CS 636: Shared Memory
Synchronization

Swarnendu Biswas

Semester 2020-2021-11
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

What is the desired property?

class Set {
final Vector elems = new Vector();

void add(Object x) {
if (!elems.contains(x)) {
elems.add(x);

}
}

}

class Vector {
synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}

CS 636 Swarnendu Biswas

What is the desired property?

Q.1insert(elem): Q.remove():
atomic { atomic {
while (Q.full()) {} while (Q.empty()) {}
// Add elem to the Q // Return data from Q

} }

CS 636 Swarnendu Biswas

Synchronization Patterns

* Mutual exclusion lock:bool := false
Lock.acquire(): Lock.release():
while TAS(&lock) lock := false
// spin

* Condition synchronization

while = condition
// do nothing (spin)

* Global synchronization

Locks (Mutual Exclusion)

public interface Lock { Lock mtx = new LockImpl(..);
public void lock();
public void unlock();

}

mtx.lock();
» try {
public class LockImpl .. // body
implements Lock f{ b finally {

mtx.unlock();

}

Desired Synchronization Properties

e Mutual exclusion

e Critical sections on the same lock from different threads do not overlap
e Safety property

e Livelock freedom

If a lock is available, then some thread should be able to acquire it within
bounded steps

Deadlock-Free

®

- If some thread calls lock()
- And never returns

- Then other threads must complete lock() and unlock()
calls infinitely often

+ System as a whole makes progress
- Even if individuals starve

Art of Multiprocessor Programming

Starvation-Free

®

- If some thread calls lock()
- It will eventually return

» Individual threads make progress

Art of Multiprocessor Programming

Desired Synchronization Properties

 Deadlock freedom

* If a thread attempts to acquire the lock, then some thread should

be able to acquire the lock
* |Individual threads may starve
* Liveness property

e Starvation freedom

* Every thread that acquires a lock eventually releases it
* Alock acquire request must eventually succeed within bounded

steps
* Implies deadlock freedom

Classic Mutual Exclusion

Al

oorithms

LockOne: What could go wrong?

class LockOne implements Lock {
private boolean[] flag = new boolean[2];

public void lock() {
flag[i] = true;
j = 1-1;
while (flag[jl) {}
}
}

Art of Multiprocessor Programming

12

Deadlock Freedom

- LockOne Fails deadlock-freedom
- Concurrent execution can deadlock

flag[i] = true; flag[j] = true;
while (flag[j1){} while (flag[il){}

- Sequential executions OK

Art of Multiprocessor Programming

13

LockOne Satisfies Mutual Exclusion

+ Assume CS,J overlaps CSgk

» Consider each thread's last (j-th and k-th)
read and write in the lock() method before

entering
- Derive a contradiction

Art of Multiprocessor Programming

14

From the Code

- write,(flag[A]=true) >
read,(flag[B]==false) >CS,

+ writeg(flag[B]=true) >
readg(flag[A]==false) > CSy

class LockOne implements Lock {

public void lock() {
flag[i] = true;
j=1-1;
while (flag[jl) {}
}

}

Art of Multiprocessor Programming

15

From the Assumption

* read,(flag[B]==false) > writey(flag[B]=true)

- ready(flag[A]==false) 2> write,(flag[B]=true)

Art of Multiprocessor Programming

16

Combining

- Assumptions:
- read,(flag[B]==false) 2> writey(flag[B]=true)
- readp(flag[A]==false) > write,(flag[A]=true)

* From the code
- write,(flag[A]=true) 2> read,(flag[B]==false)
- writeg(flag[B]=true) > ready(flag[A]==false)

Art of Multiprocessor Programming

17

Combining

- read,(flag[B]==false) > writey(flag[B]=true)

- writeg(flag[B]=true) > ready(flag[A]==false)

Art of Multiprocessor Programming

18

Combining

- read,(flag[B]==false) > writey(flag[B]=true)
g[Al==false) > write,(flag[A]=true)

|4
- writeg(flag[B]=true) > ready(flag[A]==false)

Art of Multiprocessor Programming

19

Combining

read,(flag[B]==false) > writey(flag[B]=true)
readp(flag[A]==false) > write,(flag[A]=true)

Art of Multiprocessor Programming

20

Combining

read,(flag[B]==false) > writey(flag[B]=trie)
readp(flag[A]==false) > write,(flag[A]=trde)

i
“

L 2
lllllllllllllllllll ann?®

wr'iTeA(flagEfuéi';'ue) - read,(flag[B]==false)
wri"teB(flag[B]=’rr'ue) - readp(flag[A]==false)

‘e

Art of Multiprocessor Programming

21

read,(flag[B¥
reads{flagls

write (flag[¥4d=true) -> read,(flag[B]==falBe)
Nk ia) S ool 7

writeg(flag[B

Combining

R I / { Py

A]==false)

Art of Multiprocessor Programming

22

Cyclel

Art of Multiprocessor Programming

23

LockTwo: What could go wrong?

public class LockTwo implements Lock {
private int victim;
public void lock() {
victim = 1;
while (victim == i) {};

}

public void unlock({}
}

Art of Multiprocessor Programming

25

LockTwo Claims

- Satisfies mutual exclusion

- If Thr'efld 1. in CS | public void LockTwo() {

- Cannot be both O and 1 _While (victim == 1) {};

}
- Not deadlock free

- Sequential execution deadlocks
- Concurrent execution does not

Art of Multiprocessor Programming

Peterson’s Algorithm

class PetersonLock {

static volatile boolean[] flag =

new boolean[2];
static volatile 1int victim;

public void unlock() {
int 1 = ThreadID.get();
flag[i] = false;

}

public void lock() {

int 1 = ThreadID.get();

int j = 1-1;
flag[i] = true;
victim = 1i;

while (flag[j] && victim

i) 1}

Mutual Exclusion

flag[i] = true;
victim = 1;
while (flag[j] && victim == i) {};

« If thread O in + If thread 1 in
critical section, critical section,
- flag[0]=true, - flag[1]=true,
- victim =1 —victim =0

Cannot both be true

Art of Multiprocessor Programming

28

Starvation Free

Thread 1 blocked
only if j repeatedly public void TockO {

f1 = t ;
re-enters so that e e

while (f'la;[J] && victim == i) {};
flag[j] == true and !

victim == 1 public void unlock() {
When j re-enters , f12olt] = false;

- it sets victim to j.
- S0 1 getsin

Art of Multiprocessor Programming

Deadlock Free

while (flag[j] && victim == i) {};

- Thread blocked

- only at while loop
- only if it is the victim

- One or the other must not be the victim

Art of Multiprocessor Programming

30

Peterson’s Algorithm

class PetersonLock {

static volatile boolean[] flag =

new boolean[2];
static volatile 1int victim;

public void unlock() {
int 1 = ThreadID.get();
flag[i] = false;

}

public void lock() {
int 1 = ThreadID.get();
int j = 1-1i;
flag[i] = true;
victim = i;
while (flag[j] && victim

Is this algorithm correct under
sequential consistency?
What if we do not have sequential

consistency?

i) 1}

Filter Lock for n Threads

non-CS with n threads level=0
* There are n-1 waiting rooms \ n-1 threads / level=1
called “levels”
e At least one thread trying to \ /

enter a level succeeds

* One thread gets blocked at each
level if many threads try to enter

\ 2 threads / level=n-2
\ CS / level=n-1

Filter Lock

class FilterLock { public void unlock() {
int me = ThreadID.get();
volatile int[] level; level[mel= 0;
volatile int[] victim; }

public FilterLock() {
level = new int[n];
victim = new int[n];
for (int 1 = 0; 1 < n; i++) {

levell[i] = 0;

Filter Lock

public void lock() {
int me = ThreadID.get();
for (int i = 1; i1 < n; i++) { // Attempt to enter level i
levellme] = 1; // visit level i
victim[i] = me; // Thread “me” is a good guy!
// spin while conflict exits
while ((3k '= me) levell[k] >= i &§& victim[i] == me) {

}

Claim

- Start at level L=0
- At most n-L threads enter level L
- Mutual exclusion at level L=n-1

ncs L=0
\ [L=1
/
\ /
\ /
L=n-2

Art of Multiprocessor Programming

35

Induction Hypothesis

* No more than n-L+1 at level L-1
» Induction step: by contradiction

- Assume all at level

L-1 enter level L ncs assume
- A last to write \ / /
victim[L] \ [L-1 has n-L+1
\ [L has n-L

* Bis any other N
CS
thread at level L prove

Art of Multiprocessor Programming

36

Proof Structure

ncs

Assumed to enter L-1

PP n-L{I = 4

U T nie-a

Last to \ — / \

write By way of contradiction
victimL] all enter L

Show that A must have seen
B in level[L] and since victim[L] ==
could not have entered

Art of Multiprocessor Programming

37

From the Code

(1) writeg(level[B]J=L)=>writeg(victim[L]=B)

level[1] = L;
victim[L] = 1;

Art of Multiprocessor Programming

From the Code

(2) write,(victim[L]=A)=>read,(level[B])

victim[L] = 1i;

[wh'i'le (3@ k = 1) level[k] >= L)]

Art of Multiprocessor Programming

39

By Assumption

(3) writeg(victim[L]=B)=>write,(victim[L]=A)

By assumption, A is the last
thread to write victim[L]

Art of Multiprocessor Programming

40

Combining

(1) writey(level[B]=
(3) writeg(victim[L

Observations

L) writeg(victim[L]=B)

J=B)=2>write,(victim[L]=A)

(2) write,(victim[L]=A)=>read,(level[B])

Art of Multiprocessor Programming 41

Combining Observations

(1) writeg(level[B]=L)=>
(3) writeg(victim[L]=B)=>write,(victim[L]=A)

(2)

2 read,(level[B])

public void Tock() {
for (int L =1; L < n; L++) {
level[i] = L;
victim[L] = 1i;
while ((3k != 1) level[k] >= L)
&& victim[L] == i) {};

1}

42

Combining Observations

(1) writeg(level[B]=L)=>
(3) writeg(victim[L]=B)=>write,(victim[L]=A)

(2) %dA(Ievel[B])]
Thus, A read level[B] 2 L,

A was last to write victim[L],
so it could not have entered level L!

Art of Multiprocessor Programming 43

No Starvation

* Filter Lock satisfies properties:
- Just like Peterson Alg at any level
- S0 ho one starves

» But what about fairness?
- Threads can be overtaken by others

Art of Multiprocessor Programming

44

Fairness

e Starvation freedom is good, but maybe threads shouldn’t wait too
much...

* For example, it would be great if we could order threads by the order
in which they performed the first step of the Lock() method

Bounded Waiting

* Divide lock() method into two parts
* Doorway interval (D,) — finishes in finite steps
* Waiting interval (W,) — may take unbounded steps

* Alock is first-come first-served if D/{ — Df, then CS/{ - CS§

r-Bounded Waiting

For threads A and B: if DX = D/, then CS,* = CS "'

Lamport’s Bakery Algorithm

class Bakery implements Lock { public Bakery(int n) {
flag = new boolean[n];
boolean[] flag; label = new Labell[n];
Label[] label; for (int 1 = @; i<n; i++) {
flag[i] = false;
public void unlock() { label[i] = 0;
flag[ThreadID.get()] = false; }

} }

Lamport’s Bakery Algorithm

(label[i], i) << (label[j], j)) iff label[i] < label[j] or label[i] = label[j] and i < j

public void lock() {

int 1 = ThreadID.get();

flag[i] = true;

label[i] = max(label[@], .., labelln-1]) + 1;

while ((3k '= i) flag[k] && (labell[k], k) << (labell[i],i)) {}
}

No Deadlock

* There is always one thread with earliest label
+ Ties are impossible (why?)

Art of Multiprocessor Programming

50

First-Come-First-Served

- If D, > Dpthen A's label is
smaller
- And:

- write,(label[A]) 2
readp(label[A]) 2
writeg(label[B]) 2
readg(flag[A])

+ So B is locked out while
flag[A] is true

class Bakery implements Lock {

public void Tock() {
flag[i]l = true;
Tabel[i1] = max(label[0],

.., 1abel[n-1])+1;

while (3k flag[k]

&& (label[i],1) >
(1abel[k],k));

}

Art of Multiprocessor Programming

51

First-Come-First-Served

° If DA -> Dg’rhen A'S |Clb€| IS [class Bakery implements Lock { \k
st

. 4 Deadlock-freedom together with
- first-come first-served implies
starvation-freedom

S /

- So B is locked out while

flag[A] is true

Art of Multiprocessor Programming

Mutual Exclusion

° SUPPOSC A Clnd B in CS class Bakery implements Lock {

together

* Suppose A has earlier label | 1aveiris

public void Tock() {
flag[il true;
max(label[0],
.., 1abel[n-1])+1;

* When B entered, it must while 3k Flag[k]
have seen (1abel kg 5% {1abel i1,) >

- flag[A] is false, or
- label[A] > label[B]

}

Art of Multiprocessor Programming

53

Mutual Exclusion

* Labels are strictly increasing so
* B must have seen flag[A] == false

Art of Multiprocessor Programming

54

Mutual Exclusion

* Labels are strictly increasing so
* B must have seen flag[A] == false

* Labelingg & ready(flag[A]) @ write,(flag[A]) >
Labeling,

Art of Multiprocessor Programming

95

Mutual Exclusion

* Labels are strictly increasing so
* B must have seen flag[A] == false

* Labelingg & ready(flag[A]) @ write,(flag[A]) >
Labeling,

* Which contradicts the assumption that A has an
earlier label

Art of Multiprocessor Programming

56

Bakery Y232K Bug

class Bakery implements Lock {

public void lockO {
flag[i] = true;
label[i] max(label[0], ..,1abel[n-1])+1;
while (dk flag[k]

&& (label[i],i) > (label[k],k));
}

Art of Multiprocessor Programming

o7

Bakery Y232K Bug

Mutex breaks if
Tabel[i] overflows

['I abel[1] = max(label[0], ..,Tlabel[n-1])+1;]

Art of Multiprocessor Programming

58

Lamport’s Fast Lock

* Programs with highly contended locks are likely to not scale
* Insight: Ideally spin locks should be free of contention

* |dea
* Two lock fields x and y
e Acquire: Thread t writes its id to x and y and checks for intervening writes

Lamport’s Fast Lock

class LFL implements Lock f{ public void unlock() {
private 1nt x, Vy; y = 1;
boolean[] trying; trying[ThreadID.get()] = false;
}
LFL() {
y = 13

for (int i = 0; i<n; 1i++) {
trying[i] = false;
}

Lamport’s Fast Lock

public void lock() {
int self = ThreadID.get();
start:
trying[self] = true;
X = self;
if (y '= 1) {
trying[self] = false;
while (y != 1) {} // spin
goto start;

}
y = self;

b}

if (x 1= self) {
trying[self] = false;
for (1 € T) {

}

}

while (trying[i] == true) {
// spin
}

if (y !'= self) {

}

while (y '= 1) {} // spin
goto start;

Evaluation Lock Performance

* Lock acquisition latency — Lock acquire should be cheap in the
absence of contenders

* Space overhead — Maintaining lock metadata should not impose high
memory overhead

e Fairness — Processors should enter the CS in the order of lock
requests

* Traffic — Worst case lock acquire traffic should be low

 Scalability — Latency and traffic should scale slowly with the number
of processors

Atomic Instructions In

Hardware

Hardware Locks

* Locks can be completely supported by hardware

e |deas:

* Have a set of lock lines on the bus, processor wanting the lock asserts the
line, others wait, priority circuit used for arbitrating

» Special lock registers, processors wanting the lock acquire ownership of the
registers

* What could be some problems?

Limitations with Hardware Locks

* Waiting logic is critical for the lock performance
» Athread can (i) busy wait, (ii) block, or (iii) use a hybrid of the earlier two

* Hardware locks are not popularly used
* Inflexible in implementing wait strategies
* Limited in number due resource constraints

* We continue to rely on software locks
* Can be implemented purely in software (classical load-store algorithms)
* Can optionally make use of hardware instructions for better performance

Common Atomic (RMW) Primitives

test_and_set [x86, SPARC]
bool TAS(bool* loc):
atomic {
tmp := *xloc;
*loc := true;
return tmp;

}

fetch_and inc [uncommon]
int FAI(int* loc):
atomic {
tmp := xloc;
*loc := tmp+1;
return tmp;

}

swap [Xx86, SPARC]

word Swap(wordx a, word b):
atomic {

tmp := *a;
*a := b;
return tmp;

}

fetch_and add [uncommon]

int FAA(int* loc, int n):
atomic {

tmp := *loc;
*loc := tmp+n;
return tmp;

}

Implement Lock Acquire

swap Lock Acquire

word Swap(wordx a, word b):

atomic { while (swap(&lock, 1)) {}
tmp := *a;
*a := b; .
return tmp; // lock variable

}

addi reg, ro, 1 /*r0=0%/
Lock: xchg reg, &lock
bnez reg, Lock

Common Atomic (RMW) Instructions

compare_and_swap 'x86, |A-64, SPARC]
bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loCc := new;

return res;

}

Common Atomic (RMW) Instructions
compare_and_swap 'x86, |A-64, SPARC]

bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loCc := new;
return res;

}

Lock Acquire

// lock variable

addi regl, r0, 0x0 /*regl=0%/
addi reg2, r0, 0x1 /*reg2=1x%/

Lock: lock compxchgl regl, reg2, &lock
bnez reg?2, Lock

Common Atomic (RMW) Instructions

compare_and_swap 'x86, |A-64, SPARC]
bool CAS(word* loc, world old, word new):
atomic {
res := (*loc == old);
if (res)
*loCc := new;
return res; -
} - lemen
mp
can you
How) with CAS?

fetch__andjunC(

Common Atomic (RMW) Instructions

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a, word w):
atomic {
res := (a is remembered, and has not been evicted since LL)
if (res)
*a = W;
return res;

}

Common Atomic (RMW) Instructions

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word+* a. How can you |
atomic { LHWC(
res := (. fe’f.Ch___af\d__f
if (res)
*a = W;
return res;

}

mp\emeﬂt
) with LL/SC?

oince LL)

Common Atomic (RMW) Instructions

load_linked/store_conditional [POWER, MIPS, ARM]

word LL(word* a):
atomic {
remember a;
return *a;

}

bool SC(word* a. V
atomic { How abOUt CAS
res := (. oince LL)
if (res)
*a = W;
return res;

}

List Data Structure

void push(node** top, nodex new):

node*x old
repeat
old := xtop
new->next := old
until CAS(top, old, new)

(o

no

de*x pop(nodex* top):
node* old, new

repeat
old := xtop
if old = null return null

new := old->next
until CAS(top, old, new)
return old

—

)

C

Concurrent Modifications

void push(node** top, nodex new):

node*x old
repeat
old := xtop
new->next := old
until CAS(top, old, new)

SR

—t

O

O
—
SERER

node* pop(nodex* top):

node* old, new

repeat
old := xtop
1f old = null return null
new := old->next

until CAS(top, old, new)
return old

—

Y

—

O

O
—
SR

)

C

N——

S

ABA Problem

—
\ 4
SR

o

—
\ 4
SR

—
A 4
SRR

_
)

(o
o
(w] |
S~

g

Common Atomic (RMW) Instructions

compare_and_swap load_linked/store_conditional

e Cannot detect ABA e Guaranteed to fail

* SC can experience spurious failures
* E.g., Cache miss, branch misprediction

Any intervening operation (e.g., bus transaction or cache replacement) to the cache
line containing the address in lock _address register clears the load_linked bit. So, the
subsequent SC fails.

CS 636 Swarnendu Biswas

Common Atomic (RMW) Instructions

load_linked/store_conditional [POWER, MIPS, ARM]
word LL(word* a):
atomic {
remember a; _
} e o How can you reduce SPUV‘OUS()
unc
bool St failures in your fetch andL_/fSC?
atomic |mp\ementat|on with L '
res . .en evicted since LL)
if (res)
*xa = Ww;

return res,;

}

Centralized

Al

Mutual Exclusion
oorithms

Test-And-Set

* Atomically tests and sets a word

* For example, swaps one for zero
and returns the old value

 Java.util.concurrent.Atomil
cBoolean::getAndSet(bool
val)

e Bus traffic?

* Fairness?

bool TAS(bool* loc)
bool res;
atomic {
res = xloc;
*loc = true;
}

return res;

}

Spin Lock with TAS

class SpinLock { public void unlock() {
bool loc = false; loc = false;
3
public void lock() {
while (TAS(&loc)) { }
// spin
}

}

Spin Lock with TAS

class SpinLocl
< o
b001 loc = false' public VOid “ﬂ1npk() {

DUblic VO .
. Delays processors not waiting for

whil- °
. Lock release can be delayed by spinners
} « Does not support reader-writer locking
. No control over locking policy

Test-And-Test-And-Set

* Keep reading the memory location do {
till the location appears unlocked while (TATAS_GET(loc)) 1
e Reduces bus traffic — why? }

} while (TAS(loc));

Exponential Backoff

Larger number of unsuccessful retries
— Higher the contention, longer the backoff
* Possibly double each time till a given maximum

Spin Lock with TAS and Backoff

class SpinLock { public void lock() {
bool loc = false; int backoff = MIN;
const in MIN = ..; while (TAS(&loc)) {
cost int MUL = ..; pause(backoff);
const i1nt MAX = ..; backoff = min(backoff * MUL,
MAX) ;
public void unlock() { }
loc = false; }

Challenges with Exponential Backoff

Larger number of unsuccessful retries
- Higher the contention, longer the backoff

What can be some
problems with this?

Challenges with Exponential Backoff

Larger number of unsuccessful retries
- Higher the contention, longer the backoff

What can be some
problems with this?

* Avoid concurrent threads getting into a lockstep, backoff for a random duration,
doubling each time till a given maximum
e Critical section is underutilized

Ticket Lock

 Grants access to threads based on FCFS
e Uses fetch and inc()

PLEASE

NOW SERVING
Take A

Number

CS 636 Swarnendu Biswas

Ticket Lock

class TicketLock implements Lock public void lock() {
{ int my_ticket = FAI(&next_ticket);
while (now_serving !'= my_ticket) {}
int next_ticket = 0; }
int now_serving = 0;
}
public void unlock() {
now_serving++; How is this different
} from Bakery’s

algorithm?

Ticket Lock

class TicketLock implements Lock public void lock() {
{ int my_ticket = FAI(&next_ticket);
while (now_serving !'= my_ticket) {}
int next_ticket = 0; }
int now_serving = 0;
}

public void unlock() {
now_serving++; What are some disadvantages

} of Ticket locks?

Scalable Spin Locks

Queued Locks

* Key idea

* Instead of contending on a single “now_serving” variable, make threads
wait in a queue (i.e., FCFS)
 Each thread knows its order in the queue

Implementations
* Implement a queue using arrays
e Statically or dynamically allocated depending on the number of threads
e Each thread spins on its own lock (i.e., array element), and knows the
successor information

Queued Lock

public class ArrayLock implements public void lock() {

Lock {. | int slot = FAI(tail);
AtomicInteger tail; mySlot.set(slot);

volatile boolean[] flag; while (!flag[slot]) {}
ThreadLocal<Integer> mySlot = ..; 1

public ArrayLock(int size) {
tail = new AtomicInteger(0);
flag = new boolean[size];
flag[0] = true;

}

public void unlock() {
int slot = mySlot.get();
flag[slot] = false;
flag[slot+1l] = true;

}

What could be a few

Queu ed Lo disadvantages of array-based

Queue locks?
pub}i% class ArraylLock 1mpleme public void lock() {
Lock

int slot = FAI(tail);

mySlot.set(slot);

while (!flag[slot]) {}
" !

AtomicInteger tail;
volatile boolean[] flag;
ThreadLocal<Integer> mySlot =

public ArrayLock(int size) {

tail = new AtomicInteger(0); int slot = mySlot.get();
flag = new boolean[size]; flag[slot] = false;
} flag[o] = true; flaglslot+1] = true;

}

public void unlock() {

Can we come up with

Queued Locks using Array. better ideas?
public class ArraylLock implements public void lock() {
Lock {

int slot = FAI(tail);

mySlot.set(slot);

while (!flag[slot]) {}
" !

AtomicInteger tail;
boolean[] flag;
ThreadLocal<Integer> mySlot =

public ArrayLock(int size) {
tail = new AtomicInteger(0);
flag = new boolean[size];
flag[0] = true;

public void unlock() {
int slot = mySlot.get();
flag[slot] = false;
flag[slot+1l] = true;

}

false
} :
sharing

}

space overhead
is O(nk)

CS 636 Swarnendu Biswas

MCS Queue Lock

* Proposed by Mellor-Crumney and Scott [1991]

* Uses linked lists instead of arrays

e Space required to support n threads and k locks: O(n+k)
* State-of-art scalable FIFO locks

CS 636 Swarnendu Biswas

MCS Queue Lock

class QNode {
QNode next;
bool waiting;

}

public class MCSLock implements Lock {
Node tail = null;

ThreadLocal<QNode> myNode = ..;
public void lock() {
QNode node = myNode.get();
QNode prev = swap(tail, node);
if (prev != null)
node.waiting = true;
prev.next = node;
while (node.waiting) {}

public void unlock() {
QNode node = myNode.get();
QNode succ = node.next;
if (succ == null)
if (CAS(tail, node, null))
return;
do {
succ = node.next;
} while (succ == null);
succ.waiting = false;

}

MCS Lock Operations

tail

[Lock

MCS Lock Operations

{ Lock]g-
Owns the critical

tall \ section
[Lock] [

CS 636 Swarnendu Biswas

MCS Lock Operations el =

MCS Lock Operations

MCS Lock Operat|ons
/ N

<) [H e ¢ 137
/ N

| S a K ij

s

s

Properties of the MCS Lock

* Threads joining the wait queue is wait-free

* Wait-freedom implies every operation has a bound on the number of steps it
will take before the operation completes

* Wait-freedom is the strongest non-blocking guarantee of progress
* Thread acquire locks in FIFO manner
* Minimizes false sharing and resource contention

Which Spin Lock should | use?

* Limited use of load-store-only locks

* Limited contention (e.g., few threads)

* TAS spin locks with exponential backoff
* Ticket locks

* High contention
* MCS lock or other proposals like CLH lock

Miscellaneous Lock

Optimizations

Reentrant Locks

* A lock that can be re-acquired by the Bublic class %hildWidget extends
owner thread arentWidget
* Freed after an equal number of
releases ﬁubl% ?ynchronlzed voild
doWork()

super.doWork();
public class ParentWidget f{

oﬁS?E%C ?ynchron1zed vold 1

}
}

Lazy Initialization |In Single-Threaded Context

class Foo { Correct for

private Helper helper = null; single thread
public Helper getHelper() {
if (helper == null) {
helper = new Helper();
}

return helper;

} Lazy
initialization

What could go wrong

with multiple
threads?

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

CS 636 Swarnendu Biswas

Lazy Initialization In Multithreaded Context

class Foo { class Foo {
private Helper helper = null; private Helper helper = null;
public Helper getHelper() { public synchronized Helper getHelper() {

if (helper == null) { if (helper == null) {

helper = new Holnan(). helper = new Helper();
} Synchronizes even after }
retu helper has been allocated return helper;
} ¥
} ¥

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Double-Checked Locking

* Can we optimize the initialization

pattern?
1. Check 1if helper 1is
initialized

« If yes, return
« If no, then obtain a lock

2. Double check whether the
helper has been 1nitialized

 Perhaps concurrently
initialized in between Steps
1 and 2

3. If yes, return
4., 1Initialize helper, and return

class Foo {
private Helper helper = null;
public Helper getHelper() {
if (helper == null) {
synchronized (this) {
if (helper == null)
helper = new Helper();
}
}

return helper;

}

Broken Usage of Double Checked Locking

class Foo {
private Helper helper = null;
public Helper getHelper() {
if (helper == null) {
synchronized (this) {

if (helper == null) Not platform-independent
} helper = new Helper(); when implemented in Java
}
return helper;

}

CS 636 Swarnendu Biswas

Double Checked Locking: Broken Fix

private Helper helper = null; * A release operation prevents
1 H H . .
public Helper getHelper() i operations from moving out of
if (helper == null) { .. .
the critical section

Helper h;
synchronized (this) { * It does not prevent helper = h
h = helper; from being moved up

if (h == null) {
synchronized (this) {

h = new Helper();
b}
helper = h;
b}

return helper;

One Correct Use of Double Checked Locking

clas§ Foo { . * Other options are to use barriers in both the
nu?{}vate volatile Helper helper = writer thread (the thread that initializes
?

public Helper getHelper() { helper)and all reader threads

if (helper == null) {
synchronized (this) {
if (helper == null)
helper = new Helper();
}
}

return helper;

Readers-Writer Locks

* Many objects are read public interface RWLock {
concurrently public void readerLock();
* Updated only a few times public void readerUnlock();

public void writerLock();
e Reader lock public void writerUnlock();

* No thread holds the write lock }

 Writer lock

* No thread holds the reader or
writer locks

Issues to Consider in Readers-Writer Locks

Design
choices

Release preference Writer releases lock, both readers
and writers are queued up

order

Incoming readers Writers waiting, and new readers
are arriving

Downgrading Can a thread acquire a read lock

without releasing the write lock?

' Can a read lock be upgraded to a
U pgradmg write lock?

Readers-Writer Locks

* Reader or writer preference

* Impacts degree of concurrency

* Allows starvation of non-preferred
threads

readerLock():
acquire(rd)
rdrs++
1f rdrs ==
acquire(wr)
release(rd)

readerUnlock():
acquire(rd)
rdrs--
1f rdrs ==
release(wr)
release(rd)

writerLock():
acquire(wr)

writerUnlock():
release(wr)

Readers-Writer Lock With Reader-Preference

class RWLock { public void writerUnlock() {
int n = 0; FAA(&n, -WR_MASK);
const int WR_MASK = 1; }

const int RD_INC = 2;
public void readerLock() {

public void writerLock() { FAA(&n, RD_INC);
while (= CAS(sn, 0, WR_MASK)) { while ((n & WR_MASK) == 1) {
} }

} }

}

public void readerUnlock() {
FAA(&6n, -RD_INC);
}

Asymmetric Locks

e Often objects are locked by at most one thread

e Biased locks

* JVMs use biased locks, the acquire/release operations on the owner threads
are cheaper

e Usually biased to the first owner thread

* Synchronize only when the lock is contended, need to take care of several
subtle issues

« -XX:+UseBiasedLocking in HotSpot JVM

https://blogs.oracle.com/dave/biased-locking-in-hotspot

Lock Implementations in a JVM

* All objects in Java are potential locks

* Recursive lock — lock can be acquired multiple times by the owner
* Thin lock

e spin lock used when there is no contention, inflated to a fat lock on contention

* Fat lock
* lock is contended or is waited upon, maintains a list of contending threads

Monitors

Using Locks to Access a Bounded Queue

* Consider a bounded FIFO queue

* Many producer threads and one
consumer thread access the
gueue

What are possible
problems?

mutex.lock();
try {

}

}

queue.enq(x);
finally {
mutex.unlock();

Using Locks to Access a Bounded Queue

* Consider a bounded FIFO queue mutex.lock();

* Many producer threads and one try 1
Conf, 2 2 M Z AN
qud ¢ Producers/Consumers need to know about the size of the queue

* The design may evolve, there can be multiple queues, along with

_

new producers/consumers
Every producer/consumer need to follow the locking convention

~

J

Monitors to the Rescuel

e Combination of methods, public synchronized void enque() {
mutual exclusion locks and queue.enq(x);
condition variables }

* Provides mutual exclusion for
methods

* Provides the possibility to wait
for a condition (cooperation)

CS 636 Swarnendu Biswas

Condition Variables in Monitors

* Have an associated queue

* Operations
e wait
* notify (signal)
* notifyAll (broadcast)

CS 636 Swarnendu Biswas

Condition Variable Operations

wait var, mutex

e Make the thread wait until a condition COND is true
e Releases the monior’s mutex
e Moves the thread to var’s wait queue
e Puts the thread to sleep
e Steps 1-3 are atomic to prevent race conditions
e When the thread wakes up, it is assumed to hold mutex

CS 636 Swarnendu Biswas

Condition Variable Operations

e Invoked by a thread to assert that COND is true

e Moves one or more threads from the wait queue to the
ready queue

notifyAll var

e Moves all threads from wait queue to the ready queue

CS 636 Swarnendu Biswas

Sighaling Policies

4)

Signal and Signaler thread holds the lock

continue (SC) |Java implements SC only

4 N
Signal and wait |Signaler thread needs to reacquire the lock, signaled

(SW) thread can continue execution

4)

Signal e!nd urgent |Like SW, but signaler thread gets to go after the
wait (SU) signaled thread

4)
Signal and exit |Signaler exits, signaled thread can continue

(SX) execution

Using Monitors

* Have an associated queue acquire(mutex)
while (!COND) {

wait(var, mutex)

}

* Operations
* wait
* notify (signal)

* notifyAll (broadcast) /* CRITICAL SECTION =/

notify(var)/notifyAll(var)
release(mutex)

CS 636 Swarnendu Biswas

Producer-Consumer with Monitors

ueue q:
Q q; consumer:

Mutex mtx; // Has associated queue while true:

CondVar empty, full; acquire(mtx)

while q.isEmpty():
producer: wait(empty, mtx);

while true: data = q.deq();
notify(full);

release(mtx);

data = new Data(..);

acquire(mtx);

while g.isFull():
wait(full, mtx);

g.enq(data);

notify(empty);

release(mtx);

Contrast with Producer-Consumer with Spin
Locks

Queue (; consumer:
Mutex mtx; while true:
acquire(mtx);
producer: while q.isEmpty():
while true: release(mtx);
data = new Data(..);
acquire(mtx); acquire(mtx);
while g.isFull(): data = q.deq();
release(mtx); release(mtx);

acquire(mtx);
q.enq(data);
release(mtx);

Semaphore Implementation with Monitors

1int numRes = N; V:

Mutex mtx; acquire(mtx);

CondVar zero; numRes++;
notify(zero);

P release(mtx);

acquire(mtx);
while numRes ==
wait(zero, mtx);
assert numRes > 0
numRes--;
release(mtx);

Reader-Writer Locks with Reader-Preference

readerLock(): writerLock():
acquire(rd) acquire(wr)
rdrs++
if rdrs == 1: writerUnlock():
acquire(wr) release(wr)

release(rd)

(Vy

readerUnlock():

acquire(rd) How can we construct a Reader-
rdrs-- Writer lock with writer-preference?
if rdrs == 0:

release(wr) S 4_,,/*‘

release(rd)

Reader-Writer Lock With Writer-Preference

readerLock(): writerLock():
acquire(global) acquire(global)
while writerFlag: while writerFlag:
wait(writerwait, global) wait(writerWait, global)
rdrs++ writerFlag = true
release(global) while rdrs > 0:
wait(writerwait, global)
readerUnlock(): release(global)
acquire(global)
rdrs—- writerUnlock():
if rdrs == acquire(global)
notifyAll(writerwait) wrlFerFlag =.false.
release(global) notifyAll(writerwWait)

release(global)

Monitors in Java

* Java provides built-in support for The Owner
. Entry Set Wait Set
monitors
» synchronized blocks and methods {5 O o ""“ﬂi-’o O
* wait(), notify(), and notifyAll() O O i O Q
* Each object can be used as a it ()
monitor /

O A Waiting Thread

An Active Thread

https://www.artima.com/insidejvm/ed2/threadsynch.html

CS 636 Swarnendu Biswas

Bounded Buffer with Monitors in Java

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class BoundedBuffer {
private final String[] buffer;
private final int capacity; // Constant, length of buffer
private int count; // Current size
private final Lock lock = new ReentrantLock();
private final Condition full = new Condition();
private final Condition empty = new Condition();

Bounded Buffer with Monitors in Java

public void addToBuffer() .. { public void removeFromBuffer() ..
lock.lock(); lock.lock();
try { try {
while (count == capacity) while (count == 0)
full.await(); empty.await();
empty.signal(); full.signal();
} finally { } finally {
lock.unlock(); lock.unlock();
} }
} }

CS 636 Swarnendu

References

* Michael Scott. Shared Memory Synchronization. Morgan and Claypool Publishers.
e M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers.

* B. Goetz et al. Java Concurrency in Practice. Pearson.

