
CS 636: Shared Memory
Synchronization

Swarnendu Biswas

Semester 2020-2021-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

What is the desired property?
class Set {

final Vector elems = new Vector();

void add(Object x) {
if (!elems.contains(x)) {

elems.add(x);
}

}

}

class Vector {
synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}

CS 636 Swarnendu Biswas

What is the desired property?

Q.insert(elem):
atomic {

while (Q.full()) {}
// Add elem to the Q

}

Q.remove():
atomic {
while (Q.empty()) {}
// Return data from Q

}

CS 636 Swarnendu Biswas

Synchronization Patterns

• Mutual exclusion

• Condition synchronization

• Global synchronization

CS 636 Swarnendu Biswas

while ¬ condition
// do nothing (spin)

Lock.acquire():
while TAS(&lock)

// spin

Lock.release():
lock := false

lock:bool := false

Locks (Mutual Exclusion)

public interface Lock {
public void lock();
public void unlock();

}

…
public class LockImpl
implements Lock {

…
…

}

Lock mtx = new LockImpl(…);
…

mtx.lock();
try {

… // body
} finally {

mtx.unlock();
}

CS 636 Swarnendu Biswas

Desired Synchronization Properties

• Mutual exclusion

• Livelock freedom

CS 636 Swarnendu Biswas

• Critical sections on the same lock from different threads do not overlap
• Safety property

If a lock is available, then some thread should be able to acquire it within
bounded steps

Art of Multiprocessor Programming 7

Deadlock-Free

• If some thread calls lock()
– And never returns

– Then other threads must complete lock() and unlock()
calls infinitely often

• System as a whole makes progress
– Even if individuals starve

Art of Multiprocessor Programming 8

Starvation-Free

• If some thread calls lock()
– It will eventually return

• Individual threads make progress

Desired Synchronization Properties

• Deadlock freedom

• Starvation freedom

CS 636 Swarnendu Biswas

• Every thread that acquires a lock eventually releases it
• A lock acquire request must eventually succeed within bounded

steps
• Implies deadlock freedom

• If a thread attempts to acquire the lock, then some thread should
be able to acquire the lock

• Individual threads may starve
• Liveness property

Classic Mutual Exclusion
Algorithms

CS 636 Swarnendu Biswas

Art of Multiprocessor Programming 12

LockOne: What could go wrong?

class LockOne implements Lock {
private boolean[] flag = new boolean[2];

public void lock() {
flag[i] = true;
j = 1-i;
while (flag[j]) {}

}
}

Art of Multiprocessor Programming 13

Deadlock Freedom

• LockOne Fails deadlock-freedom
– Concurrent execution can deadlock

– Sequential executions OK

flag[i] = true; flag[j] = true;
while (flag[j]){} while (flag[i]){}

Art of Multiprocessor Programming 14

• Assume CSA
j overlaps CSB

k

• Consider each thread's last (j-th and k-th)
read and write in the lock() method before
entering

• Derive a contradiction

LockOne Satisfies Mutual Exclusion

Art of Multiprocessor Programming 15

• writeA(flag[A]=true) →
readA(flag[B]==false) →CSA

• writeB(flag[B]=true) →
readB(flag[A]==false) → CSB

From the Code

class LockOne implements Lock {
…
public void lock() {

flag[i] = true;
j = 1 – i;
while (flag[j]) {}

}
}

Art of Multiprocessor Programming 16

• readA(flag[B]==false) → writeB(flag[B]=true)

• readB(flag[A]==false) → writeA(flag[B]=true)

From the Assumption

Art of Multiprocessor Programming 17

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor Programming 18

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor Programming 19

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor Programming 20

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor Programming 21

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor Programming 22

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor Programming 23

Cycle!

Art of Multiprocessor Programming 25

LockTwo: What could go wrong?
public class LockTwo implements Lock {
private int victim;
public void lock() {
victim = i;
while (victim == i) {};

}

public void unlock() {}
}

Art of Multiprocessor Programming 26

public void LockTwo() {
victim = i;
while (victim == i) {};
}

LockTwo Claims

• Satisfies mutual exclusion
– If thread i in CS

– Then victim == j

– Cannot be both 0 and 1

• Not deadlock free
– Sequential execution deadlocks

– Concurrent execution does not

Peterson’s Algorithm

class PetersonLock {

static volatile boolean[] flag =
new boolean[2];

static volatile int victim;

public void unlock() {

int i = ThreadID.get();

flag[i] = false;

}

public void lock() {

int i = ThreadID.get();

int j = 1-i;

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {}

}

}

CS 636 Swarnendu Biswas

Art of Multiprocessor Programming 28

public void lock() {
flag[i] = true;
victim = i;
while (flag[j] && victim == i) {};

Mutual Exclusion

• If thread 1 in
critical section,
– flag[1]=true,

– victim = 0

• If thread 0 in
critical section,
– flag[0]=true,

– victim = 1

Cannot both be true

Art of Multiprocessor Programming 29

Starvation Free

• Thread i blocked
only if j repeatedly
re-enters so that

flag[j] == true and
victim == i

• When j re-enters
– it sets victim to j.
– So i gets in

public void lock() {
flag[i] = true;
victim = i;
while (flag[j] && victim == i) {};

}

public void unlock() {
flag[i] = false;

}

Art of Multiprocessor Programming 30

Deadlock Free

• Thread blocked
– only at while loop

– only if it is the victim

• One or the other must not be the victim

public void lock() {
…
while (flag[j] && victim == i) {};

Peterson’s Algorithm

class PetersonLock {

static volatile boolean[] flag =
new boolean[2];

static volatile int victim;

public void unlock() {

int i = ThreadID.get();

flag[i] = false;

}

public void lock() {

int i = ThreadID.get();

int j = 1-i;

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {}

}

}

CS 636 Swarnendu Biswas

• Is this algorithm correct under
sequential consistency?

• What if we do not have sequential
consistency?

Filter Lock for n Threads

• There are n-1 waiting rooms
called “levels”

• At least one thread trying to
enter a level succeeds

• One thread gets blocked at each
level if many threads try to enter

CS 636 Swarnendu Biswas

level=0

level=1

level=n-1

level=n-2

non-CS with n threads

CS

2 threads

n-1 threads

Filter Lock
class FilterLock {

volatile int[] level;

volatile int[] victim;

public FilterLock() {

level = new int[n];

victim = new int[n];

for (int i = 0; i < n; i++) {

level[i] = 0;

}

}

public void unlock() {

int me = ThreadID.get();

level[me]= 0;

}

CS 636 Swarnendu Biswas

Filter Lock

…

public void lock() {

int me = ThreadID.get();

for (int i = 1; i < n; i++) { // Attempt to enter level i

level[me] = i; // visit level i

victim[i] = me; // Thread “me” is a good guy!

// spin while conflict exits

while ((∃k != me) level[k] >= i && victim[i] == me) {

}

}

}

}
CS 636 Swarnendu Biswas

Art of Multiprocessor Programming 35

Claim
• Start at level L=0

• At most n-L threads enter level L

• Mutual exclusion at level L=n-1

ncs

cs L=n-1

L=1

L=n-2

L=0

Art of Multiprocessor Programming 36

Induction Hypothesis

• Assume all at level
L-1 enter level L

• A last to write
victim[L]

• B is any other
thread at level L

• No more than n-L+1 at level L-1

• Induction step: by contradiction

ncs

cs

L-1 has n-L+1
L has n-L

assume

prove

Art of Multiprocessor Programming 37

Proof Structure
ncs

cs

Assumed to enter L-1

By way of contradiction
all enter L

n-L+1 = 4

n-L+1 = 4

A B

Last to
write
victim[L]

Show that A must have seen
B in level[L] and since victim[L] == A
could not have entered

Art of Multiprocessor Programming 38

From the Code

(1) writeB(level[B]=L)➔writeB(victim[L]=B)

public void lock() {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while (($ k != i) level[k] >= L)

&& victim[L] == i) {};
}}

Art of Multiprocessor Programming 39

From the Code

(2) writeA(victim[L]=A)➔readA(level[B])

public void lock() {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while (($ k != i) level[k] >= L)

&& victim[L] == i) {};
}}

Art of Multiprocessor Programming 40

By Assumption

By assumption, A is the last
thread to write victim[L]

(3) writeB(victim[L]=B)➔writeA(victim[L]=A)

Art of Multiprocessor Programming 41

Combining Observations

(1) writeB(level[B]=L)➔writeB(victim[L]=B)

(3) writeB(victim[L]=B)➔writeA(victim[L]=A)

(2) writeA(victim[L]=A)➔readA(level[B])

Art of Multiprocessor Programming 42

public void lock() {
for (int L = 1; L < n; L++) {

level[i] = L;
victim[L] = i;

while (($ k != i) level[k] >= L)
&& victim[L] == i) {};

}}

Combining Observations

(1) writeB(level[B]=L)➔writeB(victim[L]=B)

(3) writeB(victim[L]=B)➔writeA(victim[L]=A)

(2) writeA(victim[L]=A)➔readA(level[B])

Art of Multiprocessor Programming 43

Combining Observations

(1) writeB(level[B]=L)➔writeB(victim[L]=B)

(3) writeB(victim[L]=B)➔writeA(victim[L]=A)

(2) writeA(victim[L]=A)➔readA(level[B])

Thus, A read level[B] ≥ L,
A was last to write victim[L],
so it could not have entered level L!

Art of Multiprocessor Programming 44

No Starvation

• Filter Lock satisfies properties:
– Just like Peterson Alg at any level

– So no one starves

• But what about fairness?
– Threads can be overtaken by others

Fairness

• Starvation freedom is good, but maybe threads shouldn’t wait too
much…

• For example, it would be great if we could order threads by the order
in which they performed the first step of the lock() method

CS 636 Swarnendu Biswas

Bounded Waiting

• Divide lock() method into two parts
• Doorway interval (DA) – finishes in finite steps

• Waiting interval (WA) – may take unbounded steps

• A lock is first-come first-served

CS 636 Swarnendu Biswas

if 𝐷𝐴
𝑗
→ 𝐷𝐵

𝑘 , then 𝐶𝑆𝐴
𝑗
→ 𝐶𝑆𝐵

𝑘

r-Bounded Waiting

For threads A and B: if DA
k
→ DB

j, then CSA
k
→ CSB

j+r

Lamport’s Bakery Algorithm

class Bakery implements Lock {

boolean[] flag;

Label[] label;

public void unlock() {

flag[ThreadID.get()] = false;

}

public Bakery(int n) {

flag = new boolean[n];

label = new Label[n];

for (int i = 0; i<n; i++) {

flag[i] = false;

label[i] = 0;

}

}

CS 636 Swarnendu Biswas

Lamport’s Bakery Algorithm

public void lock() {
int i = ThreadID.get();
flag[i] = true;
label[i] = max(label[0], …, label[n-1]) + 1;
while ((∃k != i) flag[k] && (label[k], k) << (label[i],i)) {}

}

}

CS 636 Swarnendu Biswas

(label[i], i) << (label[j], j)) iff label[i] < label[j] or label[i] = label[j] and i < j

Art of Multiprocessor Programming 50

No Deadlock

• There is always one thread with earliest label

• Ties are impossible (why?)

Art of Multiprocessor Programming 51

First-Come-First-Served

• If DA ➔ DBthen A’s label is
smaller

• And:
– writeA(label[A]) ➔

readB(label[A]) ➔
writeB(label[B]) ➔
readB(flag[A])

• So B is locked out while
flag[A] is true

class Bakery implements Lock {

public void lock() {
flag[i] = true;
label[i] = max(label[0],

…,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) >

(label[k],k));
}

Art of Multiprocessor Programming 52

First-Come-First-Served

• If DA ➔ DBthen A’s label is
smaller

• And:
– writeA(label[A]) ➔

readB(label[A]) ➔
writeB(label[B]) ➔
readB(flag[A])

• So B is locked out while
flag[A] is true

class Bakery implements Lock {

public void lock() {
flag[i] = true;
label[i] = max(label[0],

…,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) >

(label[k],k));
}

Deadlock-freedom together with
first-come first-served implies
starvation-freedom

Art of Multiprocessor Programming 53

Mutual Exclusion

• Suppose A and B in CS
together

• Suppose A has earlier label

• When B entered, it must
have seen
– flag[A] is false, or

– label[A] > label[B]

class Bakery implements Lock {

public void lock() {
flag[i] = true;
label[i] = max(label[0],

…,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) >

(label[k],k));
}

Art of Multiprocessor Programming 54

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

Art of Multiprocessor Programming 55

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB ➔ readB(flag[A]) ➔ writeA(flag[A]) ➔
LabelingA

Art of Multiprocessor Programming 56

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB ➔ readB(flag[A]) ➔ writeA(flag[A]) ➔
LabelingA

• Which contradicts the assumption that A has an
earlier label

Art of Multiprocessor Programming 57

Bakery Y232K Bug
class Bakery implements Lock {
…
public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Art of Multiprocessor Programming 58

Bakery Y232K Bug
class Bakery implements Lock {
…
public void lock() {
flag[i] = true;
label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Mutex breaks if
label[i] overflows

Lamport’s Fast Lock

• Programs with highly contended locks are likely to not scale

• Insight: Ideally spin locks should be free of contention

• Idea
• Two lock fields x and y

• Acquire: Thread t writes its id to x and y and checks for intervening writes

CS 636 Swarnendu Biswas

Lamport’s Fast Lock

class LFL implements Lock {

private int x, y;

boolean[] trying;

LFL() {

y = ⊥;

for (int i = 0; i<n; i++) {

trying[i] = false;

}

}

public void unlock() {

y = ⊥;

trying[ThreadID.get()] = false;

}

CS 636 Swarnendu Biswas

Lamport’s Fast Lock
public void lock() {
int self = ThreadID.get();
start:
trying[self] = true;
x = self;
if (y != ⊥) {
trying[self] = false;
while (y != ⊥) {} // spin
goto start;

}
y = self;

if (x != self) {
trying[self] = false;
for (i ∈ T) {
while (trying[i] == true) {
// spin

}
}
if (y != self) {
while (y != ⊥) {} // spin
goto start;

}
}

}}

CS 636 Swarnendu Biswas

Evaluation Lock Performance

• Lock acquisition latency – Lock acquire should be cheap in the
absence of contenders

• Space overhead – Maintaining lock metadata should not impose high
memory overhead

• Fairness – Processors should enter the CS in the order of lock
requests

• Traffic – Worst case lock acquire traffic should be low

• Scalability – Latency and traffic should scale slowly with the number
of processors

CS 636 Swarnendu Biswas

Atomic Instructions in
Hardware

CS 636 Swarnendu Biswas

Hardware Locks

• Locks can be completely supported by hardware

• Ideas:
• Have a set of lock lines on the bus, processor wanting the lock asserts the

line, others wait, priority circuit used for arbitrating

• Special lock registers, processors wanting the lock acquire ownership of the
registers

• What could be some problems?

CS 636 Swarnendu Biswas

Limitations with Hardware Locks

• Waiting logic is critical for the lock performance
• A thread can (i) busy wait, (ii) block, or (iii) use a hybrid of the earlier two

• Hardware locks are not popularly used
• Inflexible in implementing wait strategies

• Limited in number due resource constraints

• We continue to rely on software locks
• Can be implemented purely in software (classical load-store algorithms)

• Can optionally make use of hardware instructions for better performance

CS 636 Swarnendu Biswas

Common Atomic (RMW) Primitives

CS 636 Swarnendu Biswas

test_and_set [x86, SPARC]

bool TAS(bool* loc):
atomic {
tmp := *loc;
*loc := true;
return tmp;

}

swap [x86, SPARC]

word Swap(word* a, word b):
atomic {
tmp := *a;
*a := b;
return tmp;

}

fetch_and_inc [uncommon]

int FAI(int* loc):
atomic {
tmp := *loc;
*loc := tmp+1;
return tmp;

}

fetch_and_add [uncommon]

int FAA(int* loc, int n):
atomic {
tmp := *loc;
*loc := tmp+n;
return tmp;

}

Implement Lock Acquire

CS 636 Swarnendu Biswas

swap

word Swap(word* a, word b):
atomic {
tmp := *a;
*a := b;
return tmp;

}

Lock Acquire

while (swap(&lock, 1)) {}

// lock variable

addi reg, r0, 1 /*r0=0*/
Lock: xchg reg, &lock

bnez reg, Lock

Common Atomic (RMW) Instructions

CS 636 Swarnendu Biswas

compare_and_swap [x86, IA-64, SPARC]

bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loc := new;

return res;
}

Common Atomic (RMW) Instructions

CS 636 Swarnendu Biswas

compare_and_swap [x86, IA-64, SPARC]

bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loc := new;

return res;
}

Lock Acquire

// lock variable

addi reg1, r0, 0x0 /*reg1=0*/
addi reg2, r0, 0x1 /*reg2=1*/

Lock: lock compxchgl reg1, reg2, &lock
bnez reg2, Lock

Common Atomic (RMW) Instructions

CS 636 Swarnendu Biswas

compare_and_swap [x86, IA-64, SPARC]

bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loc := new;

return res;
}

Common Atomic (RMW) Instructions

CS 636 Swarnendu Biswas

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a, word w):
atomic {
res := (a is remembered, and has not been evicted since LL)
if (res)
*a = w;

return res;
}

Common Atomic (RMW) Instructions

CS 636 Swarnendu Biswas

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a, word w):
atomic {
res := (a is remembered, and has not been evicted since LL)
if (res)
*a = w;

return res;
}

Common Atomic (RMW) Instructions

CS 636 Swarnendu Biswas

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a, word w):
atomic {
res := (a is remembered, and has not been evicted since LL)
if (res)
*a = w;

return res;
}

List Data Structure
void push(node** top, node* new):

node* old

repeat

old := *top

new->next := old

until CAS(top, old, new)

node* pop(node** top):

node* old, new

repeat

old := *top

if old = null return null

new := old->next

until CAS(top, old, new)

return old

CS 636 Swarnendu Biswas

top A C

Concurrent Modifications
void push(node** top, node* new):

node* old

repeat

old := *top

new->next := old

until CAS(top, old, new)

node* pop(node** top):

node* old, new

repeat

old := *top

if old = null return null

new := old->next

until CAS(top, old, new)

return old

CS 636 Swarnendu Biswas

top A C

top A B C

ABA Problem
void push(node** top, node* new):

node* old

repeat

old := *top

new->next := old

until CAS(top, old, new)

node* pop(node** top):

node* old, new

repeat

old := *top

if old = null return null

new := old->next

until CAS(top, old, new)

return old

CS 636 Swarnendu Biswas

top A C

top A B C

top B C

Common Atomic (RMW) Instructions

compare_and_swap

• Cannot detect ABA

load_linked/store_conditional

• Guaranteed to fail

• SC can experience spurious failures
• E.g., Cache miss, branch misprediction

CS 636 Swarnendu Biswas

Any intervening operation (e.g., bus transaction or cache replacement) to the cache
line containing the address in lock_address register clears the load_linked bit. So, the
subsequent SC fails.

Common Atomic (RMW) Instructions

CS 636 Swarnendu Biswas

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a, word w):
atomic {
res := (a is remembered, and has not been evicted since LL)
if (res)
*a = w;

return res;
}

Centralized Mutual Exclusion
Algorithms

CS 636 Swarnendu Biswas

Test-And-Set

• Atomically tests and sets a word
• For example, swaps one for zero

and returns the old value

• java.util.concurrent.Atomi
cBoolean::getAndSet(bool
val)

• Bus traffic?

• Fairness?

bool TAS(bool* loc) {

bool res;

atomic {

res = *loc;

*loc = true;

}

return res;

}

CS 636 Swarnendu Biswas

Spin Lock with TAS

class SpinLock {

bool loc = false;

public void lock() {

while (TAS(&loc)) {

// spin

}

}

public void unlock() {

loc = false;

}

}

CS 636 Swarnendu Biswas

Spin Lock with TAS

class SpinLock {

bool loc = false;

public void lock() {

while (TAS(&loc)) {

// spin

}

}

public void unlock() {

loc = false;

}

}

CS 636 Swarnendu Biswas

Test-And-Test-And-Set

• Keep reading the memory location
till the location appears unlocked
• Reduces bus traffic – why?

do {

while (TATAS_GET(loc)) {

}

} while (TAS(loc));

CS 636 Swarnendu Biswas

Exponential Backoff

CS 636 Swarnendu Biswas

Larger number of unsuccessful retries
→ Higher the contention, longer the backoff

• Possibly double each time till a given maximum

Spin Lock with TAS and Backoff

class SpinLock {

bool loc = false;

const in MIN = …;

cost int MUL = …;

const int MAX = …;

public void unlock() {

loc = false;

}

public void lock() {

int backoff = MIN;

while (TAS(&loc)) {

pause(backoff);

backoff = min(backoff * MUL,

MAX);

}

}

}

CS 636 Swarnendu Biswas

Challenges with Exponential Backoff

CS 636 Swarnendu Biswas

Larger number of unsuccessful retries
→ Higher the contention, longer the backoff

What can be some
problems with this?

Challenges with Exponential Backoff

CS 636 Swarnendu Biswas

Larger number of unsuccessful retries
→ Higher the contention, longer the backoff

What can be some
problems with this?

• Avoid concurrent threads getting into a lockstep, backoff for a random duration,
doubling each time till a given maximum

• Critical section is underutilized

Ticket Lock

• Grants access to threads based on FCFS

• Uses fetch_and_inc()

CS 636 Swarnendu Biswas

Ticket Lock

class TicketLock implements Lock
{

int next_ticket = 0;

int now_serving = 0;

public void unlock() {

now_serving++;

}

public void lock() {

int my_ticket = FAI(&next_ticket);

while (now_serving != my_ticket) {}

}

}

CS 636 Swarnendu Biswas

How is this different
from Bakery’s

algorithm?

Ticket Lock

class TicketLock implements Lock
{

int next_ticket = 0;

int now_serving = 0;

public void unlock() {

now_serving++;

}

public void lock() {

int my_ticket = FAI(&next_ticket);

while (now_serving != my_ticket) {}

}

}

CS 636 Swarnendu Biswas

What are some disadvantages
of Ticket locks?

Scalable Spin Locks

CS 636 Swarnendu Biswas

Queued Locks

• Key idea

CS 636 Swarnendu Biswas

• Instead of contending on a single “now_serving” variable, make threads
wait in a queue (i.e., FCFS)

• Each thread knows its order in the queue

Implementations
• Implement a queue using arrays

• Statically or dynamically allocated depending on the number of threads
• Each thread spins on its own lock (i.e., array element), and knows the

successor information

Queued Lock

public class ArrayLock implements
Lock {

AtomicInteger tail;
volatile boolean[] flag;
ThreadLocal<Integer> mySlot = …;

public ArrayLock(int size) {
tail = new AtomicInteger(0);
flag = new boolean[size];
flag[0] = true;

}

public void lock() {
int slot = FAI(tail);
mySlot.set(slot);
while (!flag[slot]) {}

}

public void unlock() {
int slot = mySlot.get();
flag[slot] = false;
flag[slot+1] = true;

}
}

CS 636 Swarnendu Biswas

Queued Lock

public class ArrayLock implements
Lock {

AtomicInteger tail;
volatile boolean[] flag;
ThreadLocal<Integer> mySlot = …;

public ArrayLock(int size) {
tail = new AtomicInteger(0);
flag = new boolean[size];
flag[0] = true;

}

public void lock() {
int slot = FAI(tail);
mySlot.set(slot);
while (!flag[slot]) {}

}

public void unlock() {
int slot = mySlot.get();
flag[slot] = false;
flag[slot+1] = true;

}
}

CS 636 Swarnendu Biswas

What could be a few
disadvantages of array-based

Queue locks?

Queued Locks using Arrays

public class ArrayLock implements
Lock {

AtomicInteger tail;
boolean[] flag;
ThreadLocal<Integer> mySlot = …;

public ArrayLock(int size) {
tail = new AtomicInteger(0);
flag = new boolean[size];
flag[0] = true;

}

public void lock() {
int slot = FAI(tail);
mySlot.set(slot);
while (!flag[slot]) {}

}

public void unlock() {
int slot = mySlot.get();
flag[slot] = false;
flag[slot+1] = true;

}
}

CS 636 Swarnendu Biswas

space overhead
is O(nk)

false
sharing

Can we come up with
better ideas?

MCS Queue Lock

• Proposed by Mellor-Crumney and Scott [1991]

• Uses linked lists instead of arrays

• Space required to support n threads and k locks: O(n+k)

• State-of-art scalable FIFO locks

CS 636 Swarnendu Biswas

MCS Queue Lock
class QNode {
QNode next;
bool waiting;

}
public class MCSLock implements Lock {
Node tail = null;
ThreadLocal<QNode> myNode = …;

public void lock() {
QNode node = myNode.get();
QNode prev = swap(tail, node);
if (prev != null)

node.waiting = true;
prev.next = node;
while (node.waiting) {}

}

public void unlock() {
QNode node = myNode.get();
QNode succ = node.next;
if (succ == null)

if (CAS(tail, node, null))
return;

do {
succ = node.next;

} while (succ == null);
succ.waiting = false;

}
}

CS 636 Swarnendu Biswas

MCS Lock Operations

CS 636 Swarnendu Biswas

Lock
tail

MCS Lock Operations

CS 636 Swarnendu Biswas

Lock

ALock

tail

Owns the critical
section

MCS Lock Operations

CS 636 Swarnendu Biswas

Lock

ALock

tail

tail

BLock A

MCS Lock Operations

CS 636 Swarnendu Biswas

tail

CLock A B

MCS Lock Operations

CS 636 Swarnendu Biswas

tail

CLock A B

tail

CLock B

Properties of the MCS Lock

• Threads joining the wait queue is wait-free
• Wait-freedom implies every operation has a bound on the number of steps it

will take before the operation completes

• Wait-freedom is the strongest non-blocking guarantee of progress

• Thread acquire locks in FIFO manner

• Minimizes false sharing and resource contention

CS 636 Swarnendu Biswas

Which Spin Lock should I use?

• Limited use of load-store-only locks

• Limited contention (e.g., few threads)
• TAS spin locks with exponential backoff

• Ticket locks

• High contention
• MCS lock or other proposals like CLH lock

CS 636 Swarnendu Biswas

Miscellaneous Lock
Optimizations

CS 636 Swarnendu Biswas

Reentrant Locks

• A lock that can be re-acquired by the
owner thread

• Freed after an equal number of
releases

public class ParentWidget {

public synchronized void
doWork() {

…
}

}

public class ChildWidget extends
ParentWidget {

public synchronized void
doWork() {

…
super.doWork();
…

}
}

CS 636 Swarnendu Biswas

Lazy Initialization In Single-Threaded Context

class Foo {

private Helper helper = null;

public Helper getHelper() {

if (helper == null) {

helper = new Helper();

}

return helper;

}

…

}

CS 636 Swarnendu Biswas

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Lazy
initialization

Correct for
single thread

What could go wrong
with multiple

threads?

Lazy Initialization In Multithreaded Context

class Foo {

private Helper helper = null;

public Helper getHelper() {

if (helper == null) {

helper = new Helper();

}

return helper;

}

…

}

class Foo {

private Helper helper = null;

public synchronized Helper getHelper() {

if (helper == null) {

helper = new Helper();

}

return helper;

}

…

}

CS 636 Swarnendu Biswas

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Synchronizes even after
helper has been allocated

Double-Checked Locking

• Can we optimize the initialization
pattern?
1. Check if helper is

initialized
• If yes, return
• If no, then obtain a lock

2. Double check whether the
helper has been initialized
• Perhaps concurrently
initialized in between Steps
1 and 2

3. If yes, return
4. Initialize helper, and return

class Foo {
private Helper helper = null;
public Helper getHelper() {
if (helper == null) {
synchronized (this) {
if (helper == null)
helper = new Helper();

}
}
return helper;

}
…

}

CS 636 Swarnendu Biswas

Broken Usage of Double Checked Locking

class Foo {

private Helper helper = null;

public Helper getHelper() {

if (helper == null) {

synchronized (this) {

if (helper == null)

helper = new Helper();

}

}

return helper;

}

…

}

CS 636 Swarnendu Biswas

Not platform-independent
when implemented in Java

Double Checked Locking: Broken Fix
private Helper helper = null;

public Helper getHelper() {

if (helper == null) {

Helper h;

synchronized (this) {

h = helper;

if (h == null) {

synchronized (this) {

h = new Helper();

} }

helper = h;

} }

return helper;

}

• A release operation prevents
operations from moving out of
the critical section

• It does not prevent helper = h
from being moved up

CS 636 Swarnendu Biswas

One Correct Use of Double Checked Locking

class Foo {
private volatile Helper helper =

null;
public Helper getHelper() {

if (helper == null) {
synchronized (this) {

if (helper == null)
helper = new Helper();

}
}
return helper;

}
…

}

• Other options are to use barriers in both the
writer thread (the thread that initializes
helper) and all reader threads

CS 636 Swarnendu Biswas

Readers-Writer Locks

• Many objects are read
concurrently
• Updated only a few times

• Reader lock
• No thread holds the write lock

• Writer lock
• No thread holds the reader or

writer locks

public interface RWLock {
public void readerLock();
public void readerUnlock();

public void writerLock();
public void writerUnlock();

}

CS 636 Swarnendu Biswas

Issues to Consider in Readers-Writer Locks

CS 636 Swarnendu Biswas

Design
choices

Release preference
order

Writer releases lock, both readers
and writers are queued up

Incoming readers Writers waiting, and new readers
are arriving

Downgrading Can a thread acquire a read lock
without releasing the write lock?

Upgrading Can a read lock be upgraded to a
write lock?

Readers-Writer Locks

• Reader or writer preference
• Impacts degree of concurrency
• Allows starvation of non-preferred

threads

readerLock():

acquire(rd)

rdrs++

if rdrs == 1:

acquire(wr)

release(rd)

readerUnlock():

acquire(rd)

rdrs--

if rdrs == 0:

release(wr)

release(rd)

writerLock():

acquire(wr)

writerUnlock():

release(wr)

CS 636 Swarnendu Biswas

Readers-Writer Lock With Reader-Preference

class RWLock {

int n = 0;

const int WR_MASK = 1;

const int RD_INC = 2;

public void writerLock() {

while (¬ CAS(&n, 0, WR_MASK)) {

}

}

}

public void writerUnlock() {

FAA(&n, -WR_MASK);

}

public void readerLock() {

FAA(&n, RD_INC);

while ((n & WR_MASK) == 1) {

}

}

public void readerUnlock() {

FAA(&n, -RD_INC);

}

CS 636 Swarnendu Biswas

Asymmetric Locks

• Often objects are locked by at most one thread

• Biased locks
• JVMs use biased locks, the acquire/release operations on the owner threads

are cheaper
• Usually biased to the first owner thread

• Synchronize only when the lock is contended, need to take care of several
subtle issues

• -XX:+UseBiasedLocking in HotSpot JVM

CS 636 Swarnendu Biswas

https://blogs.oracle.com/dave/biased-locking-in-hotspot

Lock Implementations in a JVM

• All objects in Java are potential locks
• Recursive lock – lock can be acquired multiple times by the owner

• Thin lock
• spin lock used when there is no contention, inflated to a fat lock on contention

• Fat lock
• lock is contended or is waited upon, maintains a list of contending threads

CS 636 Swarnendu Biswas

Monitors

CS 636 Swarnendu Biswas

Using Locks to Access a Bounded Queue

• Consider a bounded FIFO queue

• Many producer threads and one
consumer thread access the
queue

mutex.lock();
try {
queue.enq(x);

} finally {
mutex.unlock();

}

CS 636 Swarnendu Biswas

What are possible
problems?

Using Locks to Access a Bounded Queue

• Consider a bounded FIFO queue

• Many producer threads and one
consumer thread access the
queue

mutex.lock();
try {
queue.enq(x);

} finally {
mutex.unlock();

}

CS 636 Swarnendu Biswas

• Producers/Consumers need to know about the size of the queue
• The design may evolve, there can be multiple queues, along with

new producers/consumers
• Every producer/consumer need to follow the locking convention

Monitors to the Rescue!

• Combination of methods,
mutual exclusion locks and
condition variables

• Provides mutual exclusion for
methods

• Provides the possibility to wait
for a condition (cooperation)

public synchronized void enque() {

queue.enq(x);

}

CS 636 Swarnendu Biswas

Condition Variables in Monitors

• Have an associated queue

• Operations
• wait

• notify (signal)

• notifyAll (broadcast)

CS 636 Swarnendu Biswas

Condition Variable Operations

wait var, mutex

• Make the thread wait until a condition COND is true

• Releases the monior’s mutex

• Moves the thread to var’s wait queue

• Puts the thread to sleep

• Steps 1-3 are atomic to prevent race conditions

• When the thread wakes up, it is assumed to hold mutex

CS 636 Swarnendu Biswas

Condition Variable Operations

notify var

• Invoked by a thread to assert that COND is true

• Moves one or more threads from the wait queue to the
ready queue

notifyAll var

• Moves all threads from wait queue to the ready queue

CS 636 Swarnendu Biswas

Signaling Policies

Signaler thread holds the lock

Java implements SC only

Signal and
continue (SC)

Signaler thread needs to reacquire the lock, signaled
thread can continue execution

Signal and wait
(SW)

Like SW, but signaler thread gets to go after the
signaled thread

Signal and urgent
wait (SU)

Signaler exits, signaled thread can continue
execution

Signal and exit
(SX)

CS 636 Swarnendu Biswas

Using Monitors

• Have an associated queue

• Operations
• wait

• notify (signal)

• notifyAll (broadcast)

acquire(mutex)

while (!COND) {

wait(var, mutex)

}

…

/* CRITICAL SECTION */

…

notify(var)/notifyAll(var)

release(mutex)

CS 636 Swarnendu Biswas

Producer-Consumer with Monitors
Queue q;

Mutex mtx; // Has associated queue

CondVar empty, full;

producer:

while true:

data = new Data(…);

acquire(mtx);

while q.isFull():

wait(full, mtx);

q.enq(data);

notify(empty);

release(mtx);

consumer:

while true:

acquire(mtx)

while q.isEmpty():

wait(empty, mtx);

data = q.deq();

notify(full);

release(mtx);

…

…

CS 636 Swarnendu Biswas

Contrast with Producer-Consumer with Spin
Locks
Queue q;

Mutex mtx;

producer:

while true:

data = new Data(…);

acquire(mtx);

while q.isFull():

release(mtx);

…

acquire(mtx);

q.enq(data);

release(mtx);

consumer:

while true:

acquire(mtx);

while q.isEmpty():

release(mtx);

…

acquire(mtx);

data = q.deq();

release(mtx);

…

…

CS 636 Swarnendu Biswas

Semaphore Implementation with Monitors

int numRes = N;
Mutex mtx;
CondVar zero;

P:
acquire(mtx);
while numRes == 0:
wait(zero, mtx);

assert numRes > 0
numRes--;
release(mtx);

V:
acquire(mtx);
numRes++;
notify(zero);
release(mtx);

CS 636 Swarnendu Biswas

Reader-Writer Locks with Reader-Preference
readerLock():

acquire(rd)

rdrs++

if rdrs == 1:

acquire(wr)

release(rd)

readerUnlock():
acquire(rd)
rdrs--
if rdrs == 0:

release(wr)
release(rd)

writerLock():

acquire(wr)

writerUnlock():

release(wr)

CS 636 Swarnendu Biswas

How can we construct a Reader-
Writer lock with writer-preference?

Reader-Writer Lock With Writer-Preference

readerLock():
acquire(global)
while writerFlag:
wait(writerWait, global)

rdrs++
release(global)

readerUnlock():
acquire(global)
rdrs--
if rdrs == 0:
notifyAll(writerWait)

release(global)

writerLock():
acquire(global)
while writerFlag:

wait(writerWait, global)
writerFlag = true
while rdrs > 0:

wait(writerWait, global)
release(global)

writerUnlock():
acquire(global)
writerFlag = false
notifyAll(writerWait)
release(global)

CS 636 Swarnendu Biswas

Monitors in Java

• Java provides built-in support for
monitors
• synchronized blocks and methods

• wait(), notify(), and notifyAll()

• Each object can be used as a
monitor

CS 636 Swarnendu Biswas

https://www.artima.com/insidejvm/ed2/threadsynch.html

Bounded Buffer with Monitors in Java

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class BoundedBuffer {
private final String[] buffer;
private final int capacity; // Constant, length of buffer
private int count; // Current size
private final Lock lock = new ReentrantLock();
private final Condition full = new Condition();
private final Condition empty = new Condition();

CS 636 Swarnendu Biswas

Bounded Buffer with Monitors in Java

public void addToBuffer() … {
lock.lock();
try {

while (count == capacity)
full.await();

…
…
empty.signal();

} finally {
lock.unlock();

}
}

public void removeFromBuffer() … {
lock.lock();
try {

while (count == 0)
empty.await();

…
…
full.signal();

} finally {
lock.unlock();

}
}

}

CS 636 Swarnendu Biswas

References

• Michael Scott. Shared Memory Synchronization. Morgan and Claypool Publishers.

• M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers.

• B. Goetz et al. Java Concurrency in Practice. Pearson.

CS 636 Swarnendu Biswas

