
CS 636: Concurrency Bugs
Swarnendu Biswas

Semester 2020-2021-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Production Software Contains Bugs!

• AT&T hangs up its long-distance service (1990)

• For nine hours in January 1990 no AT&T customer could make a long-distance call. The
problem was the software that controlled the company's long-distance relay switches—
software that had just been updated. AT&T wound up losing $60 million in charges that day—
a very expensive bug.

• The Pentium chip’s FDIV math error (1993)

• The Mars Climate Orbiter disintegrates in space (1998)

• NASA's $655-million robotic space probe plowed into Mars's upper atmosphere at the wrong
angle, burning up in the process. The problem? In the software that ran the ground
computers the thrusters' output was calculated in the wrong units (pound–seconds instead
of newton–seconds).

CS 636 Swarnendu Biswas

Other Examples of Real-World Concurrency
Bugs

50 million
people

Therac-25 Accident

• Therac-25 was a computer-controlled radiation therapy machine

• It was involved in at least six accidents between 1985 and 1987, in
which patients were given massive overdoses of radiation. Because of
concurrent programming errors, it sometimes gave its patients
radiation doses that were hundreds of times greater than normal,
resulting in death or serious injury.

CS 636 Swarnendu Biswas

https://en.wikipedia.org/wiki/Therac-25

Challenges in Concurrent
Programming

CS 636 Swarnendu Biswas

Develop Parallel Programs

CS 636 Swarnendu Biswas

From my perspective, parallelism is the biggest challenge since high-level
programming languages. It’s the biggest thing in 50 years because industry is
betting its future that parallel programming will be useful.
…
Industry is building parallel hardware, assuming people can use it. And I think
there’s a chance they’ll fail since the software is not necessarily in place. So this
is a gigantic challenge facing the computer science community.

– David Patterson, ACM Queue, 2006.

Develop Parallel Programs

CS 636 Swarnendu Biswas

To save the IT industry, researchers must demonstrate
greater end-user value of from an increasing number of cores

–
A View of Parallel Computing Landscape, CACM 2009

Programmer’s
tend to think
sequentially

CS 636 Swarnendu Biswas

Challenges in Developing Parallel Programs

• Programmers tend to think sequentially
• Correctness issues – concurrency bugs like data races and deadlocks

• Performance issues – minimize communication across cores

• Other challenges
• Amdahl’s law, overheads of parallel execution, load balancing

CS 636 Swarnendu Biswas

Parallelism vs Concurrency

CS 636 Swarnendu Biswas

Parallelism vs Concurrency

Parallel programming

• Use additional resources to speed up computation

• Performance perspective

Concurrent programming

• Correct and efficient control of access to shared resources

• Correctness perspective

Distinction is not absolute

CS 636 Swarnendu Biswas

Types of Concurrency Bugs

CS 636 Swarnendu Biswas

Order Violation

Thread 1

void init(…) {
…
mThread=

PR_CreateThread(mMain, …);
…

}

Thread 2

void mMain() {
mState=mThread->State;

}

CS 636 Swarnendu Biswas

Mozilla
nsthread.cpp

Order Violation

Thread 1

void init(…) {
…
mThread=

PR_CreateThread(mMain, …);
…

}

Thread 2

void mMain() {
mState=mThread->State;

}

CS 636 Swarnendu Biswas

Order Violation

Thread 1

void init(…) {
…
mThread=

PR_CreateThread(mMain, …);
…

}

Thread 2

void mMain() {
mState=mThread->State;

}

CS 636 Swarnendu Biswas

Potential fix: use
semaphore for signaling

Atomicity Violation

Thread 1

if (thd->proc_info)

fputs(thd->proc_info, …)

Thread 2

thd->proc_info = NULL;

CS 636 Swarnendu Biswas

MySQL
ha_innodb.cc

Atomicity Violation

Thread 1

if (thd->proc_info)

fputs(thd->proc_info, …)

Thread 2

thd->proc_info = NULL;

CS 636 Swarnendu Biswas

MySQL
ha_innodb.cc

Potential fix: use locks
for mutual exclusion

Sequential Consistency Violation

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;

CS 636 Swarnendu Biswas

Sequential Consistency Violation

done = true;

X = new Object();

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;

CS 636 Swarnendu Biswas

Sequential Consistency Violation

done = true;

X = new Object();

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;

Potential fix: prevent
reordering with

mechanisms like fences

CS 636 Swarnendu Biswas

Deadlock

public class Account {
int bal = 0;
synchronized void transfer(int x, Account trg) {
this.bal -= x;
trg.deposit(x);

}
synchronized void deposit(int x) {
this.bal += x;

}
}

CS 636 Swarnendu Biswas

Deadlock

public class Account {
int bal = 0;
synchronized void transfer(int x, Account trg) {
this.bal -= x;
trg.deposit(x);

}
synchronized void deposit(int x) {
this.bal += x;

}
}

CS 636 Swarnendu Biswas

Deadly embrace - EWD

Deadlock

public class Account {
int bal = 0;
synchronized void transfer(int x, Account trg) {
this.bal -= x;
trg.deposit(x);

}
synchronized void deposit(int x) {
this.bal += x;

}
}

CS 636 Swarnendu Biswas

Potential fix: prevent one
of the four conditions

from happening

Starvation and Livelock

• Starvation
• A thread is unable to get regular access to shared resources and so is unable

to make progress

• Livelock
• Threads are not blocked, their states change, but they are unable to make

progress

CS 636 Swarnendu Biswas

Non-Deadlock Concurrency Bugs

CS 636 Swarnendu Biswas

97% of non-deadlock concurrency bugs are due to atomicity
and order violations

Two-thirds of non-deadlock concurrency bugs are due to
atomicity violations

Two-thirds of non-deadlock concurrency bugs are due to
concurrent accesses to one variable

S. Lu et al. Learning from Mistakes -- A Comprehensive Study on Real World Concurrency Bug Characteristics. ASPLOS’08.

Deadlock Bugs

CS 636 Swarnendu Biswas

30% of concurrency bugs are due to deadlocks

97% of deadlocks are due to two threads circularly waiting for
at most two resources

Considerations with Concurrency Bugs

• Bugs can be non-deterministic
• No assumptions can be made on the order of execution between threads

• Makes it super-hard to debug and analyze

CS 636 Swarnendu Biswas

Challenging to Find the Sweet Spot!

CS 636 Swarnendu Biswas

Less synchronization More synchronization

Deadlock
Order, atomicity &

sequential consistency
violations

Poor performance: lock
contention, serialization

Concurrent and
correct

Detecting Data Races

CS 636 Swarnendu Biswas

An Example of a Data Race

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
boolean done= false;

CS 636 Swarnendu Biswas

Data Race

• Conflicting
• Two threads access the same shared variable where at least one access is a

write

• Concurrent
• Accesses are not ordered by synchronization operations

CS 636 Swarnendu Biswas

Conflicting and concurrent accesses

Data Race

• “Two threads simultaneously access the same memory location, with
at least one access being a write”

CS 636 Swarnendu Biswas

Conflicting

Concurrent

Data Races are Evil!

CS 636 Swarnendu Biswas

Data Races are Evil!

• Often indicate the presence of other types of concurrency errors

• Data races ≠ Race conditions
• Race conditions are timing errors on thread interleavings, lock

operations

• Data races are explicitly on “data variables”

CS 636 Swarnendu Biswas

Get Rid of Data Races

CS 636 Swarnendu Biswas

Avoiding and/or eliminating data races efficiently is
a challenging and unsolved problem

Detecting Data Races

• Notoriously difficult to detect
• May be induced only by specific thread interleavings

• Impact on output may not be easily observable unlike deadlocks

• There are potentially many shared memory locations to monitor

CS 636 Swarnendu Biswas

Data Race Detection Techniques

• Happens-before-based algorithms

• Lockset algorithms

• Hybrid analysis

• Other partial order relation-based algorithms (predictive analysis)

• Other techniques

CS 636 Swarnendu Biswas

Some terminologies

CS 636 Swarnendu Biswas

Sound analysis
• Analysis does not miss any occurrence of bugs
• False negatives imply analysis is unsound

Precise analysis
• Analysis does not report false occurrence of bugs
• False positives imply imprecise analysis

These are not standard terms across all domains, architects might refer to these properties as complete and sound

Static Data Race Detection

• Compile-time analysis of the code

• Advantages
• Can reason about all

inputs/interleavings

• No run-time overhead

• Type-based analysis
• Augmented language type system to

encode synchronization relations

• Correctly typed program → no data race

• Restrictive and tedious

CS 636 Swarnendu Biswas

class Account {
int balance guarded by this;

int deposit(int x) requires this {
this.balance = this.balance + x

}
}

Challenges with Static Data Race Detection

• Static analysis does NOT scale well
• E.g.: may/must-happen-in-parallel

• Language features like dynamic class loading and reflection in Java
make static analysis difficult
• Too conservative leading to many false positives

CS 636 Swarnendu Biswas

Dynamic Data Race Detection

• Monitor program operations during execution

• Program may be “instrumented” with additional instructions

• Instrumentation should NOT change program functionality

CS 636 Swarnendu Biswas

Dynamic Data Race Detection

• Monitor program operations during execution

• Program may be “instrumented” with additional instructions

• Instrumentation should NOT change program functionality

CS 636 Swarnendu Biswas

• Post-mortem analysis
• On-the-fly methods

Happens-before Relation

• Smallest transitively-closed relation ≺HB over
operations

• Given two operations a and b, a ≺HB b if one of the
following conditions hold
• Program order

• Operation a is performed by the same thread before operation b

rd x

CS 636 Swarnendu Biswas

wr y

rd x

wr z

Thread 1

Happens-before Relation

• Smallest transitively-closed relation ≺HB over
operations

• Given two operations a and b, a ≺HB b if one of the
following conditions hold
• Program order

• Operation a is performed by the same thread before operation b

• Synchronization order
• a is a lock release and b is an acquire of the same lock

rd x
wr y
rel l

CS 636 Swarnendu Biswas

acq l
rd z
wr p

Thread 1 Thread 2

Happens-before Relation

• Smallest transitively-closed relation ≺HB over
operations

• Given two operations a and b, a ≺HB b if one of the
following conditions hold
• Program order

• Operation a is performed by the same thread before operation b

• Synchronization order
• a is a lock release and b is an acquire of the same lock

• Fork-join order
• a is a fork operation (e.g., fork(t, u)) and b is by thread u

• a is by thread u and b is a join operation (e.g., join(t, u))

rd x
fork u

join u
wr x

CS 636 Swarnendu Biswas

rd z
wr p
wr q
rd x

Thread t Thread u

Happens-before Relation

CS 636 Swarnendu Biswas

If a ≺HB b and b ≺HB c , then a ≺HB c

If a ⊀HB b and b ⊀HB a , then a ∥HB b

Happens-before Relation

• Leslie Lamport
• Winner of the 2013

Turing award for advances in reliability of
distributed/concurrent systems

• Lamport clocks, Happens-before relation,
sequential consistency, Bakery
algorithm, LaTeX, …

CS 636 Swarnendu Biswas

Vector Clock

• Each thread T maintains its own logical clock ‘c’
• Initially c=0 when T starts

• Clock is incremented at synchronization release operations
• For example, release(m), volatile write

• Vector clock is a vector of logical clocks
• For all the threads in the process

CS 636 Swarnendu Biswas

5

A

2

B

Thread A’s
logical time

Thread B’s
logical time

Vector Clock and Happens-before

CS 636 Swarnendu Biswas

𝑉𝐶1 ⊑ 𝑉𝐶2 𝑖𝑓𝑓 ∀𝑡 𝑉𝐶1 𝑡 ≤ 𝑉𝐶2(𝑡)

4

A

2

B

3

C

4

A

2

B

3

C
⊑

4

A

5

B

3

C

4

A

2

B

3

C
⊑

Vector Clocks

CS 636 Swarnendu Biswas

𝑉𝐶1 ⊔ 𝑉𝐶2 = 𝜆𝑡.max(𝑉𝐶1 𝑡 , 𝑉𝐶2 𝑡)Join

⊥ 𝑉 = 𝜆𝑡. 0

𝑖𝑛𝑐𝑡 𝑉 = 𝜆𝑢. 𝑖𝑓 𝑢 = 𝑡 𝑡ℎ𝑒𝑛 𝑉𝐶 𝑢 + 1 𝑒𝑙𝑠𝑒 𝑉(𝑢)

Initialization

Increment

Properties of Vector Clocks

CS 636 Swarnendu Biswas

𝑖𝑓 𝑉𝐶𝑎 ⊏ 𝑉𝐶𝑏, 𝑡ℎ𝑒𝑛 𝑎 ≺ 𝑏

𝑖𝑓 𝑉𝐶𝑎 ⊏ 𝑉𝐶𝑏, 𝑡ℎ𝑒𝑛 ¬(𝑉𝐶𝑏 ⊏ 𝑉𝐶𝑎)

𝑖𝑓 𝑉𝐶𝑎 ⊏ 𝑉𝐶𝑏 ∧ 𝑉𝐶𝑏 ⊏ 𝑉𝐶𝑐 , 𝑡ℎ𝑒𝑛 𝑉𝐶𝑎 ≺ 𝑉𝐶𝑐

Vector Clock-based Race Detection

CS 636 Swarnendu Biswas

Thread A Thread B

5

A

2

B

3

A

4

B

Thread A’s
logical time

Thread B’s
logical timeLast logical time

received from Thread B

Last logical time
received from Thread B

DJIT+ Algorithm

• Each thread has its own clock that is incremented at lock
synchronization operations with release semantics

• Each thread also keeps a vector clock Ct

• For a thread u, Ct(u) gives the clock for the last operation of u that happened
before the current operation of t

• Each lock has a vector clock

• Each shared variable x has two vector clocks Rx and Wx

CS 636 Swarnendu Biswas

E. Pozniansky and A. Schuster. MultiRace: Efficient on-the-fly data race detection in multithreaded C++ programs. CCPE, 2007

Snapshot of Process Memory

CS 636 Swarnendu Biswas

Thread A

Thread B

Thread C

5 2 2

5 6 4

5 2 7

Lock m 4 2 2

Shared
variable x 4 2 2

1 1 1

Rx

Wx

Shared
variable y 5 6 4 Rx

2 1 1 Wx

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

3
A

4
B

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

3
A

4
B

5 2

ti
m

e

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

3
A

4
B

5 2

6
A

2
B

5 2

Thread A’s
vector clock

Thread A’s
vector clock

Variable x’s
write vector

clock

Lock m’s
vector clockti

m
e

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector
clocks

3
A

4
B

5 2

6
A

2
B

5 2

5 4

5
A

4
B

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector
clocks

5
A

4
B

5 2

6
A

2
B

5 2

5 4

5
A

4
B

write x5 4

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector
clocks

5
A

4
B

5 2

6
A

2
B

5 2

5 4

5
A

4
B

write x
5 4

read x ? ?

Variable x’s
read vector

clock ≼ 𝐻𝐵 6 2

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector
clocks

5
A

4
B

5 2

6
A

2
B

5 2

5 4

5
A

4
B

write x5 4

read x ? ?

HB data
race

DJIT+

Analysis of HB Tracking

• HB analysis are
• precise, i.e., no false positives

• dynamically sound, i.e., no false negatives given the observed run

CS 636 Swarnendu Biswas

HB analysis can however MISS data races that did not manifest
in observed run, but may happen in ANOTHER interleaving

Question: Is there a HB data race on variable
y?

CS 636 Swarnendu Biswas

Thread A

y = y + 1

lock m
v = v + 1
unlock m

Thread B

lock m
v = v + 1
unlock m

y = y + 1

Track HB
edges with

vector clocks!

ti
m

e

Lockset Algorithms

• Assumption: all shared-memory
accesses follow a consistent
locking discipline

• Keeps track of the locks
associated with each thread and
program variable

CS 636 Swarnendu Biswas

S. Savage et al. Eraser: A Dynamic Data Race Detector for Multithreaded Programs. TOCS, 1997.

Lockset Algorithms

• Assumption: all shared-memory
accesses follow a consistent
locking discipline

• Keeps track of the locks
associated with each thread and
program variable

CS 636 Swarnendu Biswas

Thread A

lock m
write x
lock n
write y
unlock n
unlock m

read x

LocksetA

L = { }
L = {m}

L = {m, n}

L = {m}

L = { }

Lockset Algorithms

• Two accesses from different threads with non-intersecting locksets
form a data race

CS 636 Swarnendu Biswas

Inferring the Locking Discipline

• How do we know which lock protects
which variable?
• Programmer annotations is cumbersome

• Infer from the program

CS 636 Swarnendu Biswas

acq(l)
acq(m)
x++
rel(m)
rel(l)

acq(m)
acq(n)
x++
rel(n)
rel(m)

x is protected by
m, or n, or both

x is protected by l,
or m, or both

x is protected
by m

Eraser Algorithm

• Eraser monitors every read/write and lock/unlock operation in
an execution

• Eraser assumes that it knows the full set of locks in advance

CS 636 Swarnendu Biswas

Eraser Algorithm

• For each variable v, Eraser maintains the lockset C(v),
candidate locks for the lock discipline
• For each variable v, initialize C(v) to the set of all locks

• For each read/write on variable v by thread t
• Let L(t) be the set of locks held by thread t
• C(v) := C(v) ∩ L(t)
• If C(v) = ∅, report that there is a data race for v

CS 636 Swarnendu Biswas

Lockset
refinement

Question: Is there a data race on variable y?

CS 636 Swarnendu Biswas

Thread A

y = y + 1

lock m
v = v + 1
unlock m

Thread B

lock m
v = v + 1
unlock m

y = y + 1

ti
m

e

Properties of Lockset Algorithms

• Question
• Argue whether lockset algorithms are precise or imprecise?

CS 636 Swarnendu Biswas

DJIT+ vs Eraser

CS 636 Swarnendu Biswas

DJIT+

Eraser

P
re

ci
si

o
n

Run-time overhead

Why is DJIT+ expensive?

CS 636 Swarnendu Biswas

4

A

2

B

3

C

4

A

2

B

3

C
⊑

O(n)

Why is DJIT+ expensive?

CS 636 Swarnendu Biswas

4

A

2

B

3

C

4

A

2

B

3

C
⊑

O(n)

Reads and writes to shared-memory locations (i.e., scalar fields and
array elements) constitute >= 90% of all monitored operations

FastTrack: Efficient HB Tracking

CS 636 Swarnendu Biswas

DJIT+

Eraser

FastTrack

P
re

ci
si

o
n

Run-time overhead

C. Flanagan and S. Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI, 2009.

FastTrack: Efficient HB Tracking

• Insight: HB relation is a partial order

• Remember: Reads are NOT totally-ordered even in data-race-free
programs
• E.g.: Read-shared data

CS 636 Swarnendu Biswas

All writes to a shared variable till the first
race is totally ordered

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

write x

lock m

write x

3
A

4
B

5 2

6
A

2
B

5 2

5 4

5 4

unlock m 5 2

Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

Write-Write and Write-Read Data Races

?

?

?

O(n)

CS 636 Swarnendu Biswas

Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

?

?

O(n)

CS 636 Swarnendu Biswas

Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

O(n)

CS 636 Swarnendu Biswas

Last Writer Epoch

CS 636 Swarnendu Biswas

Thread A

5
A

2
B

write x 5 2

6
A

2
B

unlock m 5 2

write x 6 2

5@A

6@A

Last Writer Epoch

CS 636 Swarnendu Biswas

Thread A

5
A

2
B

write x 5 2

6
A

2
B

unlock m 5 2

write x 6 2

5@A

6@A

𝑐@𝑡 ≼ 𝐻𝐵𝑉 𝑖𝑓𝑓 𝑐 ≤ 𝑉(𝑡)

O(1)

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

3
A

4
B

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

3
A

4
B

5@A

5 2

6
A

2
B

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

lock m

5
A

4
B

5@A

5 2

5 4

5
A

4
B6

A
2
B

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector
clocks

5
A

4
B

5@A

6
A

2
B

5 2

5 4

5
A

4
B

write x5 4

read x

≼ 𝐻𝐵

5@A

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector
clocks

5
A

4
B

5@A

6
A

2
B

5 2

5 4

5
A

4
B

write x4@B

CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector
clocks

5
A

4
B

5@A

6
A

2
B

5 2

5 4

5
A

4
B

write x4@B

read x ? ?

HB data
race

Thread A Thread B Thread C Thread D

read x

read x

x = 2

read x

Read-Write Data Races -- Ordered Reads

?

Most common case: thread-local, lock-protected, ...CS 636 Swarnendu Biswas

Thread A Thread B Thread C

read x read x

x = 2

read x

Read-Write Data Races -- Unordered Reads

?

fork

? ?

x = 0

CS 636 Swarnendu Biswas

CS 636 Swarnendu Biswas

States in FastTrack

𝐶: 𝑇𝑖𝑑 → 𝑉𝐶

𝐿: 𝐿𝑜𝑐𝑘 → 𝑉𝐶

𝑊:𝑉𝑎𝑟 → 𝐸𝑝𝑜𝑐ℎ

𝑅: 𝑉𝑎𝑟 → 𝐸𝑝𝑜𝑐ℎ ∪ 𝑉𝐶

Read Same Epoch

𝑅𝑥 = 𝐸(𝑡)

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑑(𝑡, 𝑥)(𝐶, 𝐿, 𝑅,𝑊)

Read Shared

𝑅𝑥 ∈ 𝑉𝐶, 𝑊𝑥 ≼ 𝐶𝑡
𝑅′ = 𝑅[𝑥 ≔ 𝑅𝑥[𝑡 ≔ 𝐶𝑡(𝑡)]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑑(𝑡, 𝑥)(𝐶, 𝐿, 𝑅′,𝑊)
Read Share

𝑅𝑥 = 𝑐@𝑢, 𝑊𝑥 ≼ 𝐶𝑡
𝑉 =⊥ 𝑉[𝑡 ≔ 𝐶𝑡 𝑡 , 𝑢 ≔ 𝑐]

𝑅′ = 𝑅[𝑥 ≔ 𝑉]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑑(𝑡, 𝑥)(𝐶, 𝐿, 𝑅′,𝑊)

Read Exclusive

𝑅𝑥 ∈ 𝐸𝑝𝑜𝑐ℎ, 𝑅𝑥 ≼ 𝐶𝑡
𝑊𝑥 ≼ 𝐶𝑡 , 𝑅′ = 𝑅[𝑥 ≔ 𝐸(𝑡)]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑑(𝑡, 𝑥)(𝐶, 𝐿, 𝑅′,𝑊)

CS 636 Swarnendu Biswas

Write Same Epoch

𝑊𝑥 = 𝐸(𝑡)

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑤𝑟(𝑡, 𝑥)(𝐶, 𝐿, 𝑅,𝑊)

Write Exclusive

𝑅𝑥 ∈ 𝐸𝑝𝑜𝑐ℎ, 𝑅𝑥 ≼ 𝐶𝑡
𝑊𝑥 ≼ 𝐶𝑡 , 𝑊′ = 𝑊[𝑥 ≔ 𝐸(𝑡)]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑤𝑟(𝑡, 𝑥)(𝐶, 𝐿, 𝑅,𝑊′)

Write Shared

𝑅𝑥 ∈ 𝑉𝐶, 𝑅𝑥 ⊑ 𝐶𝑡
𝑊𝑥 ≼ 𝐶𝑡 , 𝑊′ = 𝑊[𝑥 ≔ 𝐸(𝑡)]

𝑅′ = 𝑅[𝑥 ≔⊥𝑒]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑤𝑟(𝑡, 𝑥)(𝐶, 𝐿, 𝑅′,𝑊′)

CS 636 Swarnendu Biswas

Acquire

𝐶′ = 𝐶 𝑡 ≔ 𝐶𝑡 ⊔ 𝐿𝑚
𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑎𝑐𝑞(𝑡, 𝑚)(𝐶′, 𝐿, 𝑅,𝑊)

Release

𝐿′ = 𝐿 𝑚 ≔ 𝐶𝑡
𝐶′ = 𝐶[𝑡 ≔ 𝑖𝑛𝑐𝑡(𝐶𝑡)]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑒𝑙(𝑡, 𝑚)(𝐶′, 𝐿′, 𝑅,𝑊)

Fork

𝐶′ = 𝐶 𝑢 ≔ 𝐶𝑢 ⊔ 𝐶𝑡 , 𝑡 = 𝑖𝑛𝑐𝑡(𝐶𝑡)

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑓𝑜𝑟𝑘(𝑡, 𝑢)(𝐶′, 𝐿, 𝑅,𝑊)

Join

𝐶′ = 𝐶 𝑡 ≔ 𝐶𝑡 ⊔ 𝐶𝑢 , 𝑢 = 𝑖𝑛𝑐𝑢(𝐶𝑢)

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑗𝑜𝑖𝑛(𝑡, 𝑢)(𝐶′, 𝐿, 𝑅,𝑊)

Data Race Detection Techniques

Lockset
analysis

Imprecise, reports many false positives

Assumes consistent locking discipline

Happens-
before
analysis

Dynamically sound and precise

Not scalable, incurs space overhead

Coverage limited to observed executions

Correctness depends on exact knowledge of synchronization

sound – no missed races
precise – no false races

CS 636 Swarnendu Biswas

Performance of Lockset and HB Algorithms

• FastTrack’s slowdowns are still ~4-8X

• Intel Thread Checker has 200X overhead

• Google’s ThreadSanitizer (now part of LLVM) incurs around ~5-15X
overhead

• Large overheads impact the thread interleaving pattern

CS 636 Swarnendu Biswas

Looking Forward!

CS 636 Swarnendu Biswas

Can we catch data races as it is about to happen?

Can we run data race detectors in production
environments?

Existing Approaches for Data Race Detection
on Production Runs

• Happens-before-based sampling approaches
• E.g., LiteRace1, Pacer2

• Overheads are still too high for a reasonable sampling rate
• Pacer with 3% sampling rate incurs 86% overhead!!!

1. D. Marino et al. LiteRace: Effective Sampling for Lightweight Data-Race Detection. PLDI 2009.
2. M. Bond et al. Pacer: Proportional Detection of Data Races. PLDI 2010.

CS 636 Swarnendu Biswas

Question: Is there a Data Race?

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
volatile boolean done= false;

CS 636 Swarnendu Biswas

Question: Is there a Data Race?

data = …;
synchronized(m) {
flag = true;

}

Thread T1

boolean f;
synchronized(m) {
f = flag;

}
if (f) {
… = data;

}

Thread T2

int data = 0;
boolean flag = false;

ti
m

e

CS 636 Swarnendu Biswas

Question: Is there a Data Race?

x++;
malloc();

Thread T1

malloc();
x++;

Thread T2

ti
m

e

CS 636 Swarnendu Biswas

Question: Is there a Data Race?

x++;
malloc() {
lock();
…
unlock();

}

Thread T1

malloc() {
lock();
…
unlock();

}
x++;

Thread T2

ti
m

e

CS 636 Swarnendu Biswas

Collision Analysis

Basic idea: Make two conflicting accesses happen at the same time

(1) Pause one thread just before accessing a memory location x
(2) Catch other threads that make conflicting accesses to x in the
meantime

Implementation: Either software or hardware (more efficient but has
other limitations)

CS 636 Swarnendu Biswas

• The figure shows one
potential race pair

Instrument Racy
Accesses

avrora.sim.radio.Medium:
access$302() byte offset 0

avrora.sim.radio.Medium:
access$402() byte offset 2

• Block thread for some
time

Try to Collide Racy
Accesses

Dynamic instance
992

Dynamic instance
993

avrora.sim.radio.Medium:
access$302() byte offset 0

avrora.sim.radio.Medium:
access$402() byte offset 2

ti
m

e

Collision is
Successful

Dynamic instance
992

Dynamic instance
993

Dynamic instance
215True data

race detected

avrora.sim.radio.Medium:
access$302() byte offset 0

avrora.sim.radio.Medium:
access$402() byte offset 2

• Thread unblocks,
resets the analysis
state, and continues
execution

Collision is
Unsuccessful

Dynamic instance
992

Dynamic instance
993

Next instruction

avrora.sim.radio.Medium:
access$302() byte offset 0

avrora.sim.radio.Medium:
access$402() byte offset 2

• Use frequency of
samples taken

and
• Compute overhead

introduced by waiting

Randomly Sample
Racy Accesses

Dynamic instance
992

Dynamic instance
993

Sampled

avrora.sim.radio.Medium:
access$302() byte offset 0

avrora.sim.radio.Medium:
access$402() byte offset 2

Advantages of Collision Analysis

• No inference ➔ oblivious to synchronization patterns

• Can potentially detect data races that are hidden by spurious HB
relations

• Race coverage is sensitive to perturbation and delay
• Prior studies indicate that data races often happen close in time

• Low memory overhead compared to maintaining vector clocks

CS 636 Swarnendu Biswas

DataCollider: Hardware Implementation of
Collision Analysis
• Uses hardware debug registers to monitor access locations

• x86 has four usable debug registers (DR0…DR7)
• Two are aliases are two are for control

• Write an address to a debug register, set the control flags

• Generates a trap when some other thread tries to access the address
• Good performance, hardware does all the work

CS 636 Swarnendu Biswas

J. Erickson et al. Effective Data-Race Detection for the Kernel. OSDI 2009.

Challenges with DataCollider

• Delays at several shared-
memory accesses would still
introduce large overheads

• Sampling: Only execute slow
path when certain conditions are
met

• Prioritize cold code regions

• Sample based on allowed tolerable
overhead

CS 636 Swarnendu Biswas

runtime_instrumentation() {
numCounter++;
if (numCounter % 10 == 0) {
do_analysis();

} else {
// Do nothing

}
}

Challenges with DataCollider

• # of threads ≫ 4 (i.e., # debug registers)
• Not very effective analysis

• Cost of setting/clearing debug registers may increase with increase in
core count

CS 636 Swarnendu Biswas

Model Checking for Race Conditions

• Develop a system model

• Explore the model to check for reachable error states
• Detailed model – more compute-intensive

• Simpler model – needs to contain enough information of interest

• Model checking of concurrent programs is a challenge
• Very large state space given all possible thread interleavings

• Sound as long as the analysis terminates

CS 636 Swarnendu Biswas

J. Huang et al. Maximal Sound Predictive Race Detection with Control Flow Abstraction. PLDI 2014.

Current Research on Data Race Detection

CS 636 Swarnendu Biswas

Last five
years

Not a lot of new ideas in trying to improve performance targeted to
production environments

Existing tools usually combine several ideas like static race detection, lockset
analysis and HB analysis

More focus on trying to improve race detection coverage

Many relationships weaker than HB (like CP, WCP, and DC have been proposed)

Still remains one of the most actively-researched topics in PL

java.lang.StringBuffer

public final class StringBuffer {
public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length();
sb.getChars(0, len, value, count);
...

}
public synchronized int length() { ... }
public synchronized void getChars(...) { ... }
...

}

CS 636 Swarnendu Biswas

Is it thread-safe?

Are there Data Races?

class Set {
final Vector elems = new Vector();
void add(Object x) {
if (!elems.contains(x)) {
elems.add(x);

}
}

}

class Vector {
synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}

CS 636 Swarnendu Biswas

Is it thread-safe?

Are there Data Races?

class Set {
final Vector elems = new Vector();
void add(Object x) {
if (!elems.contains(x)) {
elems.add(x);

}
}

}

class Vector {
synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}

CS 636 Swarnendu Biswas

Free of data races

But can still violate atomicity!

Data Race Freedom (DRF)

CS 636 Swarnendu Biswas

Data race freedom is neither necessary nor
sufficient to ensure absence of concurrency bugs

Atomicity is a more fundamental non-interference
property

Detecting Atomicity Violations

CS 636 Swarnendu Biswas

Atomicity Property

Atomicity Synonymous with serializability for programming
language semantics

Program execution must be equivalent to a serial
execution of atomic regions

Atomic region’s execution appears not to be
interleaved with other concurrent threads

CS 636 Swarnendu Biswas

Multithreaded Program Execution

• Maximal non-interference
property

• Enables sequential reasoning

CS 636 Swarnendu Biswas

Why Study Atomicity Violation Detection?

CS 636 Swarnendu Biswas

Violation of atomicity is the most common (almost two-thirds)
type of all non-deadlock concurrency bugs

Atomizer

• Idea: Given operations from a region marked “atomic”, check whether
we can always guarantee that the instructions can be shuffled into an
uninterrupted sequence by local, pairwise swaps

• Warn if the reordering attempts fail with the given set of operations

CS 636 Swarnendu Biswas

C. Flanagan and S. Freund. Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs. POPL, 2004.

Atomizer

CS 636 Swarnendu Biswas

C. Flanagan and S. Freund. Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs. POPL, 2004.

Eraser
Lipton’s Theory

of Reduction

Atomizer

Commuting Actions: Right Mover

0 31
b c

0 32
c b

b is right mover if swapping the operations do not change the
resulting state

b and c are
operations from

concurrent threads

CS 636 Swarnendu Biswas

Commuting Actions: Right Mover

0 31
acq(l) c

0 32
c acq(l)

lock acquire

CS 636 Swarnendu Biswas

Commuting Actions: Left Mover

0 31
b c

0 32
c b

CS 636 Swarnendu Biswas

c is left mover if swapping the operations do not change the
resulting state

Commuting Actions: Left Mover

0 31
b rel(l)

0 32
rel(l) b

lock release

CS 636 Swarnendu Biswas

Commuting Actions: Both Mover

0 31

b mem(m, L, t)

0 32

mem(m, L, t) b

Memory access to m is always protected by lockset L,
and thread t holds at least one lock during the access

race-free
field access

CS 636 Swarnendu Biswas

Commuting Actions: Non-Mover

0 31

b mem(m, L, t)

0 32

mem(m, L, t) b

Memory access to m is always protected by lockset L, but
none of the locks in L is held by thread t during the access

X
racy field

access

CS 636 Swarnendu Biswas

Theory of Reduction [R. Lipton ‘75]

acq(this) X j=bal Y bal=j+n Z rel(this)

S0 S1 S2 S3 S4 S5 S6 S7

CS 636 Swarnendu Biswas

Theory of Reduction [R. Lipton ‘75]

acq(this) X j=bal Y bal=j+n Z rel(this)

S0 S1 S2 S3 S4 S5 S6 S7

acq(this)X j=balY bal=j+n Zrel(this)

S0 S1 S2 S3 S4 S5 S6 S7

CS 636 Swarnendu Biswas

Performing Reduction Dynamically

• Reducible methods

CS 636 Swarnendu Biswas

(R|B)*[N](L|B)*

start atomic
block InRight InLeft Error

L|N R|N

R|B L|B

Atomizer Algorithm

InRight

InLeft Wrong

REL(l,t)

MEM(m,a,t) and
m is unprotected

ACQ(l,t)

Outside
Atomic

REL(l,t)

END

ACQ(l,t)

MEM(m,a,t) and
m is unprotected

CS 636 Swarnendu Biswas

Velodrome: Dynamically Sound and Precise
Atomicity Checking
• Tracks HB relations between transactions (i.e., atomic regions)

• A transaction is a dynamic execution of an atomic block

• Lifts HB relations from operations to transactions

• Builds a transactional dependence graph

• Checks for presence of cycles in the graph
• Depicts violations of conflict serializability

CS 636 Swarnendu Biswas

C. Flanagan and S. Freund. Velodrome: A Sound and Complete Dynamic Atomicity Checker for Multithreaded Programs.
PLDI, 2008.

Transactional Dependence Graph

wr o.f

wr o.g

wr o.f

acq lock

rel lock

ti
m

e

Thread 1 Thread 2 Thread 3

tr
an

sa
ct

io
n

Transactional Dependence Graph

wr o.f

wr o.g

wr o.f

acq lock

rel lock

ti
m

e

Thread 1 Thread 2 Thread 3

tr
an

sa
ct

io
n

Cycle means Atomicity Violation

wr o.f

wr o.g

rd o.f

wr o.f

acq lock

rel lock

ti
m

e

Thread 1 Thread 2 Thread 3

tr
an

sa
ct

io
n

Other Challenges in Velodrome

• Transactional HB graph can become HUGE…
• Notion of unary transactions

• Garbage collect completed transactions if they have no IN edges
• Only the current transaction can create in edges

• Will never be in a cycle

• Optimize allocation of unary nodes
• Avoid allocation if they do not have in edges

• If there is a single in edge, then reuse predecessor node

CS 636 Swarnendu Biswas

Optimize allocation of Unary Nodes

• Avoid allocation if there are no
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated

CS 636 Swarnendu Biswas

test b == 2

atomic {
t1 = x
x = t1 + 100
…
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2

test b == 2

Optimize allocation of Unary Nodes

• Avoid allocation if there are no
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated

CS 636 Swarnendu Biswas

atomic {
t1 = x
x = t1 + 100
…
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2

test b == 2

Optimize allocation of Unary Nodes

• Avoid allocation if there are no
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated

CS 636 Swarnendu Biswas

atomic {
t1 = x
x = t1 + 100
…
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2

Optimize allocation of Unary Nodes

• Avoid allocation if there are no
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated

• If there is a single in edge, then
reuse predecessor node

CS 636 Swarnendu Biswas

atomic {
t1 = x
x = t1 + 100
…
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2

Optimize allocation of Unary Nodes

• Avoid allocation if there are no
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated

• If there is a single in edge, then
reuse predecessor node

CS 636 Swarnendu Biswas

atomic {
t1 = x
x = t1 + 100
…
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2

Optimize allocation of Unary Nodes

• Avoid allocation if there are no
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated

• If there is a single in edge, then
reuse predecessor node

CS 636 Swarnendu Biswas

atomic {
t1 = x
x = t1 + 100
…
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2

Performance Challenges with Velodrome

• Precise tracking is expensive
• “last transaction(s) to read/write” every field or array element

• Need atomic updates in the instrumentation

• ~6X overhead reported by implementations

CS 636 Swarnendu Biswas

Instrumentation Approach

Program access

Program access

Uninstrumented program Instrumented programCS 636 Swarnendu Biswas

Precise Tracking is Expensive!

Program access

Update metadata

Program access

Analysis-specific work

Uninstrumented program Instrumented program

Precise tracking
of dependences

Can lead to remote
cache misses for mostly

read-only variables

CS 636 Swarnendu Biswas

Synchronized Updates are Expensive!

Lock metadata access

Program access

Unlock metadata
access

Program access

Uninstrumented program Instrumented program

at
o

m
ic

at
o

m
ic

CS 636 Swarnendu Biswas

Synchronized Updates are Expensive!

Lock metadata access

Program access

Unlock metadata
access

Program access

Uninstrumented program Instrumented program

at
o

m
ic

synchronization
on every access

slows
programs

at
o

m
ic

CS 636 Swarnendu Biswas

Related Work on Atomicity Checking

● Dynamic analysis
● Conflict-serializability-based approaches

● Flanagan et al., PLDI 2008; Farzan and Madhusudan, CAV 2008; AeroDrome, ASPLOS 2020

● Inferring atomicity
● Lu et al., ASPLOS 2006; Xu et al., PLDI 2005; Hammer et al., ICSE 2008

● Predictive approaches
● Sinha et al., MEMOCODE 2011; Sorrentino et al., FSE 2010

● Other approaches
● Wang and Stoller, PPoPP 2006; Wang and Stoller, TSE 2006

References

• Mike Bond. CS 6341: Concurrency and Parallelism. Ohio State University.

• Arjun Radhakrishna. CIS 673: Computer Aided Verification. University of Pennsylvania.

• Shan Lu et al. Learning from Mistakes -- A Comprehensive Study on Real World Concurrency Bug
Characteristics. ASPLOS 2008.

• S. Savage et al. Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM Transactions on
Computer Systems, 1997.

• J Erickson et al. Dynamic Analyses for Data Race Detection. RV 2012.

• C. Flanagan and S. Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI 2009.

• C Flanagan and S. Freund. Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs. POPL 2004.

CS 636 Swarnendu Biswas

