CS 335: Semantic Analysis

Swarnendu Biswas

Semester 2019-2020-I1
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

An Overview of Compilation

source program target program

U {1

, symbol table ,

4

syntax analyzer error handler code optimizer

4 i)

semantic analyzer | > intermediate code

generator

CS 335 Swarnendu Biswas

Beyond Scanning and Parsing

° Example 1 int dot_prod(int X[], int y[]) {
std::string x; int d, 1;
int y; d = 0;
y = X + 3 for (i=0; i<10; i++)
d += x[1]*y[i];

return d;
* Example 2 !
int a, b;
a=>b+c main() {

int p, al10], b[10];
p = dot_prod(a,b);
}

Beyond Scanning and Parsing

* A compiler must do more than just recognize whether a sentence
belongs to a programming language grammar

* An input program can be grammatically correct but may contain other errors
that prevent compilation

* Lexer and parser cannot catch all program errors

* Some language features cannot be modeled using context-free
grammar (CFG)
 Whether a variable has been declared before use?
* Parameter types and numbers match in the declaration and use of a function
* Types match on both sides of an assignment

Limitations with CFGs

ProcedureBody — Declarations Executables

* CFGs deal with syntactic categories rather than specific words
 Grammar can specify the positions in an expression where a variable name
may occur

* Enforcing the “declare before use” rule requires knowledge that
cannot be encoded in a CFG

* CFG cannot match one instance of a variable name with another

Questions That Compiler Needs to Answer

Questions <

CS 335

/‘

e Has a variable been declared?

e What is the type and size of a variable?

e |s the variable scalar or an array?

e |s an array access Ali][jl[k] consistent with the declaration?

au, ., n

e Does the name “x” correspond to a variable or a function?

e |f x is a function, how many arguments does it take?
e What kind of value, if any, does a function x return?

e Are all invocations of a function consistent with the
declaration?

e Track inheritance relationship
e Ensure that classes and its methods are not multiply defined

Swarnendu Biswas

Questions That Compiler Needs to Answer

-
Compilers need to understand the structure of the computation to

translate the input program
-

CS 335 Swarnendu Biswas

Semantic Analysis

* Finding answers to these questions is part of the semantic analysis
phase

* For example, ensure variable are declared before their uses and check that
each expression has a correct type

* These are static semantics of languages

Checking Dynamic Semantics

* Dynamic semantics of languages int dot_prod(int x[], int y[]) {
need to be checked at run time int d, i;
* Whether an overflow will occur d = 0;
during an arithmetic operation? for (i=0; i<10; i++)

 Whether array bounds will be

exceeded during execution? d += x[i]*y[i];

 Whether recursion will exceed stack return d;
limits?
 Compilers can generate code to main() {
check dynamic semantics int p; int a[10], b[10];

p = dot_prod(a,b);
}

How does a compiler answer these
guestions?

* Compilers track additional information for semantic analysis

* For example, types of variables, function parameters, and array dimensions
* Type information is stored in the symbol table or the syntax tree
* Used not only for semantic validation but also for subsequent phases of

compilation
* The information required may be non-local in some cases

* Semantic analysis can be performed during parsing or in another pass
that traverses the IR produced by the parser

How does a compiler answer these
guestions?

e Use formal methods like context-sensitive grammars

* Use ad-hoc techniques using symbol table

e Static semantics of PL can be specified using attribute grammars
* Attribute grammars are extensions of context-free grammars

Attribute Grammar Framework

Syntax-Directed Definition

* A syntax-directed definition (SDD) is a context-free grammar with
rules and attributes

* A SDD specifies the values of attributes by associating semantic rules with the
grammar productions

Semantic Rule

E->FE+T E.code = E;.codel|T.code||" +"

 Attribute grammars are SDDs with no side effects

Syntax-Directed Definition

* Generalization of CFG where each grammar symbol has an associated
set of attributes

* LetG = (T,NT,S,P)beaCFGandletV =T UNT

* Every symbol X € V is associated with a set of attributes (for e.g., denoted by
X.aand X.b)

* Each attribute takes values from a specified domain (finite or infinite), which
IS its type

* Typical domains of attributes are, integers, reals, characters, strings, booleans, and
structures

* New domains can be constructed from given domains by mathematical
operations such as cross product and map

 Values of attributes are computed by semantic rules

Example

e Consider a grammar for signed
binary numbers

number — sign list
sign - +| —

list — list bit | bit
bit—->0]1

* Build attribute grammar that
annotates Number with the
value it represents

Example

* Consider a grammar for signed
binary numbers

number — sign list
sign - +| —

list — list bit | bit
bit—->0]1

* Build attribute grammar that
annotates number with the
value it represents

e Associate attributes with
grammar symbols

symbol | Attributes ___

number val

sign neg
list pos, val
bit pos, val

Example Attribute Grammar

number — sign list list.pos = 0
if sign.neg:
number.val = —list.val
else:
number.val = —list.val
sign - + sign.neg = false
sign —» — sign.neg = true
list — bit bit.pos = list.pos

list.val = bit.val

listy — list,bit listy.pos = listy.pos + 1
bit.pos = listy.pos
listy. val = listy.val + bit.val
bit - 0 bit.val =0

bit —» 1 bit. val = 2bit-pos

Parse Tree

number
‘/\
sign list
l /\
— list bit
/\
list bit

Annotated Parse Tree

* A parse tree showing the
value(s) of its attribute(s) is
called an annotated parse
tree

number
A
sign list
l ,/\
- list bit
/\
list bit

Annotated Parse Tree

number

T T~

list pos=0 c

—_ =
=
=
=
g

* A parse tree showing the
value(s) of its attribute(s) is
called an annotated parse
tree

CS 335 Swarnendu Biswas

Annotated Parse Tree —

* A parse tree showing
the value(s) of its
attribute(s) is called
an annotated parse
tree

number

T~

neg = true Sign list pos =

neg = true —

Annotated Parse Tree v

number Tl
‘/\<: val\= 5 *T~<_

* A parse tree shpwmg neg = true sign 7 list pos=o0
the value(s) of its l !
attribute(s) is called
an annotated parse neg =true =
tree

Dependency Graph

* If an attribute b depends on an attribute ¢ then the semantic rule for
b must be evaluated after the semantic rule for ¢

* The dependencies among the nodes are depicted by a directed graph
called dependency graph

Dependency Graph

e Suppose A.a = f(X.x,Y.y) is a semantic rule for A - XY
A

A.
/\ Parse tree /"a\ Dependency
X Y.y

raph
X Y X erap

* Suppose X.x = f(A.a,Y.y) is a semantic rule for A - XY

A A.a

PN e

X Y X.x+—Y.y

Construct Dependency Graph

for each node n in the parse tree do
for each attribute a of the grammar symbol do

construct a node in the dependency graph for a

for each node n in the parse tree do
for each semanticrule b = f(cq,¢y,...,Cx) do // Associated with production at node n
fori = 1tok do

construct an edge from c¢; to b

Evaluating an SDD

* In what order do we evaluate attributes?
* SDDs do not specify any order of evaluation

* We must evaluate all the attributes upon which the attribute of a node
depends

* Any topological sort of dependency graph gives a valid order in which
semantic rules must be evaluated

* For SDD’s with both synthesized and inherited attributes, there is no
guarantee of an order of evaluation existing

Evaluating an SDD

* Parse tree method
* Use topological sort of the dependency graph to find the evaluation order

* Rule-based method
* Semantic rules are analyzed and order of evaluation is predetermined

* Oblivious method
* Evaluation order ignores the semantic rules

Circular Dependency of Attributes

20

B.i

A—- B A.s =B.i
B.i=A.s+1

Types of Nonterminal Attributes

Synthesized

e \alue of a synthesized attribute for a nonterminal A at a node N is computed from
the values of children nodes and N itself

e Defined by a semantic rule associated with a production at N such that the
production has A as its head

e Value of an inherited attribute for a nonterminal B at a node N is computed from
the values at N’s parent, N itself, and N’s siblings

e Defined by a semantic rule associated with the production at the parent of N such
that the production has B in its body

CS 335 Swarnendu Biswas

Syntax-Directed Definition

* A grammar production A = a has an associated semantic rule b =

f(C1; C2) ey Ck)

* b is a synthesized attribute of 4 and ¢4, ¢,, ..., ¢} are attributes of symbols in
the production

* b is aninherited attribute of a symbol in the body, and ¢4, ¢, ..., ¢j are
attributes of symbols in the production

 Start symbol does not have inherited attributes

Terminal Attributes

* Terminals can have synthesized attributes, but not inherited
attributes

e Attributes for terminals have lexical values that are supplied by the
lexical analyzer

Postfix Notation

* Postfix notation for an expression E is defined inductively
* |f E is a variable or constant, then postfix notation is E

e If E = E;opE, where op is any binary operator, then the postfix notation is
EE;op, where E; and E; are postfix notations for E; and E, respectively

* If E = (E;), then postfix notation for Ej is the notation for E

SDD for Infix to Postfix Translation

expr — expry + term expr.code = expry.code||term.code||"+"
expr — expry — term expr.code = expr;.code| |term.code||" —"
expr — term expr.code = term.code

term.code = "0"

te)em—>0]1]..]9 term.code = *1

term.code = "9"

Annotated Parse Tree

expr.code = "95 -2 +"

T N

expr.code = "95 —" "+ term.code = "2"
/I\ o
expr.code = "9" =" term.code = "5"
term.code = "9" g

"9"

Types of SDDs

* Arbitrary SDDs can have cycles

* Cycles need to be avoided
* Can no longer meaningfully proceed with evaluation
* Expensive to detect

* Two types of SDDs guarantee no cycles
e S-attributed and L-attributed

S-Attributed Definition

* An SDD that involves only synthesized attributes is called S-attributed
definition
* Each rule computes an attribute for the head nonterminal from attributes
taken from the body of the production

* Semantic rules in a S-attributed definition can be evaluated by a
bottom-up or postorder traversal of the parse tree

* An S-attributed SDD can be implemented naturally in conjunction with an LR
parser

Example SDD

L->ES$ L.val = E.val
E->E +T E.val = E{.val + T.val
E->T E.val = T.val
T->T,*F T.val = T,.val X F.val
T->F T.val = F.val
F - (E) F.val = E.val

F — digit F.val = digit. lexval

Annotated Parse Treefor3*5+4$%

L.val =19
I
E.val = 19 $
_— T
E.val =15 + T.val =4
T.val|=15 F.val =4
%\ digit. lexval = 4
T.val =3 * F.val =5
F. vall =3 digit. lea!val =5

digit. lexval = 3

Abstract Syntax Tree (AST)

* Condensed form of a parse tree used for representing language
constructs

* ASTs do not check for string membership in the language for a grammar

* ASTs represent relationships between language constructs, do not bother
with derivations

if—then—else

S — if P then S;else S, ﬂ\

* Parse trees are also called concrete syntax trees

Parse Tree and Abstract Syntax Tree

Parse Tree Abstract Syntax Tree
Expr +
Expr + Term /\
A/I\A 1 — name
Expr — Term Factor /\
1 name name
Term Factor name

Factor name

name

Inherited Attributes

e Useful when the structure of the parse tree does not match the
abstract syntax of the source code

Semantic Rules

T'.inh = F.val

F=F T.val =T'.syn
T’ —+ FT] Tll.mh=T’.mh><F.val
T .syn =T,.syn
T' - € T'.syn=T'.inh

F — digit F.val = digit. lexval

Parse Tree and Annotated Parse Tree for 3 * 5

F
digit

T

/

X

TI

F

digit

AN

T

T.val = 15

N

F.val =3

digit. lexval = 3

T'.inh =3
T'.syn =15

IS

X

F.val =5 T{.inh = 15

T{.syn =15

digit. lexval = 5 €

Parse Tree and Annotated Parse Tree for 3 * 5

T T.val = 15

F T' F.val =3 T'.inh =

‘ 4 T'.syn=15 "
digit digit. lexval = 3 / \ \
¥

x F Ty % F.val = 5-- T{.inh = 15
i T{.syn
digit € | ‘

digit. lexval = 5 €

Another Example

Parse Tree for “float x, y, z”

b
D - TL L.in = T.type /\

T - float T.type = float T L

T — int T.type = int ‘ /R

L—- Ly id Ly.in = L.in; addtype(id.entry, L.in)

L - id addtype(id. entry, L.in) /R

addtype() installs L. in as the type of the symbol table object
pointed to by id. entry

Dependency Graph for float x, y, z

inh L entry, id entry
\ } 2 4
id entry

CS 335 Swarnendu Biswas

Evaluating S-Attributed Definitions

 Attributes can be evaluated with a postorder traversal of the parse
tree

postorder(N) {
for (each child ¢ of N, from left to right)
postorder(C)
evaluate the attributes associated with node N

Notes about Inherited Attributes

* Always possible to rewrite a SDD to use only synthesized attributes
* Inherited attributes can be simulated with synthesized attributes

* May be more logical to use both synthesized and inherited attributes

* Inherited attributes usually cannot be evaluated by a simple preorder
traversal of the parse tree
e Attributes may depend on both left and right siblings!

 Attributes that do not depend from right children can be evaluated by a
preorder traversal

Bottom-up Evaluation of S-Attributed
Definitions

Input w $

e Suppose A — XYZ, and
semanticruleis A.a =
fX.x,Y.y,Z.2)

LR Parsing
.z YA
. Program
* Can be computed during vy | v
bottom-up parsing
* On reduction, value of new X.x X
synthesized attribute A. a is
computed from the attributes $ $
on the stack
* Extend stack to hold values Value State

stack stack

CS 335 Swarnendu Biswas

Example S-Attributed Definition

L—>ES$ L.val = E.val
E->E +T E.val = E{.val + T.val
E->T E.val = T.val
T->T,*F T.val = T,.val X F.val
T->F T.val = F.val
F - (E) F.val = E.val

F — digit F.val = digit. lexval

Bottom-up Evaluation of S-Attributed Definitions
““m

$3
$3
$3
$3
$35
$35
$15
$15
$15
$15 4
$15 4
$15 4
$19

$d1g1t

$F

$T

$T *

$T * digit
$T * F
$T

$SE

$E +

$E + digit
$E + F
SE +T
$SE

35+ 4%
x5+ 4%
* 5+ 4%
* 5+ 4%

54+ 4%
+4$
+4$
+4$
+4$

43

$
$
$
$

Shift

Reduce by F — digit
Reduce by T = F
Shift

Shift

Reduce by F — digit
ReducebyT - T * F
Reduceby E - T
Shift

Shift

Reduce by F — digit
Reduce by T — F
Reduceby E - E+ T

L-Attributed Definitions

 Each attribute must be either

|. Synthesized
Il. Suppose A - X, X, ...X,, and Semantic Rules
X;.a is an inherited attribute. T T'.inh = F.val
X;.a can be computed using T.val =T".syn
a) Only inherited attributes from A4, T' Sx FT! Ti.inh =T'.inh X F.val
1 T'.syn =T,.syn
or y 1-SY
b) Either inherited or synthesized T'>e€ T'.syn =T'.inh
attributes associated with F - digit F.val = digit. lexval
Xq, o, Xj_1, 0Or

c) Inherited or synthesized attributes
associated with X;.

Are these SDDs S- or L-attributed?

A.a - Bbl
4= Bl B.b, = f(A.a,C.c)

B.i = f1(A.0)
A - BC C.i = f,(B.s)
A.s = f3(C.s)
A - BC B.i = f5(C.s)

A.s = f¢(B.s)

S-Attributed and L-Attributed Definitions

Every S-attributed grammar is also a L-attributed
grammar

All L-attributed grammars are not S-attributed

Syntax-Directed Translation

Associating Semantic Rules with Productions

 Syntax-directed definition (SDD)

* Defines a set of attributes and translations at every node of the parse tree,
output is available at the root
* Declarative style which hides implementation details
* Evaluation order is not specified among multiple attributes for a production
* Only requirement is there should not be any circularity

Associating Semantic Rules with Productions

 Syntax-directed translation (SDT)

* Program fragments are embedded as semantic actions in production body
* Generates code while parsing

* Indicates order in which semantic rules are to be evaluated

* Executable specification of an SDD, easier to implement and can be more
efficient

rest = +term { print("+") } rest;

* Yacc uses translation schemes

SDT for Infix to Postfix Translation

SDD SDT
Semantic Rules
expr expr.code = expr — expr; +term {print(" +") }
— expry + term expry.code||term.code||" +" NP
expr — expr; —term {print(" —") }
expr expr.code =
— expr; — term expr;.code| |term.code||" —" expr — term
expr — term expr.code = term.code { print("0") }
term.code = "0" term—>0]1]..|9 tprint("17) }

term—->0|1]..]9 term.code = "1

{print("9")}

n

term.code = "9

SDT Actions

expr

~ .
-~
-~
.
~
.
~.
~ .
—
.~.~
.
-~
.
~.
-~
-~
-~
.
~

expr "4 term {print("+") }
expr " term {print("—")} "2" {print("2") }
term "5" { print("5") }

.
\.
Nl
\l
N.

"9" { prin\t("9") }

SDDs and SDTs

input ~ parse ~ dependency ~ evaluation order for
string tree graph semantic rules

* Evaluation of the semantic rules may
* Generate code
» Save information in the symbol table
* Issue error messages
* Perform any other activity

Construction of AST for Expressions

* ldea: Construct subtrees for subexpressions by creating an operator
and operand nodes

* Internal node: Node(op,c,,c,, ..., c,)
* Create a node with label op, and k fields for k children

* Leaf node: Leaf (op, val)
* Create a node with label op, and val is the lexical value

Creating an AST

* Following sequence of function calls create an AST fora — 4 + ¢

S

p, = new Leaf (id, entrya)
p, = new Leaf (num, 4)

p; =new Node(" —",py,p;)
p, = new Leaf (id, entryc)
p: =new Node(“+",p3,0,)

id |

id

num| 4

entry for a

!

;

entry for c

S-Attributed Definition for Constructing
Syntax Trees

Semantic Rules

E->E +T 227
E->E —T 227
E-T 227

T - (E) 27?
T - id 227

T - num ?P7

S-Attributed Definition for Constructing
Syntax Trees

Semantic Rules

E-E +T E.node = new Node(" + ", E;.node, T.node)
E-E —T E.node = new Node(" — ", E;.node, T.node)
E-T E.node = T.node
T - (E) T.node = E.node
T - id T.node = new Leaf (id, id. entry)

T — num T.node = new Leaf (num,num. val)

Construction of ASTfora — 4 4+ ¢ sstete —

Parse Tree edge «=wsemeeee
E node
et T — |
--------------- P,
----------- E I "--..,_............
-------- : | ""--....__
E node + : T node
--------------- U ! : |
“‘,‘-n-"l‘ :::: I-..... 1 é 1
“““““““““ I '-.._..... | E I
““““““ I '.......’ I ; |
1 .
E node — T node — id :
| . I |
\\\ Il : I T \ \ 1
\\ [I num : / \ :
\ | 4
k I / |
T nolde v v , id | |
|
. I — I
: 1 /I ’/ AN [l
: | / |
= |
id | | entry for ¢
1 7 |
v ¥ A 4
id | num| 4

entry for a

L-Attributed Definition for Constructing
Syntax Trees

E - TE' E.node = E'.syn
E'.inh = T.node
E' - +TE; E{.inh = new Node(" + ",E'.inh,T.node)
E'.syn = E{.syn
E' - —TE, E{.inh = new Node(" —",E'.inh, T.node)
E'.syn = E{.syn
E' - € E'.syn = E'.inh
T - (E) T.node = E.node
T - id T.node = new Leaf (id, id. entry)

T = num T.node = new Leaf (num, num. val)

Dependency Graph fora —4 + ¢

.
s*
ey
.
.
“
.
.
'S

id entry

num val + T node ——inh E' syn

id entry €

Implementing SDTs

* SDTs can be implemented by
1. building a parse tree

2. performing the actions in a left-to-right depth-first order, i.e., preorder
traversal

e SDTs are often implemented during parsing, but without a parse tree
* Underlying grammar is LR, and the SDD is S-attributed
* Underlying grammar is LL, and the SDD is L-attributed

Postfix SDT for the Desk Calculator

e Consider S-attributed SDD fora L - E$ {print(E.val) }
bottom-up grammar E—-E+T {E.val=E,val+T.val}
* We can construct an equivalent £77 t Bval =T.val}
SDT with actions attheend of ~ T~ T*F {T.val=T.valxF.val }
each production T—>F {T.val = F.val }
F - (E) {F.val = E.val }

* SDT with all actions at the right-
end of a production are called
postfix SDT

F - digit {F.val = digit. lexval }

Implementing Postfix SDTs During LR Parsing

Input w $

LR Parsing
Z.z Z

Program
Y.y Y
X.x X

* Execute actions when reductions take place

e Use a value stack to maintain attributes along

$ $ with the states (grammar symbols)

* Manipulating the stack is done by the LR parser

Value State
stack stack

CS 335 Swarnendu Biswas

Implementing Postfix SDTs with Bottom-up Parsing

___ Producion | Adions

L—ES$ { print(stack|[top — 1].val); top = top — 1}
E—->E +T { stack|top — 2].val = stack|top — 2].val +
stack|top].val; top = top — 2;}
E->T
T—>T,*F { stack|[top — 2].val = stack|[top — 2].val X
stack|top].val; top = top — 2;}
T->F
F - (E) { stack|top — 2].val = stack|top — 1].val; top =

top — 2; }
F - digit

SDT with Actions Inside Productions

Bo>X{alY

* For bottom-up parsing, execute action a as soon as X occurs on top of
the stack

* For top-down parsing, execute action a just before expanding
nonterminal Y or checking for terminal Y in the input

Example of an SDT Problematic for Parsing

L—E$

E - {print("+"); } E;+T

E->T

T ->{print("*");} Ty *xF

T - F

F - (E)

F — digit {print(digit.lexval); }

Implementation of Any SDT

* Parse the input and produce a parse tree
* Ignore the actions for this step

* Examine each interior node N, say one for production A = «
* Add additional children to N for the actions in «, in left to right order

* Perform a preorder traversal of the tree
* Perform an action as a node labeled by an action is visited

Parse Tree with Embedded Actions

 Parse tree for 3*5+4
* Traverse the tree in preorder

~ 7' \ digit {p;i;lt(‘L)i}

digit { prin.t(3); }

Design of Translation Schemes

e Make all attribute values available when the semantic action is
executed

* When semantic action involves only synthesized attributes, the action
can be put at the end of the production

Design of Translation Schemes

e Rules for L-attributed SDDs

* An inherited attribute for a symbol
in the body of a production must
be computed in an action before
the symbol

* A synthesized attribute for the
nonterminal on the LHS can only
be computed when all the
attributes it references have been
computed

* The action is usually put at the end
of the production

S - A]_AZ {Alln — 1,A2.in - 2}
A - a{print(A.in) }

S
/\ P
A, A, A,.in
/\ /\
N N
N N
N N
N N
a print(A;.in) a print(4,.in)

What will happen on a DFS?

References

* A. Aho et al. Compilers: Principles, Techniques, and Tools, 2"? edition, Chapter 2.3, Chapter 5.
* K. Cooper and L. Torczon. Engineering a Compiler, 2"¢ edition, Chapter 4.

* M. Scott. Programming Language Pragmatics, 41" edition, Chapter 4.

