integrates with programming models like OpenMP

• Execution of a nested Tx is wholely contained in the
dynamic extent of another Tx

• Many choices on how nested Txs interact
• Flattened

• Aborting the inner Tx causes the outer Tx to abort
• Committing the inner Tx has no effect until the outer Tx

commits

• Closed
• Inner Tx can abort without terminating its parent Tx

CS 636 Swarnendu Biswas

// Parallelize loops
FOR I := …

FOR J := …
FOR K := …

int x = 1;

do {
StartTx();
WriteTx(&x, 2);

do {
StartTx();
WriteTx(&x, 3);
AbortTx();

...

Providing Txs: TM Implementations

Software Transactional Memory (STM)

Hardware Transactional Memory (HTM)

CS 636 Swarnendu Biswas

STMs vs HTMs

STM

• Supports flexible techniques in
TM design

• Easy to integrate STMs with PL
runtimes

• Easier to support unbounded Txs
with dynamically-sized logs

• More expensive than HTMs

HTM

• Restricted variety of
implementations

• Need to adapt existing runtimes
to make use of HTM

• Limited by bounded-sized
structures like caches

• Better performance than STMs

CS 636 Swarnendu Biswas

Software Transactional
Memory

CS 636 Swarnendu Biswas

Software Transactional Memory (STM)

Data structures

• Need to maintain per-thread Tx
state

• Maintain either redo log or undo log

• Maintain per-Tx read/write sets

• McRT-STM, PPoPP’06

• Bartok-STM, PLDI’06

• JudoSTM, PACT’07

• RingSTM, SPAA’08

• NoRec STM, PPoPP’10

• DeuceSTM, HiPEAC’10

• LarkTM, PPoPP’15

• …

CS 636 Swarnendu Biswas

We love questions!

Is the design of undo log important in a TM with
eager version management?

Is the design of redo log important in a TM with lazy
version management?

CS 636 Swarnendu Biswas

Remember well-designed applications should have low conflict rates

Implementing STM

• Use compilation passes to
instrument the program
• startTx() – Tx entry point (prolog)

• commitTx() – Tx exit point (epilog)

• readTx()/writeTx() –
Transactional read/write accesses

• TM runtime tracks memory
accesses, detects conflicts, and
commits/aborts Txs

CS 636 Swarnendu Biswas

atomic {
tmp = x;
y = tmp + 1;

}

// Per-TX data structure
td = getTxDesc(thr);
startTx(td);
tmp = readTx(&x);
writeTx(&y, tmp+1);
commitTx(td);

Object Metadata and Word Metadata

CS 636 Swarnendu Biswas

Object2 layout

metadata

field1

field2

field3

Addr 1

Addr 2

Addr 3

Addr 4

metadata1

metadata2

metadata3

metadata4

Object1 layout

metadata2

field2

metadata3

field3

metadata1

field1

Pros and Cons of Metadata in Object Header

Pros

May lie on
the same
cache line

Single update
for accesses
to all fields

Cons

Potential for
false conflicts

Increases
coupling
• GC considerations

CS 636 Swarnendu Biswas

Object2 layout

metadata

field1

field2

field3
Object1 layout

metadata2

field2

metadata3

field3

metadata1

field1

Variants of Word-based Metadata

CS 636 Swarnendu Biswas

Addr 1

Addr 2

Addr 3

Addr 4

metadata1

metadata2

metadata3

Use hash functions to map addresses to
a fixed-size metadata space

Addr 1

Addr 2

Addr 3

Addr 4

metadata

Process-wide metadata space

Which granularity to use?

Potential impact due to false conflicts

Impact on memory usage

• Speed of mapping location to metadata

Impact on performance

CS 636 Swarnendu Biswas

Major STM Designs

• Use locks for protecting updates, and use versions to detect conflicts involving reads

Per-object versioned locks (McRT-STM, Bartok-STM)

Global clock with per-object metadata (TL2)

Fixed global metadata (JudoSTM, RingSTM, NOrec STM)

• Does not use locks

Nonblocking STMs (DSTM)

CS 636 Swarnendu Biswas

Lock-Based STM with Versioned Reads

High-level
design

Pessimistic concurrency-
control for writes

Locks are acquired
dynamically

Optimistic concurrency
control for reads

Validation using per-
object version numbers

CS 636 Swarnendu Biswas

Header Word Optimizations in Bartok STM

CS 636 Swarnendu Biswas

00 00

TM metadata 00 Hashcode 10Normal lock 01

11

Hash code

Normal lock

TM metadata

1. Initially header word is zero

2. First type of use in encoded
in header word

3. Second type of use triggers
inflations

Other Design Choices

• Eager vs lazy version
management

• Access-time locking or commit-
time locking

CS 636 Swarnendu Biswas

Access-time locking
• Can support both eager or lazy version management
• Detects conflicts between active transactions, irrespective of whether

they ultimately commit

Commit-time locking
• Can support only lazy version management

STM Metadata

• Lock is available – no pending writes, holds the current version of the
object

• Lock is taken – refers to the owner Tx

• Invisible reads – presence of a reading Tx is not visible to concurrent
Txs which might try to commit updates to the objects being read

CS 636 Swarnendu Biswas

Versioned locks
• Lock – mutual exclusion of writes
• Version number – detect conflicts involving reads

Read and Write Operations
readTx(tx, obj, off) {

tx.readSet.obj = obj;
tx.readSet.ver = getVerFromMetadata(obj);
tx.readSet++;

return read(obj, off);
}

writeTx(tx, obj, off, newVal) {
acquire(obj);

tx.undoLog.obj = obj;
tx.undoLog.offset = off,
tx.undoLog.val = read(obj, off);
tx.undoLog++;

tx.writeSet.obj = obj;
tx.writeSet.off = off;
tx.writeSet.ver = ver;
tx.writeSet++;

write(obj, off, newVal);
release(obj);

}

CS 636 Swarnendu Biswas

Eager version
management

Read and Write Operations
readTx(tx, obj, off) {

tx.readSet.obj = obj;
tx.readSet.ver = getVerFromMetadata(obj);
tx.readSet++;

return read(obj, off);
}

writeTx(tx, obj, off, newVal) {
acquire(obj);
undoLogInt(tx, obj, off);
tx.writeSet.obj = obj;
tx.writeSet.off = off;
tx.writeSet.ver = ver;
tx.writeSet++;
write(obj, off, newVal);
release(obj);

}

undoLogInt(tx, obj, off) {
tx.undoLog.obj = obj;
tx.undoLog.offset = off,
tx.undoLog.val = read(obj, off);
tx.undoLog++;

}CS 636 Swarnendu Biswas

Type
specialization

Conflict Detection on Writes

Writes? Reads

CS 636 Swarnendu Biswas

How do you detect
conflict on writes?

Conflict Detection on Reads

Writes Reads?

bool commitTx(tx) {

foreach (entry e in tx.readSet)

if (!validateTx(e.obj, e.ver))

abortTx(tx);

return false;

foreach (entr e in tx.writeSet)

unlock(e.obj, e.ver);

return true;

}

CS 636 Swarnendu Biswas

Unlock increments
the version number

No Conflict on Read from Addr=200

CS 636 Swarnendu Biswas

addr = 200, ver = 100

Read set
ver = 100

x == 42

Remember
metadata doubles as

a version and lock

Addr = 200

Transaction read from the object, and its version
number is unchanged at commit time

No Conflict on Read from and Write to
Addr=200

CS 636 Swarnendu Biswas

x == 17 addr = 200, ver = 100

Read set

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo log

Addr = 200

Transaction read from and then wrote to the
object, and the version numbers are the same

No Conflict on Write to and Read from
Addr=200

CS 636 Swarnendu Biswas

x == 17 addr = 200,

Read set

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo log

Addr = 200

Transaction wrote to and then read from the
object, and the version numbers are the same

Conflict on Read from Addr=200, Concurrent
Tx Updates and Commits

CS 636 Swarnendu Biswas

addr = 200, ver = 100

Read set
ver = 101

x == 2Addr = 200

Transaction read from the object, and there is a
version mismatch during commitTx()

Conflict on Read from Addr=200, Concurrent
Write

CS 636 Swarnendu Biswas

addr = 200,

Read set
ver = 105

x == 22Addr = 200

Transaction read from the object when it was
owned by some other Tx

Conflict on Read from Addr=200 during
Commit

CS 636 Swarnendu Biswas

addr = 200, ver = 100

Read set

x == 47Addr = 200

Transaction is owned by some other Tx when the
current reader Tx tries to commit

Conflict Between Read and Write from
Addr=200

CS 636 Swarnendu Biswas

x == 17 addr = 200, ver = 100

Read set

addr = 200, ver = 101

Write set

addr = 200, val = 42

Undo log

Addr = 200

Transaction read from and wrote to the object,
but a concurrent Tx updated the object in
between

Practical Issues

• Theoretical concern, is a practical concern if the metadata is “packed”

• Globally renumber objects if overflow is rare

• Distinguish between an “old” and a wrapped-around “new” version

• Ensure that each thread validates its current Tx at least once within
𝑛 version increments

Version overflow

Do these techniques (McRT, Bartok) allow zombie txs?

CS 636 Swarnendu Biswas

Semantics of McRT and Bartok

Read set may not remain consistent during txs

Does not detect conflicts between txs and non-txs

CS 636 Swarnendu Biswas

Hardware Transactional
Memory

CS 636 Swarnendu Biswas

Hardware Transactional Memory (HTM)

• Can provide strong isolation
without modifications to non-Tx
accesses

• Easy to extend to unmanaged
languages

• TCC, ISCA’04

• LogTM, HPCA’06

• Rock HTM, ASPLOS’09

• FlexTM, ICS’09

• Azul HTM

• Intel TSX

• IBM Blue Gene/Q

CS 636 Swarnendu Biswas

Possible ISA Extensions

Explicit

• begin_transaction

• end_transaction

• load_transactional

• store_transactional

Implicit

• begin_transaction

• end_transaction

CS 636 Swarnendu Biswas

Similar to STMs, HTMs need to demarcate Tx boundaries and transactional
memory accesses

Memory accessed within a Tx through ordinary
memory instructions do not participate in any
transactional memory protocol

Which is simpler?

Comparison

Explicitly Transactional HTMs

• Provides flexibility to choose
desired memory locations
• Reduced read and write set size

• May require multiple library
versions
• Limits reuse of legacy libraries in

HTMs

Implicitly Transactional HTMs

• Larger read and write sets

• Easy to reuse software libraries

CS 636 Swarnendu Biswas

Design Issues in HTMs

• Introducing additional structures like transactional cache complicates the
data path

• Recent ideas extend existing data caches to track accesses

• Granularity matters (one read bit for a cache line)

Tracking read and write sets

• Natural to piggyback on cache coherence protocols to detect conflicts

• Most HTMs detect conflicts eagerly, and transfer control to a software
handler

Conflict detection

CS 636 Swarnendu Biswas

need to be careful
with writes

Intel Transactional Synchronization
Extensions

TSX supported by Intel in selected series based on Haswell
microarchitecture

TSX hardware can dynamically determine whether threads need to
serialize lock-protected critical sections

CS 636 Swarnendu Biswas

https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained

https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained

High-Level Goal with Transactions

• Hardware dynamically determines whether threads need to serialize
• For example, with lock-protected critical sections

• Hardware serializes only when required

• Thus, processor exposes and exploits concurrency that is hidden due
to unnecessary synchronization

• Lock elision idea introduced by Ravi Rajwar and James R. Goodman in
2001
• Remove locks, run code as a transaction

• If there are conflicts, abort and rerun code with locks intact

• On success, commit the transaction’s writes to memory

CS 636 Swarnendu Biswas

Intel Transactional Synchronization Extensions

• Optimistically executes critical sections eliding lock
operations

• Commit if the Tx executes successfully

• Otherwise abort – discard all updates, restore architectural
state, and resume execution

• Resumed execution may fall back to locking

TSX operation

CS 636 Swarnendu Biswas

TSX Interface

Hardware Lock Elision (HLE)

• xacquire

• xrelease

• Extends HTM support to legacy
hardware

Restricted Transactional Memory (RTM)

• xbegin

• xend

• xabort

• New ISA extensions

CS 636 Swarnendu Biswas

Hardware Lock Elision (HLE)

• Application uses legacy-compatible prefix hints to identify critical
sections
• Hints ignored on hardware without TSX

• HLE provides support to execute critical section transactionally
without acquiring locks

• Abort causes a re-execution without lock elision

• Hardware manages all state

CS 636 Swarnendu Biswas

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

Goal with Intel TSX

https://software.intel.com/content/dam/develop/external/us/en/images/slide1.png

Lock Acquire Code

CS 636 Swarnendu Biswas

mov eax, 1
Try: lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

application

HLE Interface

CS 636 Swarnendu Biswas

mov eax, 1
Try: lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

mov eax, 1
Try: xacquire lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

xrelease mov mutex, 0

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

application

Restricted Transactional Memory (RTM)

• Software uses new instructions to identify critical sections
• Similar to HLE, but more flexible interface for software

• Requires programmers to provide an alternate fallback path

• Processor may abort RTM transactional execution for several reasons

• Abort transfers control to target specified by XBEGIN operand
• Abort information encoded in the EAX GPR

CS 636 Swarnendu Biswas

Lock Acquire Code

CS 636 Swarnendu Biswas

mov eax, 1
Try: lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

application

RTM Interface

CS 636 Swarnendu Biswas

Retry: xbegin Abort
cmp mutex, 0
jz Success
xabort $0xff

Abort:
// check eax and do retry policy
// actually acquire lock or wait
// to retry
…

cmp mutex, 0
jnz Rel
xend

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

mov eax, 1
Try: lock xchg mutex, eax

cmp eax, 0
jz Success

Spin: pause
cmp mutex, 1
jz Spin
jmp Try

Rel: mov mutex, 0

acquire
(mutex)

release
(mutex)

XTEST

• XTEST instruction
• Queries whether the logical processor is transactionally executing in a

transactional region identified by either HLE or RTM

CS 636 Swarnendu Biswas

Aborts in TSX

• Conflicting accesses from different cores (data, locks, false sharing)
• TSX maintains read/write sets at the granularity of cache lines

• Capacity misses

• Some instructions always cause aborts (system calls, I/O)

• Eviction of a transactionally-written cache line

• Eviction of transactionally-read cache lines do not cause immediate
aborts
• Backed up in a secondary structure which might overflow

CS 636 Swarnendu Biswas

Section 12.2.4 in Intel 64 and IA-32 Architectures Optimization Reference Manual

Finding Reasons for Aborts can be Hard!

EAX register bit position Meaning

0 Set if abort caused by XABORT instruction

1 If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set

2 Set if another logical processor conflicted with a memory address that was part of
the transaction that aborted

3 Set if an internal buffer overflowed

4 Set if debug breakpoint was hit

5 Set if an abort occurred during execution of a nested transaction

23:6 Reserved

31:24 XABORT argument (only valid if bit 0 set, otherwise reserved)

CS 636 Swarnendu Biswas

TSX Implementation Details

• Every detail is not known
• Read and write sets are at cache line granularity

• Uses L1 data cache as the storage

• Conflict detection is through cache coherence protocol

CS 636 Swarnendu Biswas

TSX Caveats

• No guarantees that Txs will commit

• There should be a software fallback independent of TSX to guarantee
forward progress

CS 636 Swarnendu Biswas

CS 636 Swarnendu Biswas

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

So what?

• GNU glibc 2.18 added support for lock elision of pthread mutexes of type
PTHREAD_MUTEX_DEFAULT

• Glibc 2.19 added support for elision of read/write mutexes
• Depends whether the --enable-lock-elision=yes parameter was set at compilation time of the

library

• Java JDK 8u20 onward support adaptive elision for synchronized sections when
the -XX:+UseRTMLocking option is enabled

• Intel Thread Building Blocks (TBB) 4.2 supports elision with the
speculative_spin_rw_mutex

CS 636 Swarnendu Biswas

References

• T. Harris et al. – Transactional Memory, 2nd edition.

• R. Yoo et al. - Performance Evaluation of Intel Transactional Synchronization Extensions for High-Performance
Computing. SC 2013.

• Intel 64 and IA-32 Architectures Optimization Reference Manual

• Intel Architecture Instruction Set Extensions Programming Reference. Sections 8.1—8.2.

• Ravi Rajwar and Martin Dixon. Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

CS 636 Swarnendu Biswas

