
CS 636: Transactional 
Memory
Swarnendu Biswas

Semester 2020-2021-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.



Challenges with Concurrent Programming
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Less synchronization More synchronization

Deadlock
Order, atomicity & 

sequential consistency 
violations

Poor performance: lock 
contention, serialization

Concurrent and 
correct



Task Parallelism

• Different tasks run on the same data
• Threads execute computation 

concurrently

• E.g., pipelines

• Explicit synchronization is used to 
coordinate threads
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HashMap in Java

public Object get(Object key) {

int idx = hash(key);         // Compute hash to find bucket

HashEntry e = buckets[idx];  

while (e != null) {          // Find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

CS 636 Swarnendu Biswas

• no lock overhead
• not thread-safe



Synchronized HashMap in Java

public Object get(Object key) {
synchronized (mutex) {  // mutex guards all accesses

return myHashMap.get(key);
}

}
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• Thread-safe, uses explicit coarse-grained locking



Coarse-Grained and Fine-Grained Locking

Coarse-grained

• Pros: Easy to implement

• Cons: limits concurrency, poor scalability

Fine-grained

• Idea: Use a separate lock per bucket

• Pros: thread safe, more concurrency, better performance

• Cons: difficult to get correct, more error-prone
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Data Parallelism

• Same task applied on many data items in parallel
• E.g., processing pixels in an image

• Useful for numeric computations 

• Not an universal programming model
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Task vs Data Parallelism

Task Parallelism

• Different operations on same or 
different data

• Parallelization depends on task 
decomposition

• Speedup is usually less since it 
may require synchronization

Data Parallelism

• Same operation on different 
data

• Parallelization proportional to 
the input data size

• Speedup is usually more
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Combining Task and Data Parallelism

Processing in 
graphics 

processors

Task parallelism 
through pipelining

• Each task could apply a 
filter in a series of 
filters

Data parallelism for 
a given filter

• Apply the filter 
computation in parallel 
for all pixels
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https://www.zdnet.com/article/understanding-task-and-data-parallelism-3039289129/



Abstraction and Composability
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Programming languages provide abstraction and composition

• Procedures, ADTs, and libraries

Abstraction
• Simplified view of an entity or a problem

• Example: procedures, ADT

Composability
• Join smaller units to form  larger, more complex unit

• Example: library methods



Abstraction and Composability
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Programming languages provide abstraction and composition

• Procedures, ADTs, and libraries

Abstraction
• Simplified view of an entity or a problem

• Example: procedures, ADT

Composability
• Join smaller units to form  larger, more complex unit

• Example: library methods

• Parallel programming lacks abstraction mechanisms 
• Low-level parallel programming models, such as threads 

and explicit synchronization, are unsuitable for 
constructing abstractions 

• Explicit synchronization is not composable



Locks are difficult to program!

• If a thread holding a lock is delayed, other contending threads cannot 
make progress
• All contending threads will possibly wake up, but only one can make progress

• Lost wakeups – missed notify for condition variable

• Deadlocks

• Priority inversion

• Lock convoying

• Locking relies on programmer conventions
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Locking relies on programmer conventions!

• If a thread holding a lock is delayed, other contending threads cannot 
make progress
• All contending threads will possibly wake up, but only one can make progress

• Deadlocks

• Priority inversion

• Locking relies on programmer conventions
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/* 

* When a locked buffer is visible to the I/O layer

* BH_Launder is set. This means before unlocking

* we must clear BH_Launder,mb() on alpha and then

* clear BH_Lock, so no reader can see BH_Launder set

* on an unlocked buffer and then risk to deadlock. 

*/

Actual comment 
from Linux Kernel

Bradley Kuszmaul, and Maurice Herlihy and Nir Shavit



Lock-based Synchronization is not 
Composable
class HashTable {

void synchronized insert(T elem);

boolean synchronized remove(T elem);

}

You want to add a new method:
boolean move(HashTable tab1, HashTable tab2, T elem)

=> remove()

=> insert()
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Lock-based Synchronization is not 
Composable
class HashTable {

void synchronized insert(T elem);

boolean synchronized remove(T elem);

}

You want to add a new method:
boolean move(HashTable tab1, HashTable tab2, T elem)

=> remove()

=> insert()
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• Option: Add new methods such as LockHashTable() and 
UnlockHashTable()
• Breaks the abstraction by exposing an implementation detail

• Lock methods are error prone 
• A client that locks more than one table must be careful to lock 

them in a globally consistent order to prevent deadlock



Choosing the right locks!

• Locking schemes for 4 threads may not be the most efficient at 64 
threads
• Need to profile the amount of contention
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What about hardware atomic primitives?



Transactional Memory
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Transactional Memory

• Transaction: A computation sequence that executes as if without 
external interference
• Computation sequence appears indivisible and instantaneous

• Proposed by Lomet [‘77] and Herlihy and Moss [‘93]

CS 636 Swarnendu Biswas



Advantages of Transactional Memory (TM)

• Provides reasonable tradeoff between abstraction and performance
• No need for explicit locking

• Avoids lock-related issues like lock convoying, priority inversion, and deadlocks
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boolean move(HashTable tab1, HashTable tab2, T elem) {
atomic {
boolean res = tab1.remove(elem);
if (res)
tab2.insert(elem);

}
return res;

}



Advantages of TM

Programmer says what needs to be atomic
• TM system/runtime implements synchronization

Declarative abstraction
• Programmer says what work should be done

• Programmer says how work should be done with imperative abstraction

Easy programmability (like coarse-grained locks)
• Performance goal is like fine-grained locks
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Basic TM Design

• Transactions are executed speculatively

• If the transaction execution completes without a conflict, then the 
transaction commits
• The updates are made permanent

• If the transaction experiences a conflict, then it aborts
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Database Systems as a Motivation
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• Database systems have successfully exploited parallel hardware for 
decades

• Achieve good performance by executing many queries simultaneously 
and by running queries on multiple processors when possible



Database Systems as a Motivation

Atomicity

Consistency

Isolation

Durability
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TM vs Database Transactions

Database Transactions

• Application level concept

• Durable

• Operations involve mostly disk 
accesses

TM

• Supported by language runtime 
or hardware

• Not durable

• Operations are from main 
memory, performance is critical
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Properties of TM execution

Tx Atomic Appears to happen 
instantaneously

Commit Appears atomic

Abort Has no side effects

Serializable Appear to happen serially in 
order

Isolation Other code cannot observe 
writes before commit
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TM Execution Semantics

Thread 1

atomic {

a = a – 20;

b = b + 20;

c = a + b;

a = a – b;

}

Thread 2

atomic {

c = c + 40;

d = a + b + c;

}
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Thread 1’s updates to a, 
b, and c are atomic

Thread 2’s either sees ALL 
updates to a, b, and c from 

T1 or NONE

No data race due to 
TM semantics



Linked-List-based Double Ended Queue
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Left 
sentinel

10 20 90
Right 

sentinel

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
atomic {
QNode *leftSentinel = q->left;
QNode *oldLeftNode = leftSentinel->right;
qn->left = leftSentinel;
qn->right = oldLeftNode;
leftSentinel->right = qn;
oldLeftNode->left = qn;

}
}



Linked-List-based Double Ended Queue
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Left 
sentinel

10 20 90
Right 

sentinel

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
atomic {
QNode *leftSentinel = q->left;
QNode *oldLeftNode = leftSentinel->right;
qn->left = leftSentinel;
qn->right = oldLeftNode;
leftSentinel->right = qn;
oldLeftNode->left = qn;

}
}

• Challenges with a lock-based implementation
• A single lock would prevent concurrent operations at both ends
• Need to be careful to avoid deadlocks with multiple locks
• Take care of corner cases (for example, only one element is left)



Atomicity violation

if (thd->proc_info)

fputs(thd->proc_info, …)

…

thd->proc_info = NULL;
…
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MySQL
ha_innodb.cc

ti
m
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Fixing Atomicity Violations with TM

atomic {
if (thd->proc_info)

fputs(thd->proc_info, …)
}

atomic {
thd->proc_info = NULL;

}
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No data race due to 
TM semantics

ti
m
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Fixing Atomicity Violations with TM

atomic {
if (thd->proc_info)

fputs(thd->proc_info, …)
}

atomic {
thd->proc_info = NULL;

}
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No data race due to 
TM semantics

ti
m
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Transactional HashMap

Pros

• Thread-safe, easy to 
program

• No lock-related issues

Cons

• Good performance and 
scalability depends on 
the TM implementation
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synchronized in Java

synchronized

• Provides mutual exclusion 
compared to other blocks on the 
same lock

• Nested blocks can deadlock if 
locks are acquired in wrong 
order

TM Transaction

• A transaction is atomic w.r.t. all 
other transactions in the system 

• Nested transactions never 
deadlock
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TM Interface

void startTx();
bool commitTx();
void abortTx();

T readTx(T *addr);
void writeTx(T *addr, T val);
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• Set of variables read by the Tx

Read set

• Set of variables written by the Tx

Write set

Functions can be overloaded by types or 
we can use generics



Linked-List-based Double Ended Queue
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Left 
sentinel

10 20 90
Right 

sentinel

void PushLeft(DQueue *q, int val) {
QNode *qn = malloc(sizeof(QNode));
qn->val = val;
do {
StartTx();
QNode *leftSentinel = ReadTx(&(q->left));
QNode *oldLeftNode = ReadTx(&(leftSentinel->right));
WriteTx(&(qn->left), leftSentinel);
WriteTx(&(qn->right), oldLeftNode);
WriteTx(&(leftSentinel->right), qn);
WriteTx(&(oldLeftNode->left), qn);

} while (!CommitTx());
}

• Similar to sequential code
• No explicit locks



Transactions cannot replace all uses of locks!

Thread 1

do {

startTx();

writeTx(&x, 1);

} while (!commitTx());

Thread 2

do {

startTx();

int tmp = readTx(&x);

while (tmp == 0) {}

} while (!commitTx());
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Concurrency in TM 

• Two levels
• Among Txs from concurrent thread

• Among individual Tx operations
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rdTx p wrTx q
commit

Tx
startTx

Thread 1

Thread 2

rdTx x wrTx y
commit

Tx
startTx



Design Choices
• Concurrency Control

• Version Management

• Conflict Detection
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TM Terminology
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A conflict occurs when two transactions perform conflicting 
operations on the same memory location

Let 𝑅𝑖 and 𝑊𝑗 be the read and write sets of Tx 𝑖. Then a conflict occurs if 
and only if
• 𝑅𝑖 ∩𝑊𝑗 ≠ ∅, or 

• 𝑊𝑖 ∩𝑊𝑗 ≠ ∅, or 

• 𝑊𝑖 ∩ 𝑅𝑗 ≠ ∅



TM Terminology
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The conflict is detected when the underlying TM system 
determines that the conflict has occurred

The conflict is resolved when the underlying TM system takes 
some action to avoid the conflict
• Delay or abort one of the conflicting transactions

A conflict, its detection, and its resolution can occur at different 
times



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

Location
Value 
read

Value 
written

bal = 1000



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

Location
Value 
read

Value 
written

bal 1000

1

bal = 1000



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
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bal 1000 1100

Location
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Value 
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bal 1000

3

bal = 1000



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

bal 1000 1100

Location
Value 
read

Value 
written

bal 1000

3

Thread 1’s Tx ends, updates are 
committed, value of bal is written 

to memory; Tx log is discarded 

bal = 1100



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

bal 1000 900

4

bal = 1100



TM: Example Execution

atomic {

tmp = bal;

bal = tmp + 100;

}

atomic {

tmp = bal;

bal = tmp - 100;

}
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Location
Value 
read

Value 
written

bal 1000 900

4

bal = 1100

Thread 2’s Tx ends, but Tx commit fails, 
because value of bal in memory does 

not match the read log; Tx needs to rerun



Concurrency Control

• Occurrence, detection, and resolution happen at the same time
during execution

• Claims ownership of data before modifications

Pessimistic

• Conflict detection and resolution can happen after the conflict occurs

• Multiple conflicting transactions can continue to keep running, as 
long as the conflicts are detected and resolved before the Txs commit

Optimistic
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Pessimistic Concurrency Control
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time

rdTx p wrTx q wrTx rstartTx
commit

Tx

rdTx p wrTx qstartTx wrTx r
commit

Tx

Conflict occurs, is detected, and is resolved by 
delaying Thread 2’s Tx

Thread 1

Thread 2



Time of locking

When the Tx first accesses a location

When the Tx is about to commit
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Optimistic Concurrency Control
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time

rdTx p wrTx q wrTx rstartTx

Conflict 
occurs

Thread 1

Thread 2

rdTx p wrTx q wrTx rstartTx

Conflict 
detected and 
resolved by 
aborting the 

Txs and 
reexecuting
one or both 

of them



Concurrency Control

Pessimistic 

• Usually claims exclusive ownership of 
data before accessing

• Effective in high contention cases

• Needs to avoid or detect and recover 
from deadlock situations

Optimistic

• Avoids claiming exclusive ownership 
of data, provides more conflict 
resolution choices

• Effective in low contention cases

• Needs to avoid livelock situations 
through contention management 
schemes
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Hybrid Concurrency Control

Use pessimistic control for writes and optimistic control for reads

Use optimistic control TM with pessimistic control of irrevocable Txs

• Irrevocable Tx means that the changes cannot be rolled back

• A Tx that has performed I/O or a Tx that has experienced frequent 
conflicts in the past
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Version Management

TMs need to track updates for conflict 
resolution

Eager

• Tx directly updates data in memory  (direct update)

• Maintains an undo log with overwritten values

• Values in the undo log are used to revert updates on an abort

Which concurrency control type should we use, 
pessimistic or optimistic?
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Eager version 
management

Upon 
commit

On abort

Flush undo 
log

Write back 
undo log



Version Management

Lazy

• Tx updates data in a private redo log

• Updates are made visible at commit 
(deferred update)

• Tx reads must lookup redo logs

• Discard redo log on an abort
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Lazy version 
management

Upon 
commit

On abort

Write back 
redo log

Flush redo 
log



Conflict Detection
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Pessimistic concurrency control is straightforward

How do you check for conflicts in optimistic concurrency control?



Conflict Detection
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Pessimistic concurrency control is straightforward

How do you check for conflicts in optimistic concurrency control?
• Validation operation – Successful validation means Tx had no 

conflicts



Conflict Detection in Optimistic Concurrency 
Control

Conflict granularity

• Object or field in software TM, line offset or whole cache line in hardware TM

• What are the tradeoffs?

Time of conflict detection

• Just before access (eager), during validation, during final validation before 
commit (lazy)

• Validation can occur at any time, and can occur multiple times

Conflicting access types

• Among concurrent ongoing Txs, or between active and committed Txs

CS 636 Swarnendu Biswas



Object Layout
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Object layout

HEADER

field1

field2

field3

Object Model in Jikes RVM

https://www.jikesrvm.org/JavaDoc/org/jikesrvm/objectmodel/ObjectModel.html



Issues with Conflict Granularity

Thread 1

do {

startTx();

tmp = readTx(&x);

writeTx(x, 10);

} while (!commitTx());

Thread 2

…

y = 20;

…
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x = 0
y = 0

• Detect conflicts at the granularity of objects or fields
• A hardware technique can detect conflicts at the line/block 

level or at the level of individual byte offsets
• What are the tradeoffs?



Transaction Semantics
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Concurrency in TM 

• Two levels
• Among Txs from concurrent thread

• Among individual Tx operations
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rdTx p wrTx q
commit

Tx
startTx

Thread 1

Thread 2

rdTx x wrTx y
commit

Tx
startTx



Serializability
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time

Thread 1

Thread 2

rdTx p wrTx q commitTxstartTx

rdTx x wrTx y
commit

Tx
startTx

The result of executing concurrent transactions must be 
identical to a result in which these transactions executed serially



Serializability

• Widely-used correctness condition in databases

• The TM system can reorder transactions

• Serializability requires the Txs appear to run in serial order
• Does not require that the order has to be real-time

• Strict serializability
• If transaction TA completes before transaction TB starts, then TA must occur 

before TB in the equivalent serial execution
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Strict Serializability
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time

Thread 1

Thread 2

rdTx p wrTx q commitTxstartTx

rdTx x wrTx y
commit

Tx
startTx



Limitations of Strict Serializability
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time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

What value of y 
will be retured?



Linearizability
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time

rdTx p wrTx q
commit

Tx
startTx

Thread 1

Thread 2

rdTx x wrTx y
commit

Tx
startTx



Linearizability

• A method call is the interval that starts with an invocation event and 
ends with a response event
• A method call is pending if the response event has not yet occurred

• Linearizability of an operation: each operation appears to execute 
atomically at some point between its invocation and its completion

• Linearizability of a transaction: a transaction is a single operation 
extending from the beginning of startTx() until the completion of 
its final commitTx()
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Can Linearizability help with this?
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time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

Allows “rdTx y” to see the 
write to y from Thread 1



Can Linearizability help with this?
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time

Thread 1

Thread 2

wrTx x wrTx y commitTxstartTx

rdTx x rdTx y
commit

Tx
startTx

If each transaction appears to execute atomically at a single 
instant, then conflicts between transactions will not occur



Snapshot Isolation (SI)

• Can potentially allow greater concurrency between Txs

• Many database implementations actually provide SI 

Weaker isolation requirement than serializability

SI allows a Tx’s reads to be serialized before the Tx’s writes

All reads must see a valid snapshot of memory

Updates must not conflict
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Example of SI

Thread 1

do {

startTx();

int tmp_x = readTx(x);

int tmp_y = readTx(y);

int tmp = tmp_x + tmp_y + 1;

writeTx(x, tmp);

} while (!commitTx());

Thread 2

do {

startTx();

int tmp_x = readTx(x);

int tmp_y = readTx(y);

int tmp = tmp_x + tmp_y + 1;

writeTx(y, tmp);

} while (!commitTx());
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x = 0
y = 0

What are possible values of x and y after execution?
• With serializability
• With SI 



Understanding SI

int t = x + 1; (1)

x = t; 

x = 1;

int t = y; (0)

int t = x + 1; (1)

x = t;

y = 1;

int t = x; (0)
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Sequentially consistent but not SI

SI but not sequentially consistent and not serializable

x = 0
y = 0

Data races are there 
for a purpose!

M. Zhang et al. Avoiding Consistency Exceptions Under Strong Memory Models. ISMM 2017.



Understanding SI

• Semantics of SI may seem unexpected when compared with simpler 
models based on serial ordering of complete transactions

• Potential increased concurrency often does not manifest as a 
performance advantage when compared with models such as strict 
serializability
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Other TM Considerations
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Consistency During Transactions

• Semantics such as serializability characterize the behavior of 
committed Txs

• What about the Txs which fail to commit?
• Tx may abort or may be slow to reach commitTx()
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Inconsistent Reads and Zombie Txs

Thread 1

do {
startTx(); 
int tmp1 = readTx(&x);

int tmp2 = readTx(&y);
while (tmp1 != tmp2) {}

} while (!commitTx());

Thread 2

do {
startTx();
writeTx(&x, 10);
writeTx(&y, 10); 

} while (!commitTx()); 
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x = 0
y = 0

Assume eager version 
management and lazy 

conflict detection



Inconsistent Reads and Zombie Txs

Thread 1

do {
startTx(); 
int tmp1 = readTx(&x);

int tmp2 = readTx(&y);
while (tmp1 != tmp2) {}

} while (!commitTx());

Thread 2

do {
startTx();
writeTx(&x, 10);
writeTx(&y, 10); 

} while (!commitTx()); 
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x = 0
y = 0

Assume eager version 
management and lazy 

conflict detection

Validation only during commit is 
insufficient for this TM design



Considerations with Zombie Txs

• A Tx that is inconsistent but is not yet detected is called a zombie Tx

• Careful handling of zombie Txs are required, especially for unsafe languages 
like C/C++
• Inconsistent values can potentially be used in pointer arithmetic to access unwanted 

memory locations

• Possible workarounds: perform periodic validations
• Increases run-time overhead, validating 𝑛 locations once requires 𝑛 memory 

accesses
• Couples the program to the TM system 

• A TM using eager updates allows a zombie transaction’s effects to become visible to other 
transactions

• A TM using lazy updates only allows the effects of committed transactions to become visible
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Challenges with Mixed-Mode Accesses

• TM semantics must consider the interaction between transactional 
and non-transactional memory accesses

• Many TMs do not detect conflicts between transactional and non-
transactional accesses
• Can lead to unexpected behavior with zombie Txs

• Requires the non-Tx thread to participate in conflict detection
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Challenges with Mixed-Mode Accesses

Weak atomicity 

• Provides Tx semantics only among Txs

• Checks for conflicts only among Txs

Strong atomicity

• Guarantees Tx semantics among Txs and non-Txs

Often referred to as weak and strong isolation (inspired by databases)
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Think of Challenges with Weak Atomicity

• Data races between Tx and non-Tx code

• Mismatched conflict detection granularity
• Tx detects conflicts at a coarser granularity

• Complicated sharing idioms
• Use a Tx to initialize shared data, expect other threads to read the data 

transactionally
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Lock-Based Synchronization

Item item;

synchronized(list) {

item = list.removeFirst();

}

int r1 = item.val1;

int r2 = item.val2;

synchronized(list) {

if (!list.isEmpty()) {

Item item = list.getFirst();

item.val1++;

item.val2++;

}

}
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Thread 1 Thread 2

java.util.LinkedList list is shared

Initially list == [Item{val1==0,val2==0}]

T. Shpeisman et al. Enforcing Isolation and Ordering in STM. PLDI 2007.



Can we safely replace synchronize with atomic?

Item item;

weakly_atomic(list) {

item = list.removeFirst();

}

int r1 = item.val1;

int r2 = item.val2;

weakly_atomic(list) {

if (!list.isEmpty()) {

Item item = list.getFirst();

item.val1++;

item.val2++;

}

}
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Thread 1 Thread 2

T. Shpeisman et al. Enforcing Isolation and Ordering in STM. PLDI 2007.

java.util.LinkedList list is shared

Initially list == [Item{val1==0,val2==0}]



Few Issues to Consider with Weak Isolation

Non-repeatable reads

Intermediate lost updates

Intermediate dirty reads

Granular lost updates

…

…
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Thread 1 Thread 2

atomic {
r1 = x;

r2 = x;
}

x = 1;

Thread 1 Thread 2

atomic {
r = x;

x = r+1;
}

x = 10;

Initially x = 0

Thread 1 Thread 2

atomic {
x++;

x++;
}

r = x;

Initially x is even

• A non-repeatable read can occur if a Tx reads the same variable 
multiple times, and a non-Tx write is made to it in between

• Unless the TM buffers the value seen by the first read, the 
transaction will see the update

• An intermediate lost update can occur if a non-Tx write 
interposes in a transactional read-modify-write sequence; the 
non-Tx write can be lost, without being seen by the Tx read

• An intermediate dirty read can occur with a TM using eager 
version management in which a non-Tx read sees an 
intermediate value written by a transaction, rather than the 
final, committed value



Single-Lock Atomicity for Transactions

• How do we provide semantics for mixed-mode accesses?

• A program executes as if all transactions acquire a single, program-
wide mutual exclusion lock

• There are many other proposed models like DLA and TSC
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Thread 1 Thread 2

startTx();
while (True) {}
commitTx();

startTx();
int tmp = readTx(&x); 
commitTx();

What will 
happen here 

with SLA?



Nested Transactions

• Nested parallelism is important 
• Utilizes increasing number of cores
• Integrates with programming models like OpenMP

• Execution of a nested Tx is wholely contained in the 
dynamic extent of another Tx

• Many choices on how nested Txs interact
• Flattened

• Aborting the inner Tx causes the outer Tx to abort
• Committing the inner Tx has no effect until the outer Tx 

commits

• Closed
• Inner Tx can abort without terminating its parent Tx
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// Parallelize loops  
FOR I := …

FOR J := … 
FOR K := …

int x = 1;

do {
StartTx();
WriteTx(&x, 2); 

do {
StartTx();
WriteTx(&x, 3); 
AbortTx();

...



Providing Txs: TM Implementations

Software Transactional Memory (STM)

Hardware Transactional Memory (HTM)
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STMs vs HTMs

STM

• Supports flexible techniques in 
TM design

• Easy to integrate STMs with PL 
runtimes

• Easier to support unbounded Txs
with dynamically-sized logs

• More expensive than HTMs

HTM

• Restricted variety of 
implementations

• Need to adapt existing runtimes 
to make use of HTM

• Limited by bounded-sized 
structures like caches

• Better performance than STMs
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Software Transactional 
Memory
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Software Transactional Memory (STM)

Data structures

• Need to maintain per-thread Tx
state

• Maintain either redo log or undo log

• Maintain per-Tx read/write sets

• McRT-STM, PPoPP’06

• Bartok-STM, PLDI’06

• JudoSTM, PACT’07

• RingSTM, SPAA’08

• NoRec STM, PPoPP’10

• DeuceSTM, HiPEAC’10

• LarkTM, PPoPP’15

• …
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We love questions!

Is the design of undo log important in a TM with 
eager version management?

Is the design of redo log important in a TM with lazy 
version management?
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Remember well-designed applications should have low conflict rates



Implementing STM

• Use compilation passes to 
instrument the program
• startTx() – Tx entry point (prolog)

• commitTx() – Tx exit point (epilog)

• readTx()/writeTx() –
Transactional read/write accesses

• TM runtime tracks memory 
accesses, detects conflicts, and 
commits/aborts Txs
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atomic {
tmp = x;
y = tmp + 1;

}

// Per-TX data structure
td = getTxDesc(thr);
startTx(td);
tmp = readTx(&x);
writeTx(&y, tmp+1);
commitTx(td);



Object Metadata and Word Metadata
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Object2 layout

metadata

field1

field2

field3

Addr 1

Addr 2

Addr 3

Addr 4

metadata1

metadata2

metadata3

metadata4

Object1 layout

metadata2

field2

metadata3

field3

metadata1

field1



Pros and Cons of Metadata in Object Header

Pros

May lie on 
the same 
cache line

Single update 
for accesses 
to all fields

Cons

Potential for 
false conflicts

Increases 
coupling
• GC considerations
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Object2 layout

metadata

field1

field2

field3
Object1 layout

metadata2

field2

metadata3

field3

metadata1

field1



Variants of Word-based Metadata
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Addr 1

Addr 2

Addr 3

Addr 4

metadata1

metadata2

metadata3

Use hash functions to map addresses to 
a fixed-size metadata space

Addr 1

Addr 2

Addr 3

Addr 4

metadata

Process-wide metadata space



Which granularity to use?

Potential impact due to false conflicts

Impact on memory usage

• Speed of mapping location to metadata

Impact on performance
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Major STM Designs

• Use locks for protecting updates, and use versions to detect conflicts involving reads

Per-object versioned locks (McRT-STM, Bartok-STM)

Global clock with per-object metadata (TL2)

Fixed global metadata (JudoSTM, RingSTM, NOrec STM)

• Does not use locks

Nonblocking STMs (DSTM)
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Lock-Based STM with Versioned Reads

High-level 
design

Pessimistic concurrency-
control for writes

Locks are acquired 
dynamically

Optimistic concurrency 
control for reads

Validation using per-
object version numbers
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Header Word Optimizations in Bartok STM
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00 00

TM metadata 00 Hashcode 10Normal lock 01

11

Hash code

Normal lock

TM metadata

1. Initially header word is zero

2. First type of use in encoded 
in header word

3. Second type of use triggers 
inflations



Other Design Choices

• Eager vs lazy version 
management

• Access-time locking  or commit-
time locking
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Access-time locking
• Can support both eager or lazy version management
• Detects conflicts between active transactions, irrespective of whether 

they ultimately commit 

Commit-time locking
• Can support only lazy version management



STM Metadata

• Lock is available – no pending writes, holds the current version of the 
object

• Lock is taken – refers to the owner Tx

• Invisible reads – presence of a reading Tx is not visible to concurrent 
Txs which might try to commit updates to the objects being read
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Versioned locks
• Lock – mutual exclusion of writes 
• Version number – detect conflicts involving reads



Read and Write Operations
readTx(tx, obj, off) {

tx.readSet.obj = obj;
tx.readSet.ver = getVerFromMetadata(obj);
tx.readSet++;

return read(obj, off);
}

writeTx(tx, obj, off, newVal) {
acquire(obj);

tx.undoLog.obj = obj;
tx.undoLog.offset = off,
tx.undoLog.val = read(obj, off);
tx.undoLog++;

tx.writeSet.obj = obj;
tx.writeSet.off = off;
tx.writeSet.ver = ver;
tx.writeSet++;

write(obj, off, newVal);
release(obj);

}
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Eager version 
management



Read and Write Operations
readTx(tx, obj, off) {

tx.readSet.obj = obj;
tx.readSet.ver = getVerFromMetadata(obj);
tx.readSet++;

return read(obj, off);
}

writeTx(tx, obj, off, newVal) {
acquire(obj);
undoLogInt(tx, obj, off);
tx.writeSet.obj = obj;
tx.writeSet.off = off;
tx.writeSet.ver = ver;
tx.writeSet++;
write(obj, off, newVal);
release(obj);

}

undoLogInt(tx, obj, off) {
tx.undoLog.obj = obj;
tx.undoLog.offset = off,
tx.undoLog.val = read(obj, off);
tx.undoLog++;

}CS 636 Swarnendu Biswas

Type 
specialization



Conflict Detection on Writes

Writes? Reads
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How do you detect 
conflict on writes?



Conflict Detection on Reads

Writes Reads?

bool commitTx(tx) {

foreach (entry e in tx.readSet) 

if (!validateTx(e.obj, e.ver))

abortTx(tx);

return false;

foreach (entr e in tx.writeSet) 

unlock(e.obj, e.ver);

return true;

}
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Unlock increments 
the version number



No Conflict on Read from Addr=200

CS 636 Swarnendu Biswas

addr = 200, ver = 100

Read set
ver = 100

x == 42

Remember 
metadata doubles as 

a version and lock

Addr = 200

Transaction read from the object, and its version 
number is unchanged at commit time



No Conflict on Read from and Write to 
Addr=200
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x == 17 addr = 200, ver = 100

Read set

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo log

Addr = 200

Transaction read from and then wrote to the 
object, and the version numbers are the same



No Conflict on Write to and Read from 
Addr=200
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x == 17 addr = 200, 

Read set

addr = 200, ver = 100

Write set

addr = 200, val = 42

Undo log

Addr = 200

Transaction wrote to and then read from the 
object, and the version numbers are the same



Conflict on Read from Addr=200, Concurrent 
Tx Updates and Commits
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addr = 200, ver = 100

Read set
ver = 101

x == 2Addr = 200

Transaction read from the object, and there is a 
version mismatch during commitTx()



Conflict on Read from Addr=200, Concurrent 
Write 
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addr = 200, 

Read set
ver = 105

x == 22Addr = 200

Transaction read from the object when it was 
owned by some other Tx



Conflict on Read from Addr=200 during 
Commit
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addr = 200, ver = 100

Read set

x == 47Addr = 200

Transaction is owned by some other Tx when the 
current reader Tx tries to commit



Conflict Between Read and Write from 
Addr=200
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x == 17 addr = 200, ver = 100

Read set

addr = 200, ver = 101

Write set

addr = 200, val = 42

Undo log

Addr = 200

Transaction read from and wrote to the object, 
but a concurrent Tx updated the object in 
between



Practical Issues

• Theoretical concern, is a practical concern if the metadata is “packed”

• Globally renumber objects if overflow is rare

• Distinguish between an “old” and a wrapped-around “new” version

• Ensure that each thread validates its current Tx at least once within 
𝑛 version increments

Version overflow

Do these techniques (McRT, Bartok) allow zombie txs?
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Semantics of McRT and Bartok

Read set may not remain consistent during txs

Does not detect conflicts between txs and non-txs
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Hardware Transactional 
Memory
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Hardware Transactional Memory (HTM)

• Can provide strong isolation 
without modifications to non-Tx 
accesses 

• Easy to extend to unmanaged 
languages

• TCC, ISCA’04

• LogTM, HPCA’06

• Rock HTM, ASPLOS’09

• FlexTM, ICS’09

• Azul HTM

• Intel TSX

• IBM Blue Gene/Q
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Possible ISA Extensions

Explicit

• begin_transaction

• end_transaction

• load_transactional

• store_transactional

Implicit

• begin_transaction

• end_transaction
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Similar to STMs, HTMs need to demarcate Tx boundaries and transactional 
memory accesses 

Memory accessed within a Tx through ordinary 
memory instructions do not participate in any 
transactional memory protocol

Which is simpler?



Comparison

Explicitly Transactional HTMs

• Provides flexibility to choose 
desired memory locations
• Reduced read and write set size 

• May require multiple library 
versions 
• Limits reuse of legacy libraries in 

HTMs

Implicitly Transactional HTMs

• Larger read and write sets

• Easy to reuse software libraries
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Design Issues in HTMs

• Introducing additional structures like transactional cache complicates the 
data path

• Recent ideas extend existing data caches to track accesses

• Granularity matters (one read bit for a cache line)

Tracking read and write sets

• Natural to piggyback on cache coherence protocols to detect conflicts

• Most HTMs detect conflicts eagerly, and transfer control to a software 
handler

Conflict detection
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need to be careful 
with writes



Intel Transactional Synchronization 
Extensions

TSX supported by Intel in selected series based on Haswell 
microarchitecture

TSX hardware can dynamically determine whether threads need to 
serialize lock-protected critical sections
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https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained

https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained


High-Level Goal with Transactions

• Hardware dynamically determines whether threads need to serialize
• For example, with lock-protected critical sections 

• Hardware serializes only when required 

• Thus, processor exposes and exploits concurrency that is hidden due 
to unnecessary synchronization

• Lock elision idea introduced by Ravi Rajwar and James R. Goodman in 
2001
• Remove locks, run code as a transaction

• If there are conflicts, abort and rerun code with locks intact

• On success, commit the transaction’s writes to memory
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Intel Transactional Synchronization Extensions

• Optimistically executes critical sections eliding lock
operations

• Commit if the Tx executes successfully

• Otherwise abort – discard all updates, restore architectural 
state, and resume execution

• Resumed execution may fall back to locking

TSX operation
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TSX Interface

Hardware Lock Elision (HLE)

• xacquire

• xrelease

• Extends HTM support to legacy 
hardware

Restricted Transactional Memory (RTM)

• xbegin

• xend

• xabort

• New ISA extensions
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Hardware Lock Elision (HLE)

• Application uses legacy-compatible prefix hints to identify critical 
sections
• Hints ignored on hardware without TSX

• HLE provides support to execute critical section transactionally 
without acquiring locks

• Abort causes a re-execution without lock elision

• Hardware manages all state
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Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.



Goal with Intel TSX 

https://software.intel.com/content/dam/develop/external/us/en/images/slide1.png



Lock Acquire Code
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mov eax, 1
Try:   lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

application



HLE Interface
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mov eax, 1
Try:   lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

mov eax, 1
Try:   xacquire lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

xrelease mov mutex, 0

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

application



Restricted Transactional Memory (RTM)

• Software uses new instructions to identify critical sections
• Similar to HLE, but more flexible interface for software

• Requires programmers to provide an alternate fallback path

• Processor may abort RTM transactional execution for several reasons

• Abort transfers control to target specified by XBEGIN operand
• Abort information encoded in the EAX GPR
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Lock Acquire Code
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mov eax, 1
Try:   lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

mov mutex, 0

acquire(mutex)
/* critical section */

release(mutex)

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

application



RTM Interface
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Retry:  xbegin Abort
cmp mutex, 0
jz Success
xabort $0xff

Abort:  
// check eax and do retry policy 
// actually acquire lock or wait
// to retry
…

cmp mutex, 0
jnz Rel
xend

Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.

mov eax, 1
Try:   lock xchg mutex, eax

cmp eax, 0
jz Success

Spin:  pause
cmp mutex, 1
jz Spin
jmp Try

Rel:   mov mutex, 0

acquire
(mutex)

release 
(mutex)



XTEST

• XTEST instruction 
• Queries whether the logical processor is transactionally executing in a 

transactional region identified by either HLE or RTM
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Aborts in TSX

• Conflicting accesses from different cores (data, locks, false sharing)
• TSX maintains read/write sets at the granularity of cache lines

• Capacity misses

• Some instructions always cause aborts (system calls, I/O)

• Eviction of a transactionally-written cache line

• Eviction of transactionally-read cache lines do not cause immediate 
aborts
• Backed up in a secondary structure which might overflow
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Section 12.2.4 in Intel 64 and IA-32 Architectures Optimization Reference Manual



Finding Reasons for Aborts can be Hard!

EAX register bit position Meaning

0 Set if abort caused by XABORT instruction

1 If set, the transaction may succeed on a retry. This bit is always clear if bit 0 is set

2 Set if another logical processor conflicted with a memory address that was part of 
the transaction that aborted

3 Set if an internal buffer overflowed

4 Set if debug breakpoint was hit

5 Set if an abort occurred during execution of a nested transaction

23:6 Reserved

31:24 XABORT argument (only valid if bit 0 set, otherwise reserved)
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TSX Implementation Details

• Every detail is not known
• Read and write sets are at cache line granularity

• Uses L1 data cache as the storage

• Conflict detection is through cache coherence protocol
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TSX Caveats

• No guarantees that Txs will commit

• There should be a software fallback independent of TSX to guarantee 
forward progress
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Intel Transactional Synchronization Extensions. Intel Developer Forum 2012.



So what?

• GNU glibc 2.18 added support for lock elision of pthread mutexes of type 
PTHREAD_MUTEX_DEFAULT 

• Glibc 2.19 added support for elision of read/write mutexes
• Depends whether the --enable-lock-elision=yes parameter was set at compilation time of the 

library

• Java JDK 8u20 onward support adaptive elision for synchronized sections when 
the -XX:+UseRTMLocking option is enabled

• Intel Thread Building Blocks (TBB) 4.2 supports elision with the 
speculative_spin_rw_mutex
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