
CS 636: Testing Concurrent
Programs
Swarnendu Biswas

Semester 2020-2021-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Evaluating your Concurrent Program

Check for correctness

• Atomicity violations, order violations, sequential consistency violations

• Deadlocks and livelocks

Check for performance and scalability

• Check whether all real-time requirements are met

• Check for any performance regressions

CS 636 Swarnendu Biswas

Possible Ideas to Ensure Correctness of
Concurrent Programs

Programming language features

• Language ensures bad things cannot happen by design (e.g., DPJ)

• Restricts the power and expressiveness of the language

Resilient algorithms

• Design algorithms that are resilient to errors

• Limits the kind of data structures that you can use

Comprehensive testing

• Cannot guarantee correctness, usually a “best effort” strategy

• Places no restrictions on the application

CS 636 Swarnendu Biswas

Testing Concurrent Programs is Hard!

Nondeterminism is everywhere

• May be inherent in the application

• Can be due to inputs or interleavings

• Large space of all possible thread interleavings

Only specific thread interleavings may expose subtle errors – a
concurrency bug

• Random or naïve testing can often miss such errors

• Often called “Heisenbugs”

CS 636 Swarnendu Biswas

Testing Concurrent Programs is Hard!

Even when found, errors are hard to debug

• Usually no repeatable trace, just retrying the execution may not
reproduce the error if it is rare

• Debugging with print() statements may actually change the
desired buggy interleaving

• Source of the bug may be far away from where it manifests

Huge productivity problem

• Developers and testers often spend weeks chasing after a single
Heisenbug!

CS 636 Swarnendu Biswas

Testing Concurrent Programs

High-level steps

• Test code, test inputs, and test oracles – a test harness

• A deterministic schedule may be needed to validate with the oracles

• Associated notion of coverage – test as many interleavings as possible

Exhaustively explore all possible interleavings

Deterministic testing

• Controls thread scheduling decisions during execution and systematically explores interleavings

• Depends on a deterministic scheduler

• Nondeterminism could still be there due to inputs

CS 636 Swarnendu Biswas

Testing Concurrent Programs

Nondeterministic “best effort” testing

• Run the program for some time and hope for the best

• Naïve and inefficient

Stress testing

• Launch more threads than processors so that only a few threads are running at a time

• Try to decrease predictability in thread interleavings

Noise injection

• Introduce random perturbations during execution

• Should not introduce false positives

CS 636 Swarnendu Biswas

Alternatives to Testing

• Reason about correctness without running the program
• Static analysis

• Theorem proving

• Model checking

• Try to prove programs correct
• Requires a formal or mathematical characterization of the programs

behavior

• Very difficult for large systems since there are a lot of unknowns
• For example, how do you model VM behavior like JIT compilation and GC?

• Use is often limited to safety-critical software like integrated circuit
design

CS 636 Swarnendu Biswas

Possible Approaches to Testing

• Model checking – Check whether a system model satisfies the given
specification
• Suffers from state explosion problem

• Use partial order reduction to deal with the state space problem

• Use is limited to only critical portions of the program

• Sophisticated static analysis and model checking do not scale well

• Dynamic analysis
• User-defined events and properties that need to hold

• Only verifies the current schedule that is being executed

CS 636 Swarnendu Biswas

Address Nondeterminism

• Enforce the correct schedule that needs to be executed
• Deterministic execution: record and replay

• Explore all possible schedules
• Stateful exploration

• Model the program state at each step and use backtrack and state comparison to explore new
schedules

• Advantage is it can merge same states, alleviating the state space explosion problem
• Java PathFinder is the state-of-art tool

• Stateless exploration
• Does not maintain program state
• Each schedule maintains all the choices made during execution
• Need to start from the beginning to execute other schedules
• Each run is faster than stateful exploration, but possibly has more schedules to explore

CS 636 Swarnendu Biswas

Software Testing vs Concurrency Testing

Software Testing

• Broad area of work which
considers the overall quality of
the software along with the
integrated engineering
processes
• Lots of paradigms, processes,

testing levels

Concurrency Testing

• The context that we will be
discussing has more narrow
focus
• Try to improve bug detection

coverage of concurrent programs

• Mostly carried out by the
developers themselves during unit
testing

CS 636 Swarnendu Biswas

Software Testing vs Concurrency Testing

Software Testing

• Broad area of work which
considers the overall quality of
the software along with the
integrated engineering
processes
• Lots of paradigms, processes,

testing levels

Concurrency Testing

• The context that we will be
discussing has more narrow
focus
• Try to improve bug detection

coverage of concurrent programs

• Mostly carried out by the
developers themselves during unit
testing

CS 636 Swarnendu Biswas

• A concurrency bug manifests on a strict subset of possible
schedules
• Bugs that manifest in all schedules are not concurrency bugs

• The problem of concurrency testing is to find those schedules
that can trigger these bugs

Concurrency Testing Tools

• Java PathFinder (JPF) by NASA Ames Research Center
• Model checking of concurrent programs

• Concutest – concurrency aware version of JUnit (concJUnit)

• ConTest – test concurrent Java programs by IBM Research Labs Haifa

• FindBugs – static analysis tool for Java

• Chess – Microsoft Research

CS 636 Swarnendu Biswas

Current Practice

• Concurrency testing is delegated to Random testing and Stress testing

• Example: Test a concurrent queue implementation
• Create 100 threads performing queue operations

• Run for days

• Randomly perturb the execution

• Stress increases the likelihood of rare interleavings
• Makes any error found hard to debug

CS 636 Swarnendu Biswas

Performance Testing

• No good tools for predicting system performance
• Check for latency, resource consumption

• Other considerations
• Garbage Collection (GC) may take arbitrarily long and may be triggered at

random points
• Either turn off GC or design tests that invoke multiple GCs so that it can be averaged out

• Dynamic compilation with JIT compiler
• Methods compiled and time taken impacts the measured time of the program

• Mixing interpretation and JIT is random

• Fix which methods are going to be compiled beforehand and only compile those at
runtime

CS 636 Swarnendu Biswas

Directions

• Techniques to expose concurrency bugs

• Techniques to generate test cases (inputs) to trigger concurrency bugs

• Technique to automatically fix concurrency bugs

• …

CS 636 Swarnendu Biswas

Find Concurrency Bugs in Java
based on Code Patterns

CS 636 Swarnendu Biswas

D. Hovemeyer and W. Pugh. Finding Concurrency Bugs in Java. PODC Workshop on Concurrency and Synchronization in Java

Programs, 2004.

Insights Related to Concurrency Bugs

• Tend to think sequentially

• Misconceptions about shared-memory synchronization

Programmers tend to
make simple mistakes

• This is a myth

• Lots of research to optimize the common case of low contention

• Natural tendency is to under-synchronize

Synchronization is
slow

• Writing threaded code with Java is easy

• Java gives some guarantees with improperly synchronized code

• You get type and memory safety, so why bother!!!

Indirect influence of
the language

CS 636 Swarnendu Biswas

Overview of FindBugs

• Goal is to use simple analysis to find common patterns that indicate
errors
• Similar in spirit to automated code reviews

• As such there can be both false negatives and false positives

• Tries to minimize false positives and not to eliminate them completely

• Uses heuristics to prune false positives

• New version of FindBugs is called SpotBugs

CS 636 Swarnendu Biswas

https://spotbugs.github.io/

Design of FindBugs

• Static, open-source Java bytecode analyzer
• Implemented using BCEL and ASM

• Error reports
• Potential errors are classified into levels depending on estimated impact

• scariest - 1-4
• scary - 5-9
• troubling - 10-14
• of concern - 15-20

• There is also a notion of confidence along with each reported error

• Lot of plugins are available for tools like Eclipse, IntelliJ, Ant, and
Maven

CS 636 Swarnendu Biswas

Patterns Used in FindBugs

• All accesses to fields of a thread-safe class should be guarded with
locks
• Otherwise reported as bug

• Reduce false positives – ignore accesses in constructors and finalizers

• Ignore volatiles, final fields, non-final public fields

• Rank reports based on access frequency
• 25% or fewer unsynchronized accesses is classified as medium to high priority

• 25-50% unsynchronized accesses are classified as low priority

CS 636 Swarnendu Biswas

Patterns Used in FindBugs

Synchronized set method, unsynchronized
get method

Finalizer method only nulling out fields

Object pair operations with lock on only one
object

• equals() method

Double-checked locking

• ifnull → monitorenter → ifnull

static SomeClass field;

static SomeClass createSingleton() {

if (field == null)

synchronized (lock) {

if (field == null) {

SomeClass obj = new SomeClass();

// initialize obj

field = obj;

}

}

return field;

}

CS 636 Swarnendu Biswas

Patterns Used in FindBugs

Unconditional wait

Wait and notify without holding lock on the object

• Intraprocedural analysis to identify lock scopes

Two locks held while waiting

• Intraprocedural analysis to identify lock scopes

Spin wait on non-volatile data

If overriding equals(), then hashcode() should be
overridden too

if (!book.isReady()) {

synchronized (book) {

book.wait();

}

}

while (listLock) {}

listLock = true;

CS 636 Swarnendu Biswas

Relevance of FindBugs

• An early work (~2004) that was very effective in pointing out errors in
real applications like the Java libraries
• Implementation is still being actively maintained

CS 636 Swarnendu Biswas

From Eclipse 3.5RC3:

org.eclipse.update.internal.ui.views.FeatureStateAction:

if (adapters == null && adapters.length == 0)
return;

• First seen in Eclipse 3.2
• In practice, adapters is probably never null

Relevance of FindBugs

• An early work (~2004) that was very effective in pointing out errors in
real applications like the Java libraries
• Implementation is still being actively maintained

CS 636 Swarnendu Biswas

if (listeners == null)
listeners.remove(listener);

• JDK1.6.0 b105: sun.awt.x11.XMSelection

public WebSpider() {
WebSpider w = new WebSpider();

}

if (name != null || name.length > 0)

Design of FindBugs
• Over 400 bug patterns divided into different categories

• Correctness
• Infinite recursive loop, reads a field that is never written

• Multithreaded correctness

• Bad practice
• Code that drops exceptions or fails to close file

• Performance
• Finalizers that set fields to null

• Dodgy - code can lead to errors
• Unused local variables or unchecked casts

• …

CS 636 Swarnendu Biswas

https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html

FindBugs at work – Eclipse Plugin

CS 636 Swarnendu Biswas

Probabilistic Concurrency
Testing

CS 636 Swarnendu Biswas

S. Burckhardt et al. A Randomized Scheduler with Probabilistic Guarantees of Finding Bugs. ASPLOS, 2010.
S. Nagarkatte et al. Multicore Acceleration of Priority-Based Schedulers for Concurrency Bug Detection. PLDI, 2012.

What is a “Bug” – first attempt

 Bug is defined as a particular buggy interleaving

 No algorithm can find the bug with a probably greater than
1/nk

k instructions
(~ millions)

nk schedules

n threads
(~ tens)

A Deterministic Algorithm

 Provides no guarantees

k instructions
(~ millions)

nk schedules

n threads
(~ tens)

A Deterministic Algorithm

 Provides no guarantees

k instructions
(~ millions)

nk schedules

n threads
(~ tens)

Effectiveness of Random Testing

• Suppose you have a system with 𝑛 threads and at most 𝑘 instructions
are executed
• Number of possible schedules is approximately 𝑛𝑘

• Say a concurrency bug is exposed by one particular interleaving
among all these

• Probability of hitting that schedule is
1

𝑛𝑘

CS 636 Swarnendu Biswas

Debugging with Randomized Scheduling

Thread 1

assert(b != 0);

step(1);

step(2);

…

step(m);

a = 0;

Thread 2

assert(a != 0);

step(1);

step(2);

…

…

step(n);

b = 0;

CS 636 Swarnendu Biswas

Order Violation

Thread 1

void init(…) {
…
mThread=

PR_CreateThread(mMain, …);
…

}

Thread 2

void mMain() {
mState=mThread->State;

}

CS 636 Swarnendu Biswas

Mozilla
nsthread.cpp

Atomicity Violation

Thread 1

if (thd->proc_info)

fputs(thd->proc_info, …)

Thread 2

thd->proc_info = NULL;

CS 636 Swarnendu Biswas

MySQL
ha_innodb.cc

Classifying Concurrency Bugs

• Root cause of a bug is characterized by the set of ordering constraints
required to trigger the bug

CS 636 Swarnendu Biswas

Thread 1

void init(…) {

…

mThread=

PR_CreateThread(mMain, …);

…

}

Thread 2

void mMain() {

mState=mThread->State;

}Bug depth – Size of the
minimum such set

A Bug of Depth 1

Possible schedules

A B C D E F G H I J ✓

A B F G H C D E I J
A B F G C D E H I J ✓
A B F G C H D E I J✓
A B F G H I J C D E
…

A: …
B: fork (child);
C: p = malloc();
D: …
E: …

Parent

F: ….
G: do_init();
H: p->f++;
I: …
J: …

Child

Bug depth - number of ordering constraints
sufficient to find the bug

A Bug of Depth 2

A: …
B: p = malloc();
C: fork (child);
D: …
E: if (p != NULL)
F: p->f++;
G:

Parent

H: …
I: p = NULL;
J : ….

Child Possible schedules

A B C D E F G H I J ✓
A B C D E H I J F G
A B C H I D E G J ✓

A B C D H E F I J G✓
A B C H D E I J F G
…

Bug depth - number of ordering constraints
sufficient to find the bug

Another Bug of Depth 2

A: …
B: lock(m);
C: …
D: lock(n);
E: …

Thread 1

F: …
G: lock(n);
H: …
I: lock(m);
J:

Thread 2

Bug depth - number of ordering constraints
sufficient to find the bug

What is Bug Depth?

• A system is defined by its set of
executions 𝑆
• Each execution is a sequence of

labelled events

• A concurrency bug 𝐵 is some
strict subset of 𝑆

A B C D E F G H I J
A B F G H C D E I J
…𝐵

S

What is Bug Depth?

• An ordering constraint 𝑐 is a pair of
events c = (a → b)

• A schedule s satisfies (a → b) if a
occurs before b in s

• S(c1, c2, …, cd) – set of schedules
that satisfy constraints c1, c2, … cd

A B C D E F G H I J
A B F G H C D E I J
…

𝐵
S

𝑆(𝐻 → 𝐶)

A B F G H C D E I J
A B F G H I J C D E

A B C D E F G H I J
A B F G H C D E I J
…

𝐵

What is Bug Depth?

• A bug B is of depth d if there
exists 𝑐1, 𝑐2, … , 𝑐𝑑 such that

𝑆 𝑐1, 𝑐2, … , 𝑐𝑑 ⊆ 𝐵

and d is the smallest such number
for B

S

A B F G H C D E I J
A B F G H I J C D E

𝑆(𝐻 → 𝐶)

T

Finding All Bugs of Depth 𝑑

• A set of schedules 𝑇 covers all bugs of depth 𝑑 if

∀ 𝑐1, … , 𝑐𝑑 ∶ 𝑆 𝑐1, … , 𝑐𝑑 ∩ 𝑇 ≠ 𝜙

• Coverage problem: find the smallest such 𝑇

𝑆((𝐻 → 𝐶))

𝑆((𝐴 → 𝐵))

𝑆((𝐴 → 𝐶))

𝑆((𝐶 → 𝐵))

𝑆((𝐴 → 𝐷))

Let’s study when 𝑑 = 1

a

b

c

g

h

e

f

i

Which all pair of operations
are concurrent?

Let’s study when 𝑑 = 1
Need to cover all of:

a

b

c

g

h

e

f

i

b g g b

b h h b

c g g c

c h h c

e g g e

e h h e

e i i e

Let’s study when 𝑑 = 1
Need to cover all of:

a

b

c

g

h

e

f

i

b g g b

b h h b

c g g c

c h h c

e g g e

e h h e

e i i e

Two interleavings are
sufficient!

a b c e g h i f

a g h b c i e f

Concurrency Bugs and Bug Depth

• Most concurrency bugs are usually of low depth
• Order violations – depth 1 (or 2 in presence of control flow)

• Atomicity violations – depth 2

• Deadlocks – depth 2 if 2 threads are involved, depth n if n threads are
involved

• Bugs with greater depth are more subtle

CS 636 Swarnendu Biswas

A Bug of Depth 2

Main Thread

…
free(mutex);

exit(0);

Filewriter Thread

…

mutex.unlock();

CS 636 Swarnendu Biswas

S. Burckhardt et al. A Randomized Scheduler with Probabilistic Guarantees of Finding Bugs. ASPLOS, 2010.

An Ordering Bug of Depth 2

Main Thread

…
init = true;

t = new T();
…
…

Filewriter Thread

…
…

if (init)
t->state = 1;

…

CS 636 Swarnendu Biswas

Presence of control dependence may complicate
the interleaving

PCT: Probabilistic Concurrency Testing

• An intelligent randomized scheduler for finding concurrency bugs

• Provides probabilistic guarantees to expose bugs
• Every run finds every bug with nontrivial probability

• Repeated test runs increases the chance of finding a bug

CS 636 Swarnendu Biswas

S. Burckhardt et al. A Randomized Scheduler with Probabilistic Guarantees of Finding Bugs. ASPLOS 2010.

PCT’s Randomized Scheduler

• User-level scheduler is randomized priority-based
• Every thread has a priority, lower number indicate lower priorities

• Only one thread is scheduled to execute at each step

• Low priority threads are scheduled only when higher-priority threads
are blocked

• A dynamic execution has a few priority change points
• Priority change points have fixed priorities assigned
• A thread that reaches a change point will inherit the priority of the change

point

CS 636 Swarnendu Biswas

PCT Algorithm

• INPUT: n threads, k instructions, and d priority change points

• STEPS:
1. Assign n priority values d, d+1, …, d+n-1 randomly to the n threads

2. Pick d-1 random priority change points from the k instructions. Each change
point ki, 1 ≤ 𝑖 < 𝑑 has an associated priority of i

3. Schedule threads based on their priorities

4. When a thread reaches change point ki, change the priority of that thread
to i

CS 636 Swarnendu Biswas

Assumptions in PCT

Higher priority threads run faster

An ordering constraint (a → b) will be met if a is
executed by a higher priority thread

CS 636 Swarnendu Biswas

How PCT Works?

Thread 1

…

t = new T();

…

…

…

Thread 2

…

…

if (t->state == 1)

…

…

CS 636 Swarnendu Biswas

21

Initial thread
priority

How PCT Works?

Thread 1

…

…

x = null;

…

…

Thread 2

…

…

if (x != null)

x->printf();

…

CS 636 Swarnendu Biswas

32

1

priority
change point

How PCT Works?

Thread 1

…

lock(a);

…

lock(b);

…

Thread 2

…

lock(b);

…

lock(a);

…

CS 636 Swarnendu Biswas

23

1

Issues to Consider in PCT

• Does not reuse OS thread priorities
• Needs to force higher priority threads to run faster
• PCT implements an user-level scheduler instead

• Consider priority inversion
• Higher priority thread may be blocked for a resource owned by a lower

priority thread
• But there will be other schedules where the priorities will be in the correct

order (probability
1

𝑛
)

• Ensure starvation freedom
• Higher priority threads may wait in a spin loop for a lower priority thread
• Uses heuristics to identify and resolve such situations

CS 636 Swarnendu Biswas

Effectiveness of PCT

• Probability of finding any bug with depth d in PCT is
1

𝑛𝑘(𝑑−1)

• Compare the probability with naïve random testing which is
1

𝑛𝑘

• If d = 1 or d = 2 (common cases), then probabilities of finding a bug is
1

𝑛
and

1

𝑛𝑘
respectively

• PCT is expected to do better than the worst-case bound

CS 636 Swarnendu Biswas

Why?

Measured Probability of Finding a Bug

Program Stress Testing Random
Testing with

Sleeps

PCT

Empirical Worst-case
Bound

Splash-FFT 0.06 0.27 0.50 0.50

Splash-LU 0.07 0.39 0.50 0.50

Splash-Barnes 0.0074 0.0101 0.4916 0.5

Pbzip2 0 0 0.701 0.0001

Work Steal
Queue

0 0.001 0.002 0.0003

Dryad 0 0 0.164 2*10-5

CS 636 Swarnendu Biswas

Effectiveness of PCT

• Probability of finding any bug with depth d in PCT is
1

𝑛𝑘(𝑑−1)

• Compare the probability with naïve random testing which is
1

𝑛𝑘

• If d = 1 or d = 2 (common cases), then probabilities of finding a bug is
1

𝑛
and

1

𝑛𝑘
respectively

• PCT is expected to do better than the worst-case bound

CS 636 Swarnendu Biswas

• Good enough to have the priority change point on one from
a set of instructions, need not be exact

• Multiple ways to trigger a bug (symmetric case in deadlocks)
• Buggy code can be repeated multiple times in a program,

more chances of being exposed

Extensions of PCT

• PCT runs only a single thread at a time
• Does not utilize multicore hardware, incurs large slowdowns

• PPCT: Parallel PCT
• Insight: Need to control the schedule of only d threads to expose a bug of

depth d

• Partitions threads into high (> d) and low priority

• Runs threads with higher priority parallelly, size of the lower priority set is
bounded by d

• PCT serializes all threads, PPCT serializes only the low priority threads

CS 636 Swarnendu Biswas

S. Nagarakatte et al. Multicore Acceleration of Priority-Based Schedulers for Concurrency Bug Detection. PLDI 2012.

PPCT Algorithm

• INPUT: n threads, k instructions, and d priority change points

• STEPS:
1. Pick a random thread and assign it a priority d. Insert the thread in a low

priority set L. Insert all other threads into a high priority set H.

2. Pick d-1 random priority change points from the k instructions. Each change
point ki, 1 ≤ 𝑖 < 𝑑 has an associated priority of i.

3. At each scheduling step, schedule any non-blocked thread in H. If H is
empty of all threads are blocked, then schedule the highest priority thread
in L.

4. When a thread reaches change point ki, change the priority of that thread
to i and insert in L.

CS 636 Swarnendu Biswas

CHESS: Systematic Schedule
Exploration

CS 636 Swarnendu Biswas

M. Musuvathi et al. Finding and Reproducing Heisenbugs in Concurrent Programs. OSDI, 2008.

What have we learnt so far?

CS 636 Swarnendu Biswas

PCT/PPCT argued in favor of intelligent randomized testing

Systematic schedule exploration enumerates all possible
thread interleavings
• Does not scale

What have we learnt so far?

CS 636 Swarnendu Biswas

PCT/PPCT argued in favor of intelligent randomized testing

Systematic schedule exploration enumerates all possible
thread interleavings
• Does not scale

CHESS performs systematic schedule exploration

M. Musuvathi et al. Finding and Reproducing Heisenbugs in Concurrent Programs. OSDI 2008.

Traditional Testing

Traditional Testing

testStartup();
while (true) {

runTestScenario();

if (*some condition*)
break;

}
testShutdown();

CS 636 Swarnendu Biswas

What is required for systematic exploration?

• Suppose you have two threads contending on a lock

• Systematic exploration should explore both schedules – one where
each thread wins the lock first

CS 636 Swarnendu Biswas

What is required for systematic exploration?

• Suppose you have two threads contending on a lock

• Systematic exploration should explore both schedules – one where
each thread wins the lock first

CS 636 Swarnendu Biswas

Basically capture all nondeterministic choices

Why Track Nondeterminism?

Capture all sources of nondeterminism

• Required for reliably reproducing errors

Ability to explore these nondeterministic choices

• Required for finding errors

CS 636 Swarnendu Biswas

Sources of Nondeterminism

Input, environment

Interleaving

Other sources like compiler and
hardware reordering

CS 636 Swarnendu Biswas

Input Nondeterminism

• Environment data can affect program execution
• User can provide different inputs

• Nondeterministic functions like gettimeofday(), random()

• Idea: Use “record and replay” techniques
• Two phases – a record phase and a replay phase

CS 636 Swarnendu Biswas

Input Nondeterminism

• Environment data can affect program execution
• User can provide different inputs

• Nondeterministic functions like gettimeofday(), random()

• Idea: Use “record and replay” techniques
• Two phases – a record phase and a replay phase

CS 636 Swarnendu Biswas

Which phase is usually more expensive,
record or replay?

Capturing Input Nondeterminism in CHESS

• CHESS is not a typical record-and-replay system

• Relies on the test setup to provide deterministic inputs

• Records a few nondeterministic events like current time, processor
and thread id mapping, random numbers

CS 636 Swarnendu Biswas

Concurrent Executions are Nondeterministic

x = 1;
y = 1;

x = 2;
y = 2;

Thread 1 Thread 2

CS 636 Swarnendu Biswas

Concurrent Executions are Nondeterministic

x = 1;
y = 1;

x = 2;
y = 2;

0,0

Thread 1 Thread 2

1,0

1,1

2,1

2,2

y =1;

x = 1;

y = 2;

x = 2;

CS 636 Swarnendu Biswas

ti
m

e

Concurrent Executions are Nondeterministic

x = 1;
y = 1;

x = 2;
y = 2;

0,0

Thread 1 Thread 2

1,0

1,1

2,1

2,2

x = 2;

x = 1;

y = 2;

y = 1;

2,0

2,1

2,2

CS 636 Swarnendu Biswas

ti
m

e

Concurrent Executions are Nondeterministic

x = 1;
y = 1;

x = 2;
y = 2;

0,0

Thread 1 Thread 2

1,0

1,1

2,1

2,2

x = 2;

x = 1;

y = 2;

y = 1;

2,0

2,1

2,2

2,2

2,1

2,0

2,2

1,2

1,1

1,0

1,1

1,2

1,2

1,1

CS 636 Swarnendu Biswas

ti
m

e

Scheduling Nondeterminism

Interleaving nondeterminism

• Threads can race to access shared variables or monitors

• OS can preempt threads at arbitrary points

Timing nondeterminism

• Timers can fire in different orders

• Sleeping threads wake up at arbitrary times in the future

• Asynchronous calls complete at arbitrary times in the future

CS 636 Swarnendu Biswas

CHESS in a nutshell

User-mode scheduler – controls all scheduler nondeterminism

Provides systematic overage of all thread interleavings

• Every program run takes a different thread interleaving

CHESS is precise, does not introduce new behaviors

Provides replay capability for easy debugging

• Reproduce the interleaving for every run

CS 636 Swarnendu Biswas

CHESS Architecture

CS 636 Swarnendu Biswas

CHESS
scheduler

CHESS
exploration

engine

Concurrency
analysis

monitors

Unmanaged
Program

Windows

Managed
Program

CLR

Uses dynamic binary instrumentation to intercept calls to the
concurrency library

Scheduler captures the happens-before graph of the execution

Interleaving Nondeterminism

void Deposit100(){
EnterCriticalSection(&cs);
balance += 100;
LeaveCriticalSection(&cs);

}

Deposit Thread

void Withdraw100(){
int t;

EnterCriticalSection(&cs);
t = balance;
LeaveCriticalSection(&cs);

EnterCriticalSection(&cs);
balance = t - 100;
LeaveCriticalSection(&cs);

}

Withdraw Thread

init:
balance = 100;

final:
assert(balance = 100);

CS 636 Swarnendu Biswas

Invoke the Scheduler at Preemption Points

void Deposit100(){
CHESSSchedule();
EnterCriticalSection(&cs);
balance += 100;
CHESSSchedule();
LeaveCriticalSection(&cs);

}

Deposit Thread

void Withdraw100(){
int t;
CHESSSchedule();
EnterCriticalSection(&cs);
t = balance;
CHESSSchedule();
LeaveCriticalSection(&cs);
CHESSSchedule();
EnterCriticalSection(&cs);
balance = t - 100;
CHESSSchedule();
LeaveCriticalSection(&cs);

}

Withdraw Thread

init:
balance = 100;

final:
assert(balance = 100);

CS 636 Swarnendu Biswas

Each call is a potential
preemption point

Insert Predictable Delays with Additional
Synchronization

void Deposit100(){

waitEvent(e1);
EnterCriticalSection(&cs);
balance += 100;
LeaveCriticalSection(&cs);
setEvent(e2);

}

Deposit Thread

void Withdraw100(){
int t;
EnterCriticalSection(&cs);
t = balance;
LeaveCriticalSection(&cs);
setEvent(e1);

waitEvent(e2);
EnterCriticalSection(&cs);
balance = t - 100;
LeaveCriticalSection(&cs);

}

Withdraw Thread

CS 636 Swarnendu Biswas

Blindly Inserting Delays can lead to Deadlocks!

void Deposit100(){

EnterCriticalSection(&cs);
balance += 100;
waitEvent(e1);
LeaveCriticalSection(&cs);

}

Deposit Thread

void Withdraw100(){
int t;
EnterCriticalSection(&cs);
t = balance;
LeaveCriticalSection(&cs);
setEvent(e1);

EnterCriticalSection(&cs);
balance = t - 100;
LeaveCriticalSection(&cs);

}

Withdraw Thread

CS 636 Swarnendu Biswas

CHESS Scheduler Basics

• CHESS is a non-preemptive, fair, round-robin and priority-based,
starvation-free scheduler
• Executes chunks of code atomically

• Scheduler basically captures the happens-before graph for the
execution

• Each graph node tracks threads, synchronization resources, and the
operations, and whether tasks are enabled or disabled

CS 636 Swarnendu Biswas

CHESS Scheduler Basics

• Introduces an event per thread, every thread blocks on its event

• The scheduler wakes one thread at a time by enabling the
corresponding event

• The scheduler does not wake up a disabled thread
• Need to know when a thread can make progress

• Synchronization wrappers provide this information

• The scheduler has to pick one of the enabled threads
• The exploration engine decides for the scheduler

CS 636 Swarnendu Biswas

CHESS Scheduler Basics

Three
steps

• Record
• Schedules a thread till the thread yields

• Replay
• Replays a sequence of scheduling choices

from a trace file

• Search
• Uses the enabled information at each

schedule point to determine the scheduler
for the next iteration

CS 636 Swarnendu Biswas

Traditional Testing vs CHESS

Traditional Testing

testStartup();
while (true) {

runTestScenario();

if (*some condition*)
break;

}
testShutdown();

CHESS

testStartup();
while (true) {

runTestScenario();

if (*some condition*)
break;

}
testShutdown();

CS 636 Swarnendu Biswas

replay

record

search

Preemption bounding

• Systematically inserts a small number preemptions
• Preemptions are context switches forced by the scheduler (e.g. timeslice

expiration)
• Non-preemptions – a thread voluntarily yields

• e.g. Blocking on an unavailable lock, thread end

x = 1;
if (p != 0) {

x- = p->f;
}

p = 0;

CS 636 Swarnendu Biswas

Preemption bounding

• Systematically inserts a small number preemptions
• Preemptions are context switches forced by the scheduler (e.g. timeslice

expiration)
• Non-preemptions – a thread voluntarily yields

• e.g. Blocking on an unavailable lock, thread end

x = 1;
if (p != 0) {

p = 0;

x = p->f;
}

CS 636 Swarnendu Biswas

preempted

Preemption bounding

• Systematically inserts a small number preemptions
• Preemptions are context switches forced by the scheduler (e.g. timeslice

expiration)
• Non-preemptions – a thread voluntarily yields

• e.g. Blocking on an unavailable lock, thread end

x = 1;
if (p != 0) {

p = 0;

x = p->f;
}

CS 636 Swarnendu Biswas

preemptedHelps alleviate the problem of state space explosion

Advantages of preemption bounding

Most errors are caused by few (<2) preemptions (similar to bug depth)

Generates an easy to understand error trace

• Preemption points almost always point to the root cause of the bug

Leads to good heuristics

• Insert more preemptions in code that needs to be tested

• Avoid preemptions in libraries

• Insert preemptions in recently modified code

A good coverage guarantee to the user

• When CHESS finishes exploration with 2 preemptions, any remaining bug requires 3
preemptions or more

CS 636 Swarnendu Biswas

Contributions of CHESS

Integrates stateless model checking ideas to testing concurrent
programs with minimal perturbation

Ability to consistently reproduce erroneous interleavings

CS 636 Swarnendu Biswas

DTHREADS: Efficient and
Deterministic Multithreading

CS 636 Swarnendu Biswas

T. Liu et al. DTHREADS: Efficient Deterministic Multithreading. SOSP, 2011.

Remember the Sources of Nondeterminism?

Input, environment

Interleaving

Other sources like compiler and
hardware reordering

CS 636 Swarnendu Biswas

Deterministic Multithreading

• Deterministic execution can simplify multithreading
• Executing the same program with same inputs will always provide same

results

• Would simplify
• Testing and debugging

• Record and replay mechanism

• Fault tolerance mechanisms

CS 636 Swarnendu Biswas

Deterministic Execution Example

int a = 0;

int b = 0;

int main() {

spawn(thread1);

spawn(thread2);

print(a, b);

}

void thread1() {

if (b == 0) {

a = 1;

}

}

void thread2() {

if (a == 0) {

b = 1;

}

}

CS 636 Swarnendu Biswas

How DTHREADS Provides Determinism

Isolation

Deterministic Time

Deterministic Order

CS 636 Swarnendu Biswas

T Liu et al. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.

Isolated Memory Access

CS 636 Swarnendu Biswas

shared address space

Isolated Memory Access

CS 636 Swarnendu Biswas

shared address space disjoint address space

Isolated Memory Access

CS 636 Swarnendu Biswas

shared address space disjoint address space

• Processes have separate address spaces → Implies that
updates to shared memory are not visible

• Updates are made visible only at synchronization points

• Code regions between synchronization operations
behave as atomic transactions

Performance: Processes vs. Threads

threads
processes

1 2 4 8 16 32 64 128 256 512
1024

Thread Execution Time (ms)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Challenges to Consider with Memory Isolation

• DTHREADS now needs to explicitly manage shared resources like file
descriptors

• Needs to generate deterministic thread and process ids

• Uses memory mapped files to share shared data (e.g., globals, heap)
across processes
• Two copies are created – one is read-only and the other (CoW) is for local

updates

CS 636 Swarnendu Biswas

DTHREADS Phases

CS 636 Swarnendu Biswas

Thread 1

Thread 2

Thread 3

Parallel

DTHREADS Phases

CS 636 Swarnendu Biswas

Thread 1

Thread 2

Thread 3

Parallel

DTHREADS Phases

CS 636 Swarnendu Biswas

Thread 1

Thread 2

Thread 3

Parallel Serial

DTHREADS Phases

CS 636 Swarnendu Biswas

Thread 1

Thread 2

Thread 3

Parallel Serial Parallel

Shared-Memory Updates in Parallel Phase

• Threads have a read-only mapping of the shared pages at the
beginning of the parallel phase

• Reads are performed from the shared page

• Upon a write, a private copy of the page is created (CoW) and the
write operates on the private copy

CS 636 Swarnendu Biswas

114

Snapshot pages
before modifications

“Shared Memory”

115

Write back diffs

“Shared Memory”

Commit Protocol

time

Global
State

Local
State

CS 636 Swarnendu Biswas

Commit Protocol

time

Global
State

Local
State

CS 636 Swarnendu Biswas

Commit Protocol

time

Global
State

Local
State

CS 636 Swarnendu Biswas

Twin
page

Commit Protocol

time

Global
State

Local
State

CS 636 Swarnendu Biswas

Twin
page

Diff

Commit Protocol

time

Global
State

Local
State

CS 636 Swarnendu Biswas

Twin
page

Diff

Commit Protocol

• During commit, DTHREADS compare the local copy with a “twin” copy
of the original shared page
• Writes back only the different bytes

• First thread can copy back the whole page

• Private pages are released at the end of the serial phase

CS 636 Swarnendu Biswas

Deterministic Execution Example with
DTHREADS
int a = 0;

int b = 0;

int main() {

spawn(thread1);

spawn(thread2);

print(a, b);

}

void thread1() {

if (b == 0) {

a = 1;

}

}

void thread2() {

if (a == 0) {

b = 1;

}

}

CS 636 Swarnendu Biswas

DTHREADS will always
generate (1, 1) as the

output, how?

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State
a 0

b 0

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State
a 0

b 0

a 0

b 0

a 0

b 0

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State
a 0

b 0

a 0

b 1

a 1

b 0

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State

Committed State

a 0

b 0

a 0

b 1

a 1

b 0

a 0

b 0

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State

Committed State

a 0

b 0

a 0

b 1

a 1

b 0

a 0

b 0

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State

Committed State

a 0

b 0

a 0

b 1

a 1

b 0

a 0

b 1

Write back only
the modified bytes

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State

Committed State

a 0

b 0

a 0

b 1

a 1

b 0

a 0

b 1

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State

Committed State

a 0

b 0

a 0

b 1

a 1

b 0

a 1

b 1

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State

Committed State

a 0

b 0

a 0

b 1

a 1

b 0

a 1

b 1

DTHREADS Example Execution

if(a == 0)
b = 1;

if(b == 0)
a = 1;

Global State
a 1

b 1

a 0

b 0

0

1

2

3

4

5

6
r
u

n
ti

m
e
 r

e
la

ti
v
e
 t

o
 p

th
r
e
a
d

s

CoreDet dthreads pthreads

8.47.8

Generally as fast or faster than pthreads

References

• D. Hovemeyer and W. Pugh. Finding Concurrency Bugs in Java. PODC 2004.

• S. Burckhardt et al. A Randomized Scheduler with Probabilistic Guarantees of Finding Bugs. ASPLOS 2010.

• M. Musuvathi. Randomized Algorithms for Concurrency Testing. CONCUR 2017.

• S. Nagarakatte et al. Multicore Acceleration of Priority-Based Schedulers for Concurrency Bug Detection.
PLDI 2012.

• M. Musuvathi et al. Finding and Reproducing Heisenbugs in Concurrent Programs. OSDI 2008.

• S. Burckhardt et al. CHESS: Analysis and Testing of Concurrent Programs. PLDI 2009 Tutorial.

• T. Liu et a. DTHREADS: Efficient and Deterministic Multithreading. SOSP 2011.

CS 636 Swarnendu Biswas

