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Production Software Contains Bugs!

• AT&T hangs up its long-distance service (1990) 

• For nine hours in January 1990 no AT&T customer could make a long-distance call. The 
problem was the software that controlled the company's long-distance relay switches—
software that had just been updated. AT&T wound up losing $60 million in charges that day—
a very expensive bug.

• The Pentium chip’s FDIV math error (1993)

• The Mars Climate Orbiter disintegrates in space (1998)

• NASA's $655-million robotic space probe plowed into Mars's upper atmosphere at the wrong 
angle, burning up in the process. The problem? In the software that ran the ground 
computers the thrusters' output was calculated in the wrong units (pound–seconds instead 
of newton–seconds). 
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Other Examples of Real-World Concurrency 
Bugs

50 million 
people 







Therac-25 Accident

• Therac-25 was a computer-controlled radiation therapy machine

• It was involved in at least six accidents between 1985 and 1987, in 
which patients were given massive overdoses of radiation. Because of 
concurrent programming errors, it sometimes gave its patients 
radiation doses that were hundreds of times greater than normal, 
resulting in death or serious injury.
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https://en.wikipedia.org/wiki/Therac-25



Challenges in Concurrent 
Programming
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Develop Parallel Programs
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From my perspective, parallelism is the biggest challenge since high-level 
programming languages. It’s the biggest thing in 50 years because industry is 
betting its future that parallel programming will be useful.
… 
Industry is building parallel hardware, assuming people can use it. And I think 
there’s a chance they’ll fail since the software is not necessarily in place. So this 
is a gigantic challenge facing the computer science community.

– David Patterson, ACM Queue, 2006.



Develop Parallel Programs
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To save the IT industry, researchers must demonstrate 
greater end-user value of from an increasing number of cores 

–
A View of Parallel Computing Landscape, CACM 2009



Programmer’s 
tend to think 
sequentially
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Challenges in Developing Parallel Programs

• Programmers tend to think sequentially
• Correctness issues – concurrency bugs like data races and deadlocks

• Performance issues – minimize communication across cores

• Other challenges
• Amdahl’s law, overheads of parallel execution, load balancing

CS 636 Swarnendu Biswas



Parallelism vs Concurrency
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Parallelism vs Concurrency

Parallel programming

• Use additional resources to speed up computation

• Performance perspective

Concurrent programming

• Correct and efficient control of access to shared resources

• Correctness perspective

Distinction is not absolute
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Types of Concurrency Bugs
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Order Violation

Thread 1

void init(…) {
…
mThread=

PR_CreateThread(mMain, …); 
…

}

Thread 2

void mMain() {
mState=mThread->State;

}
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Mozilla
nsthread.cpp



Order Violation

Thread 1

void init(…) {
…
mThread=

PR_CreateThread(mMain, …); 
…

}

Thread 2

void mMain() {
mState=mThread->State;

}
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Order Violation

Thread 1

void init(…) {
…
mThread=

PR_CreateThread(mMain, …); 
…

}

Thread 2

void mMain() {
mState=mThread->State;

}
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Potential fix: use 
semaphore for signaling



Atomicity Violation 

Thread 1

if (thd->proc_info)

fputs(thd->proc_info, …)

Thread 2

thd->proc_info = NULL;
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MySQL
ha_innodb.cc



Atomicity Violation 

Thread 1

if (thd->proc_info)

fputs(thd->proc_info, …)

Thread 2

thd->proc_info = NULL;
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MySQL
ha_innodb.cc

Potential fix: use locks 
for mutual exclusion



Sequential Consistency Violation

X = new Object();
done = true;

Thread T1

while (!done) {} 
X.compute();

Thread T2

Object X = null;
boolean done= false;
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Sequential Consistency Violation

done = true;

X = new Object();

Thread T1

while (!done) {} 
X.compute();

Thread T2

Object X = null;
boolean done= false;
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Sequential Consistency Violation

done = true;

X = new Object();

Thread T1

while (!done) {} 
X.compute();

Thread T2

Object X = null;
boolean done= false;

Potential fix: prevent 
reordering with 

mechanisms like fences
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Deadlock

public class Account {
int bal = 0;
synchronized void transfer(int x, Account trg) {
this.bal -= x;
trg.deposit(x);

}
synchronized void deposit(int x) {
this.bal += x;

}
}
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Deadlock

public class Account {
int bal = 0;
synchronized void transfer(int x, Account trg) {
this.bal -= x;
trg.deposit(x);

}
synchronized void deposit(int x) {
this.bal += x;

}
}
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Deadly embrace - EWD



Deadlock

public class Account {
int bal = 0;
synchronized void transfer(int x, Account trg) {
this.bal -= x;
trg.deposit(x);

}
synchronized void deposit(int x) {
this.bal += x;

}
}
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Potential fix: prevent one 
of the four conditions 

from happening



Starvation and Livelock

• Starvation
• A thread is unable to get regular access to shared resources and so is unable 

to make progress

• Livelock
• Threads are not blocked, their states change, but they are unable to make 

progress
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Non-Deadlock Concurrency Bugs
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97% of non-deadlock concurrency bugs are due to atomicity 
and order violations

Two-thirds of non-deadlock concurrency bugs are due to 
atomicity violations

Two-thirds of non-deadlock concurrency bugs are due to 
concurrent accesses to one variable

S. Lu et al. Learning from Mistakes -- A Comprehensive Study on Real World Concurrency Bug Characteristics. ASPLOS’08.



Deadlock Bugs
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30% of concurrency bugs are due to deadlocks

97% of deadlocks are due to two threads circularly waiting for 
at most two resources



Considerations with Concurrency Bugs

• Bugs can be non-deterministic
• No assumptions can be made on the order of execution between threads

• Makes it super-hard to debug and analyze
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Challenging to Find the Sweet Spot!
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Less synchronization More synchronization

Deadlock
Order, atomicity & 

sequential consistency 
violations

Poor performance: lock 
contention, serialization

Concurrent and 
correct



Detecting Data Races
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An Example of a Data Race

X = new Object();
done = true;

Thread T1

while (!done) {} 
X.compute();

Thread T2

Object X = null;
boolean done= false;
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Data Race

• Conflicting
• Two threads access the same shared variable where at least one access is a 

write

• Concurrent
• Accesses are not ordered by synchronization operations
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Conflicting and concurrent accesses



Data Race

• “Two threads simultaneously access the same memory location, with 
at least one access being a write”
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Conflicting

Concurrent



Data Races are Evil!
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Data Races are Evil!

• Often indicate the presence of other types of concurrency errors

• Data races ≠ Race conditions
• Race conditions are timing errors on thread interleavings, lock 

operations

• Data races are explicitly on “data variables”
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Get Rid of Data Races 
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Avoiding and/or eliminating data races efficiently is 
a challenging and unsolved problem



Detecting Data Races

• Notoriously difficult to detect
• May be induced only by specific thread interleavings

• Impact on output may not be easily observable unlike deadlocks

• There are potentially many shared memory locations to monitor
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Data Race Detection Techniques

• Happens-before-based algorithms

• Lockset algorithms

• Hybrid analysis

• Other partial order relation-based algorithms (predictive analysis)

• Other techniques
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Some terminologies

CS 636 Swarnendu Biswas

Sound analysis
• Analysis does not miss any occurrence of bugs
• False negatives imply analysis is unsound

Precise analysis
• Analysis does not report false occurrence of bugs
• False positives imply imprecise analysis

These are not standard terms across all domains, architects might refer to these properties as complete and sound



Static Data Race Detection

• Compile-time analysis of the code

• Advantages
• Can reason about all 

inputs/interleavings

• No run-time overhead

• Type-based analysis
• Augmented language type system to 

encode synchronization relations

• Correctly typed program → no data race

• Restrictive and tedious
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class Account { 
int balance guarded by this;

int deposit(int x) requires this { 
this.balance = this.balance + x

}
}



Challenges with Static Data Race Detection

• Static analysis does NOT scale well
• E.g.: may/must-happen-in-parallel

• Language features like dynamic class loading and reflection in Java 
make static analysis difficult
• Too conservative leading to many false positives
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Dynamic Data Race Detection

• Monitor program operations during execution

• Program may be “instrumented” with additional instructions 

• Instrumentation should NOT change program functionality
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Dynamic Data Race Detection

• Monitor program operations during execution

• Program may be “instrumented” with additional instructions 

• Instrumentation should NOT change program functionality
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• Post-mortem analysis
• On-the-fly methods



Happens-before Relation

• Smallest transitively-closed relation ≺HB over 
operations

• Given two operations a and b, a ≺HB b if one of the 
following conditions hold
• Program order

• Operation a is performed by the same thread before operation b 

rd x 
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wr y 

rd x 

wr z 

Thread 1



Happens-before Relation

• Smallest transitively-closed relation ≺HB over 
operations

• Given two operations a and b, a ≺HB b if one of the 
following conditions hold
• Program order

• Operation a is performed by the same thread before operation b 

• Synchronization order
• a is a lock release and b is an acquire of the same lock

rd x 
wr y
rel l

CS 636 Swarnendu Biswas

acq l
rd z 
wr p

Thread 1 Thread 2



Happens-before Relation

• Smallest transitively-closed relation ≺HB over 
operations

• Given two operations a and b, a ≺HB b if one of the 
following conditions hold
• Program order

• Operation a is performed by the same thread before operation b 

• Synchronization order
• a is a lock release and b is an acquire of the same lock

• Fork-join order
• a is a fork operation (e.g., fork(t, u)) and b is by thread u

• a is by thread u and b is a join operation (e.g., join(t, u))

rd x 
fork u

join u
wr x
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rd z 
wr p
wr q
rd x

Thread t Thread u



Happens-before Relation
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If a ≺HB b  and b ≺HB c , then a ≺HB c

If a ⊀HB b  and b ⊀HB a , then a ∥HB b



Happens-before Relation

• Leslie Lamport
• Winner of the 2013 

Turing award for advances in reliability of 
distributed/concurrent systems

• Lamport clocks, Happens-before relation, 
sequential consistency,   Bakery 
algorithm, LaTeX, …
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Vector Clock

• Each thread T maintains its own logical clock ‘c’
• Initially c=0 when T starts

• Clock is incremented at synchronization release operations 
• For example, release(m), volatile write

• Vector clock is a vector of logical clocks
• For all the threads in the process
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5

A
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B

Thread A’s 
logical time

Thread B’s 
logical time



Vector Clock and Happens-before
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𝑉𝐶1 ⊑ 𝑉𝐶2 𝑖𝑓𝑓 ∀𝑡 𝑉𝐶1 𝑡 ≤ 𝑉𝐶2(𝑡)
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Vector Clocks
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𝑉𝐶1 ⊔ 𝑉𝐶2 = 𝜆𝑡.max(𝑉𝐶1 𝑡 , 𝑉𝐶2 𝑡 )Join

⊥ 𝑉 = 𝜆𝑡. 0

𝑖𝑛𝑐𝑡 𝑉 = 𝜆𝑢. 𝑖𝑓 𝑢 = 𝑡 𝑡ℎ𝑒𝑛 𝑉𝐶 𝑢 + 1 𝑒𝑙𝑠𝑒 𝑉(𝑢)

Initialization

Increment



Properties of Vector Clocks
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𝑖𝑓 𝑉𝐶𝑎 ⊏ 𝑉𝐶𝑏, 𝑡ℎ𝑒𝑛 𝑎 ≺ 𝑏

𝑖𝑓 𝑉𝐶𝑎 ⊏ 𝑉𝐶𝑏, 𝑡ℎ𝑒𝑛 ¬(𝑉𝐶𝑏 ⊏ 𝑉𝐶𝑎)

𝑖𝑓 𝑉𝐶𝑎 ⊏ 𝑉𝐶𝑏 ∧ 𝑉𝐶𝑏 ⊏ 𝑉𝐶𝑐 , 𝑡ℎ𝑒𝑛 𝑉𝐶𝑎 ≺ 𝑉𝐶𝑐



Vector Clock-based Race Detection
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Thread A Thread B

5

A

2

B

3

A

4

B

Thread A’s 
logical time

Thread B’s 
logical timeLast logical time 

received from Thread B

Last logical time 
received from Thread B



DJIT+ Algorithm

• Each thread has its own clock that is incremented at lock 
synchronization operations with release semantics

• Each thread also keeps a vector clock Ct

• For a thread u, Ct(u) gives the clock for the last operation of u that happened 
before the current operation of t

• Each lock has a vector clock

• Each shared variable x has two vector clocks Rx and Wx
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E. Pozniansky and A. Schuster. MultiRace: Efficient on-the-fly data race detection in multithreaded C++ programs. CCPE, 2007



Snapshot of Process Memory
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Thread A

Thread B

Thread C

5 2 2

5 6 4

5 2 7

Lock m 4 2 2

Shared 
variable x 4 2 2

1 1 1

Rx

Wx

Shared 
variable y 5 6 4 Rx

2 1 1 Wx
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Thread A Thread B

5
A

2
B

3
A

4
B



CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

write x

3
A

4
B

5 2

ti
m

e
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Thread A Thread B

5
A

2
B

write x

unlock m

3
A

4
B

5 2

6
A

2
B

5 2

Thread A’s 
vector clock

Thread A’s 
vector clock

Variable x’s 
write vector 

clock

Lock m’s 
vector clockti

m
e
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Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector 
clocks

3
A

4
B

5 2

6
A

2
B

5 2

5 4

5
A

4
B
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Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector 
clocks

5
A

4
B

5 2

6
A

2
B

5 2

5 4

5
A

4
B

write x5 4
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Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector 
clocks

5
A

4
B

5 2

6
A

2
B

5 2

5 4

5
A

4
B

write x
5 4

read x ? ?

Variable x’s 
read vector 

clock ≼ 𝐻𝐵 6 2
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Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector 
clocks

5
A

4
B

5 2

6
A

2
B

5 2

5 4

5
A

4
B

write x5 4

read x ? ?

HB data 
race

DJIT+



Analysis of HB Tracking

• HB analysis are 
• precise, i.e., no false positives

• dynamically sound, i.e., no false negatives given the observed run
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HB analysis can however MISS data races that did not manifest 
in observed run, but may happen in ANOTHER interleaving



Question: Is there a HB data race on variable 
y?
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Thread A

y = y + 1

lock m
v = v + 1
unlock m

Thread B

lock m
v = v + 1
unlock m

y = y + 1

Track HB 
edges with 

vector clocks!

ti
m

e



Lockset Algorithms

• Assumption: all shared-memory 
accesses follow a consistent 
locking discipline

• Keeps track of the locks 
associated with each thread and 
program variable
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S. Savage et al. Eraser: A Dynamic Data Race Detector for Multithreaded Programs. TOCS, 1997.



Lockset Algorithms

• Assumption: all shared-memory 
accesses follow a consistent 
locking discipline

• Keeps track of the locks 
associated with each thread and 
program variable
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Thread A

lock m
write  x
lock n
write y
unlock n
unlock m

read x

LocksetA

L = { } 
L = {m}

L = {m, n}

L = {m}

L = { }



Lockset Algorithms

• Two accesses from different threads with non-intersecting locksets
form a data race
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Inferring the Locking Discipline

• How do we know which lock protects 
which variable?
• Programmer annotations is cumbersome

• Infer from the program
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acq(l)
acq(m)
x++
rel(m)
rel(l)

acq(m)
acq(n)
x++
rel(n)
rel(m)

x is protected by 
m, or n, or both

x is protected by l, 
or m, or both

x is protected 
by m



Eraser Algorithm

• Eraser monitors every read/write and lock/unlock operation in 
an execution

• Eraser assumes that it knows the full set of locks in advance
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Eraser Algorithm

• For each variable v, Eraser maintains the lockset C(v), 
candidate locks for the lock discipline
• For each variable v, initialize C(v) to the set of all locks

• For each read/write on variable v by thread t
• Let L(t) be the set of locks held by thread t
• C(v) := C(v) ∩ L(t) 
• If C(v) = ∅, report that there is a data race for v
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Lockset 
refinement



Question: Is there a data race on variable y?
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Thread A

y = y + 1

lock m
v = v + 1
unlock m

Thread B

lock m
v = v + 1
unlock m

y = y + 1

ti
m

e



Properties of Lockset Algorithms

• Question
• Argue whether lockset algorithms are precise or imprecise?
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DJIT+ vs Eraser
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DJIT+

Eraser

P
re

ci
si

o
n

Run-time overhead



Why is DJIT+ expensive?
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Why is DJIT+ expensive?
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4

A

2

B

3

C

4

A

2

B

3

C
⊑

O(n)

Reads and writes to shared-memory locations (i.e., scalar fields and 
array elements) constitute >= 90% of all monitored operations



FastTrack: Efficient HB Tracking
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DJIT+

Eraser

FastTrack

P
re

ci
si

o
n

Run-time overhead

C. Flanagan and S. Freund. FastTrack: Efficient and Precise Dynamic Data Race Detection. PLDI, 2009.



FastTrack: Efficient HB Tracking

• Insight: HB relation is a partial order

• Remember: Reads are NOT totally-ordered even in data-race-free 
programs
• E.g.: Read-shared data

CS 636 Swarnendu Biswas

All writes to a shared variable till the first 
race is totally ordered
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Thread A Thread B

5
A

2
B

write x

write x

lock m

write x

3
A

4
B

5 2

6
A

2
B

5 2

5 4

5 4

unlock m 5 2



Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

Write-Write and Write-Read Data Races

?

?

?

O(n)
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Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

?

?

O(n)
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Thread A Thread B Thread C Thread D

x = 0

x = 1

x = 4

x = 3

No Data Races Yet: Writes Totally Ordered

?

O(n)
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Last Writer Epoch
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Thread A

5
A

2
B

write x 5 2

6
A

2
B

unlock m 5 2

write x 6 2

5@A

6@A



Last Writer Epoch
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Thread A

5
A

2
B

write x 5 2

6
A

2
B

unlock m 5 2

write x 6 2

5@A

6@A

𝑐@𝑡 ≼ 𝐻𝐵𝑉 𝑖𝑓𝑓 𝑐 ≤ 𝑉(𝑡)

O(1)



CS 636 Swarnendu Biswas

Thread A Thread B

5
A

2
B

3
A

4
B
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Thread A Thread B

5
A

2
B

write x

unlock m

3
A

4
B

5@A

5 2

6
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Thread A Thread B

5
A

2
B

write x

unlock m

lock m

5
A
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B

5@A
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Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector 
clocks

5
A

4
B

5@A

6
A

2
B

5 2

5 4

5
A

4
B

write x5 4

read x

≼ 𝐻𝐵

5@A
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Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector 
clocks

5
A

4
B

5@A

6
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write x4@B
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Thread A Thread B

5
A

2
B

write x

unlock m

lock m

Join vector 
clocks

5
A

4
B

5@A

6
A

2
B

5 2

5 4

5
A

4
B

write x4@B

read x ? ?

HB data 
race



Thread A Thread B Thread C Thread D

read x

read x

x = 2

read x

Read-Write Data Races -- Ordered Reads

?

Most common case: thread-local, lock-protected, ...CS 636 Swarnendu Biswas



Thread A Thread B Thread C

read x read x

x = 2

read x

Read-Write Data Races -- Unordered Reads

?

fork

? ?

x = 0

CS 636 Swarnendu Biswas



CS 636 Swarnendu Biswas

States in FastTrack

𝐶: 𝑇𝑖𝑑 → 𝑉𝐶

𝐿: 𝐿𝑜𝑐𝑘 → 𝑉𝐶

𝑊:𝑉𝑎𝑟 → 𝐸𝑝𝑜𝑐ℎ

𝑅: 𝑉𝑎𝑟 → 𝐸𝑝𝑜𝑐ℎ ∪ 𝑉𝐶

Read Same Epoch

𝑅𝑥 = 𝐸(𝑡)

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑑(𝑡, 𝑥)(𝐶, 𝐿, 𝑅,𝑊)

Read Shared

𝑅𝑥 ∈ 𝑉𝐶, 𝑊𝑥 ≼ 𝐶𝑡
𝑅′ = 𝑅[𝑥 ≔ 𝑅𝑥[𝑡 ≔ 𝐶𝑡(𝑡)]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑑(𝑡, 𝑥)(𝐶, 𝐿, 𝑅′,𝑊)
Read Share

𝑅𝑥 = 𝑐@𝑢, 𝑊𝑥 ≼ 𝐶𝑡
𝑉 =⊥ 𝑉[𝑡 ≔ 𝐶𝑡 𝑡 , 𝑢 ≔ 𝑐]

𝑅′ = 𝑅[𝑥 ≔ 𝑉]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑑(𝑡, 𝑥)(𝐶, 𝐿, 𝑅′,𝑊)

Read Exclusive

𝑅𝑥 ∈ 𝐸𝑝𝑜𝑐ℎ, 𝑅𝑥 ≼ 𝐶𝑡
𝑊𝑥 ≼ 𝐶𝑡 , 𝑅′ = 𝑅[𝑥 ≔ 𝐸(𝑡)]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑑(𝑡, 𝑥)(𝐶, 𝐿, 𝑅′,𝑊)
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Write Same Epoch

𝑊𝑥 = 𝐸(𝑡)

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑤𝑟(𝑡, 𝑥)(𝐶, 𝐿, 𝑅,𝑊)

Write Exclusive

𝑅𝑥 ∈ 𝐸𝑝𝑜𝑐ℎ, 𝑅𝑥 ≼ 𝐶𝑡
𝑊𝑥 ≼ 𝐶𝑡 , 𝑊′ = 𝑊[𝑥 ≔ 𝐸(𝑡)]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑤𝑟(𝑡, 𝑥)(𝐶, 𝐿, 𝑅,𝑊′)

Write Shared

𝑅𝑥 ∈ 𝑉𝐶, 𝑅𝑥 ⊑ 𝐶𝑡
𝑊𝑥 ≼ 𝐶𝑡 , 𝑊′ = 𝑊[𝑥 ≔ 𝐸(𝑡)]

𝑅′ = 𝑅[𝑥 ≔⊥𝑒]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑤𝑟(𝑡, 𝑥)(𝐶, 𝐿, 𝑅′,𝑊′)
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Acquire

𝐶′ = 𝐶 𝑡 ≔ 𝐶𝑡 ⊔ 𝐿𝑚
𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑎𝑐𝑞(𝑡, 𝑚)(𝐶′, 𝐿, 𝑅,𝑊)

Release

𝐿′ = 𝐿 𝑚 ≔ 𝐶𝑡
𝐶′ = 𝐶[𝑡 ≔ 𝑖𝑛𝑐𝑡(𝐶𝑡)]

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑟𝑒𝑙(𝑡, 𝑚)(𝐶′, 𝐿′, 𝑅,𝑊)

Fork

𝐶′ = 𝐶 𝑢 ≔ 𝐶𝑢 ⊔ 𝐶𝑡 , 𝑡 = 𝑖𝑛𝑐𝑡(𝐶𝑡)

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑓𝑜𝑟𝑘(𝑡, 𝑢)(𝐶′, 𝐿, 𝑅,𝑊)

Join

𝐶′ = 𝐶 𝑡 ≔ 𝐶𝑡 ⊔ 𝐶𝑢 , 𝑢 = 𝑖𝑛𝑐𝑢(𝐶𝑢)

𝐶, 𝐿, 𝑅,𝑊 ⇒ 𝑗𝑜𝑖𝑛(𝑡, 𝑢)(𝐶′, 𝐿, 𝑅,𝑊)



Data Race Detection Techniques

Lockset 
analysis

Imprecise, reports many false positives

Assumes consistent locking discipline

Happens-
before 
analysis

Dynamically sound and precise

Not scalable, incurs space overhead

Coverage limited to observed executions

Correctness depends on exact knowledge of synchronization

sound – no missed races
precise – no false races
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Performance of Lockset and HB Algorithms

• FastTrack’s slowdowns are still ~4-8X

• Intel Thread Checker has 200X overhead

• Google’s ThreadSanitizer (now part of LLVM) incurs around ~5-15X 
overhead

• Large overheads impact the thread interleaving pattern
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Looking Forward!

CS 636 Swarnendu Biswas

Can we catch data races as it is about to happen? 

Can we run data race detectors in production 
environments?



Existing Approaches for Data Race Detection 
on Production Runs

• Happens-before-based sampling approaches
• E.g., LiteRace1, Pacer2

• Overheads are still too high for a reasonable sampling rate
• Pacer with 3% sampling rate incurs 86% overhead!!!

1. D. Marino et al. LiteRace: Effective Sampling for Lightweight Data-Race Detection. PLDI 2009.
2. M. Bond et al. Pacer: Proportional Detection of Data Races. PLDI 2010.
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Question: Is there a Data Race?

X = new Object();
done = true;

Thread T1

while (!done) {}
X.compute();

Thread T2

Object X = null;
volatile boolean done= false;
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Question: Is there a Data Race?

data = …;
synchronized(m) {
flag = true;

}

Thread T1

boolean f;
synchronized(m) {
f = flag;

}
if (f) {
… = data;

}

Thread T2

int data = 0;
boolean flag = false;

ti
m

e
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Question: Is there a Data Race?

x++; 
malloc();

Thread T1

malloc();
x++;

Thread T2

ti
m

e
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Question: Is there a Data Race?

x++; 
malloc() {
lock();
… 
unlock();

}

Thread T1

malloc() {
lock();
…
unlock();

}
x++;

Thread T2

ti
m

e
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Collision Analysis

Basic idea: Make two conflicting accesses happen at the same time

(1) Pause one thread just before accessing a memory location x
(2) Catch other threads that make conflicting accesses to x in the 
meantime

Implementation: Either software or hardware (more efficient but has 
other limitations)
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• The figure shows one 
potential race pair

Instrument Racy 
Accesses

avrora.sim.radio.Medium:
access$302() byte offset 0 

avrora.sim.radio.Medium:
access$402() byte offset 2 



• Block thread for some 
time

Try to Collide Racy 
Accesses

Dynamic instance 
992

Dynamic instance 
993

avrora.sim.radio.Medium:
access$302() byte offset 0 

avrora.sim.radio.Medium:
access$402() byte offset 2 

ti
m

e



Collision is 
Successful

Dynamic instance 
992

Dynamic instance 
993

Dynamic instance 
215True data 

race detected

avrora.sim.radio.Medium:
access$302() byte offset 0 

avrora.sim.radio.Medium:
access$402() byte offset 2 



• Thread unblocks, 
resets the analysis 
state, and continues 
execution

Collision  is 
Unsuccessful

Dynamic instance 
992

Dynamic instance 
993

Next instruction

avrora.sim.radio.Medium:
access$302() byte offset 0 

avrora.sim.radio.Medium:
access$402() byte offset 2 



• Use frequency of 
samples taken

and
• Compute overhead 

introduced by waiting

Randomly Sample 
Racy Accesses

Dynamic instance 
992

Dynamic instance 
993

Sampled

avrora.sim.radio.Medium:
access$302() byte offset 0 

avrora.sim.radio.Medium:
access$402() byte offset 2 



Advantages of Collision Analysis

• No inference ➔ oblivious to synchronization patterns

• Can potentially detect data races that are hidden by spurious HB 
relations

• Race coverage is sensitive to perturbation and delay
• Prior studies indicate that data races often happen close in time

• Low memory overhead compared to maintaining vector clocks

CS 636 Swarnendu Biswas



DataCollider: Hardware Implementation of 
Collision Analysis
• Uses hardware debug registers to monitor access locations

• x86 has four usable debug registers (DR0…DR7)
• Two are aliases are two are for control 

• Write an address to a debug register, set the control flags

• Generates a trap when some other thread tries to access the address
• Good performance, hardware does all the work
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J. Erickson et al. Effective Data-Race Detection for the Kernel. OSDI 2009.



Challenges with DataCollider

• Delays at several shared-
memory accesses would still 
introduce large overheads

• Sampling: Only execute slow 
path when certain conditions are 
met

• Prioritize cold code regions 

• Sample based on allowed tolerable 
overhead
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runtime_instrumentation() {
numCounter++;
if (numCounter % 10 == 0) {
do_analysis();

} else {
// Do nothing

}
}



Challenges with DataCollider

• # of threads ≫ 4 (i.e., # debug registers)
• Not very effective analysis

• Cost of setting/clearing debug registers may increase with increase in 
core count
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Model Checking for Race Conditions

• Develop a system model

• Explore the model to check for reachable error states
• Detailed model – more compute-intensive

• Simpler model – needs to contain enough information of interest

• Model checking of concurrent programs is a challenge
• Very large state space given all possible thread interleavings

• Sound as long as the analysis terminates
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J. Huang et al. Maximal Sound Predictive Race Detection with Control Flow Abstraction. PLDI 2014.



Current Research on Data Race Detection

CS 636 Swarnendu Biswas

Last five 
years

Not a lot of new ideas in trying to improve performance targeted to 
production environments

Existing tools usually combine several ideas like static race detection, lockset 
analysis and HB analysis

More focus on trying to improve race detection coverage

Many relationships weaker than HB (like CP, WCP, and DC have been proposed)

Still remains one of the most actively-researched topics in PL 



java.lang.StringBuffer

public final class StringBuffer {
public synchronized StringBuffer append(StringBuffer sb) {
int len = sb.length();
sb.getChars(0, len, value, count);
...

}
public synchronized int length() { ... }
public synchronized void getChars(...) { ... }
...

}
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Is it thread-safe?



Are there Data Races?

class Set {
final Vector elems = new Vector();
void add(Object x) {
if (!elems.contains(x)) {
elems.add(x);

}
}

}

class Vector {
synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}
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Is it thread-safe?



Are there Data Races?

class Set {
final Vector elems = new Vector();
void add(Object x) {
if (!elems.contains(x)) {
elems.add(x);

}
}

}

class Vector {
synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}
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Free of data races

But can still violate atomicity!



Data Race Freedom (DRF)
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Data race freedom is neither necessary nor 
sufficient to ensure absence of concurrency bugs

Atomicity is a more fundamental non-interference 
property  



Detecting Atomicity Violations
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Atomicity Property

Atomicity Synonymous with serializability for programming 
language semantics

Program execution must be equivalent to a serial 
execution of atomic regions

Atomic region’s execution appears not to be 
interleaved with other concurrent threads
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Multithreaded Program Execution

• Maximal non-interference 
property

• Enables sequential reasoning
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Why Study Atomicity Violation Detection?
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Violation of atomicity is the most common (almost two-thirds) 
type of all non-deadlock concurrency bugs



Atomizer

• Idea: Given operations from a region marked “atomic”, check whether 
we can always guarantee that the instructions can be shuffled into an 
uninterrupted sequence by local, pairwise swaps

• Warn if the reordering attempts fail with the given set of operations 
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C. Flanagan and S. Freund. Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs. POPL, 2004.



Atomizer
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C. Flanagan and S. Freund. Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs. POPL, 2004.

Eraser
Lipton’s Theory 

of Reduction

Atomizer



Commuting Actions: Right Mover

0 31
b c

0 32
c b

b is right mover if swapping the operations do not change the 
resulting state

b and c are 
operations from 

concurrent threads
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Commuting Actions: Right Mover

0 31
acq(l) c

0 32
c acq(l)

lock acquire
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Commuting Actions: Left Mover

0 31
b c

0 32
c b
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c is left mover if swapping the operations do not change the 
resulting state



Commuting Actions: Left Mover

0 31
b rel(l)

0 32
rel(l) b

lock release
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Commuting Actions: Both Mover

0 31

b mem(m, L, t)

0 32

mem(m, L, t) b

Memory access to m is always protected by lockset L, 
and thread t holds at least one lock during the access

race-free 
field access
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Commuting Actions: Non-Mover

0 31

b mem(m, L, t)

0 32

mem(m, L, t) b

Memory access to m is always protected by lockset L, but 
none of the locks in L is held by thread t during the access

X
racy field 

access
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Theory of Reduction [R. Lipton ‘75]

acq(this) X j=bal Y bal=j+n Z rel(this)

S0 S1 S2 S3 S4 S5 S6 S7
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Theory of Reduction [R. Lipton ‘75]

acq(this) X j=bal Y bal=j+n Z rel(this)

S0 S1 S2 S3 S4 S5 S6 S7

acq(this)X j=balY bal=j+n Zrel(this)

S0 S1 S2 S3 S4 S5 S6 S7
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Performing Reduction Dynamically

• Reducible methods
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(R|B)*[N](L|B)*

start atomic
block InRight InLeft Error

L|N R|N

R|B L|B



Atomizer Algorithm

InRight

InLeft Wrong

REL(l,t)

MEM(m,a,t) and 
m is unprotected

ACQ(l,t)

Outside 
Atomic

REL(l,t)

END

ACQ(l,t)

MEM(m,a,t) and 
m is unprotected
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Velodrome: Dynamically Sound and Precise 
Atomicity Checking
• Tracks HB relations between transactions (i.e., atomic regions)

• A transaction is a dynamic execution of an atomic block

• Lifts HB relations from operations to transactions

• Builds a transactional dependence graph

• Checks for presence of cycles in the graph
• Depicts violations of conflict serializability
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C. Flanagan and S. Freund. Velodrome: A Sound and Complete Dynamic Atomicity Checker for Multithreaded Programs. 
PLDI, 2008.



Transactional Dependence Graph

wr o.f

wr o.g

wr o.f

acq lock

rel lock

ti
m

e

Thread 1 Thread 2 Thread 3

tr
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n



Transactional Dependence Graph

wr o.f

wr o.g

wr o.f

acq lock

rel lock

ti
m

e

Thread 1 Thread 2 Thread 3

tr
an

sa
ct

io
n



Cycle means Atomicity Violation 

wr o.f

wr o.g

rd o.f

wr o.f

acq lock

rel lock

ti
m

e

Thread 1 Thread 2 Thread 3

tr
an

sa
ct

io
n



Other Challenges in Velodrome

• Transactional HB graph can become HUGE…
• Notion of unary transactions

• Garbage collect completed transactions if they have no IN edges
• Only the current transaction can create in edges

• Will never be in a cycle

• Optimize allocation of unary nodes
• Avoid allocation if they do not have in edges

• If there is a single in edge, then reuse predecessor node
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Optimize allocation of Unary Nodes

• Avoid allocation if there are no 
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated
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test b == 2

atomic {
t1 = x
x = t1 + 100
… 
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2

test b == 2



Optimize allocation of Unary Nodes

• Avoid allocation if there are no 
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated
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atomic {
t1 = x
x = t1 + 100
… 
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2

test b == 2



Optimize allocation of Unary Nodes

• Avoid allocation if there are no 
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated
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atomic {
t1 = x
x = t1 + 100
… 
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2



Optimize allocation of Unary Nodes

• Avoid allocation if there are no 
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated

• If there is a single in edge, then 
reuse predecessor node
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atomic {
t1 = x
x = t1 + 100
… 
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2



Optimize allocation of Unary Nodes

• Avoid allocation if there are no 
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated

• If there is a single in edge, then 
reuse predecessor node
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atomic {
t1 = x
x = t1 + 100
… 
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2



Optimize allocation of Unary Nodes

• Avoid allocation if there are no 
in edges
• Will never have in edges

• Can never participate in a cycle

• Not even allocated

• If there is a single in edge, then 
reuse predecessor node
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atomic {
t1 = x
x = t1 + 100
… 
b = 2

}

test b == 1

test b == 2

test b == 2

test b == 2



Performance Challenges with Velodrome

• Precise tracking is expensive
• “last transaction(s) to read/write” every field or array element

• Need atomic updates in the instrumentation

• ~6X overhead reported by implementations
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Instrumentation Approach

Program access

Program access

Uninstrumented program Instrumented programCS 636 Swarnendu Biswas



Precise Tracking is Expensive!

Program access

Update metadata 

Program access

Analysis-specific work

Uninstrumented program Instrumented program

Precise tracking 
of dependences

Can lead to remote 
cache misses for mostly 

read-only variables
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Synchronized Updates are Expensive!

Lock metadata access

Program access

Unlock metadata 
access

Program access

Uninstrumented program Instrumented program

at
o

m
ic

at
o

m
ic
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Synchronized Updates are Expensive!

Lock metadata access

Program access

Unlock metadata 
access

Program access

Uninstrumented program Instrumented program

at
o

m
ic

synchronization 
on every access

slows 
programs 

at
o

m
ic
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Related Work on Atomicity Checking

● Dynamic analysis
● Conflict-serializability-based approaches

● Flanagan et al., PLDI 2008; Farzan and Madhusudan, CAV 2008; AeroDrome, ASPLOS 2020

● Inferring atomicity 
● Lu et al., ASPLOS 2006; Xu et al., PLDI 2005; Hammer et al., ICSE 2008

● Predictive approaches
● Sinha et al., MEMOCODE 2011; Sorrentino et al., FSE 2010

● Other approaches
● Wang and Stoller, PPoPP 2006; Wang and Stoller, TSE 2006
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