
CS 335: Semantic Analysis
Swarnendu Biswas

Semester 2019-2020-II

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

An Overview of Compilation

CS 335 Swarnendu Biswas

lexical analyzer

semantic analyzer

source program

syntax analyzer code optimizer

code generator

intermediate code
generator

target program

error handler

symbol table

Beyond Scanning and Parsing

• Example 1
std::string x;
int y;
y = x + 3

• Example 2
int a, b;
a = b + c

int dot_prod(int x[], int y[]) {
int d, i;
d = 0;
for (i=0; i<10; i++)

d += x[i]*y[i];
return d;

}

main() {
int p, a[10], b[10];
p = dot_prod(a,b);

}

CS 335 Swarnendu Biswas

Beyond Scanning and Parsing

• A compiler must do more than just recognize whether a sentence
belongs to a programming language grammar
• An input program can be grammatically correct but may contain other errors

that prevent compilation

• Lexer and parser cannot catch all program errors

• Some language features cannot be modeled using context-free
grammar (CFG)
• Whether a variable has been declared before use?

• Parameter types and numbers match in the declaration and use of a function

• Types match on both sides of an assignment

CS 335 Swarnendu Biswas

Limitations with CFGs

• CFGs deal with syntactic categories rather than specific words
• Grammar can specify the positions in an expression where a variable name

may occur

• Enforcing the “declare before use” rule requires knowledge that
cannot be encoded in a CFG
• CFG cannot match one instance of a variable name with another

CS 335 Swarnendu Biswas

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝐵𝑜𝑑𝑦 → 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒𝑠

Questions That Compiler Needs to Answer

Questions

• Has a variable been declared?

• What is the type and size of a variable?

• Is the variable scalar or an array?

• Is an array access A[i][j][k] consistent with the declaration?

• Does the name “x” correspond to a variable or a function?

• If x is a function, how many arguments does it take?

• What kind of value, if any, does a function x return?

• Are all invocations of a function consistent with the
declaration?

• Track inheritance relationship

• Ensure that classes and its methods are not multiply defined

CS 335 Swarnendu Biswas

Questions That Compiler Needs to Answer

CS 335 Swarnendu Biswas

𝑥 ← 𝑦 + 𝑧 𝑥 ← 𝑎 + 𝑏

Compilers need to understand the structure of the computation to
translate the input program

Semantic Analysis

• Finding answers to these questions is part of the semantic analysis
phase
• For example, ensure variable are declared before their uses and check that

each expression has a correct type

• These are static semantics of languages

CS 335 Swarnendu Biswas

Checking Dynamic Semantics

• Dynamic semantics of languages
need to be checked at run time
• Whether an overflow will occur

during an arithmetic operation?
• Whether array bounds will be

exceeded during execution?
• Whether recursion will exceed stack

limits?

• Compilers can generate code to
check dynamic semantics

int dot_prod(int x[], int y[]) {
int d, i;
d = 0;
for (i=0; i<10; i++)

d += x[i]*y[i];
return d;

}

main() {
int p; int a[10], b[10];
p = dot_prod(a,b);

}

CS 335 Swarnendu Biswas

How does a compiler answer these
questions?
• Compilers track additional information for semantic analysis

• For example, types of variables, function parameters, and array dimensions
• Type information is stored in the symbol table or the syntax tree

• Used not only for semantic validation but also for subsequent phases of
compilation

• The information required may be non-local in some cases

• Semantic analysis can be performed during parsing or in another pass
that traverses the IR produced by the parser

CS 335 Swarnendu Biswas

How does a compiler answer these
questions?
• Use formal methods like context-sensitive grammars

• Use ad-hoc techniques using symbol table

• Static semantics of PL can be specified using attribute grammars
• Attribute grammars are extensions of context-free grammars

CS 335 Swarnendu Biswas

Attribute Grammar Framework

CS 335 Swarnendu Biswas

Syntax-Directed Definition

• A syntax-directed definition (SDD) is a context-free grammar with
rules and attributes
• A SDD specifies the values of attributes by associating semantic rules with the

grammar productions

• Attribute grammars are SDDs with no side effects

CS 335 Swarnendu Biswas

Production Semantic Rule

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑐𝑜𝑑𝑒 = 𝐸1. 𝑐𝑜𝑑𝑒||𝑇. 𝑐𝑜𝑑𝑒||" + "

Syntax-Directed Definition

• Generalization of CFG where each grammar symbol has an associated
set of attributes
• Let 𝐺 = (𝑇,𝑁𝑇, 𝑆, 𝑃) be a CFG and let 𝑉 = 𝑇 ∪ 𝑁𝑇
• Every symbol 𝑋 ∈ 𝑉 is associated with a set of attributes (for e.g., denoted by
𝑋. 𝑎 and 𝑋. 𝑏)

• Each attribute takes values from a specified domain (finite or infinite), which
is its type
• Typical domains of attributes are, integers, reals, characters, strings, booleans, and

structures

• New domains can be constructed from given domains by mathematical
operations such as cross product and map

• Values of attributes are computed by semantic rules

CS 335 Swarnendu Biswas

Example

• Consider a grammar for signed
binary numbers

• Build attribute grammar that
annotates 𝑁𝑢𝑚𝑏𝑒𝑟 with the
value it represents

CS 335 Swarnendu Biswas

𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡
𝑠𝑖𝑔𝑛 → +| −
𝑙𝑖𝑠𝑡 → 𝑙𝑖𝑠𝑡 𝑏𝑖𝑡 | 𝑏𝑖𝑡
𝑏𝑖𝑡 → 0 | 1

Example

• Consider a grammar for signed
binary numbers

• Build attribute grammar that
annotates 𝑛𝑢𝑚𝑏𝑒𝑟 with the
value it represents

• Associate attributes with
grammar symbols

CS 335 Swarnendu Biswas

𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡
𝑠𝑖𝑔𝑛 → +| −
𝑙𝑖𝑠𝑡 → 𝑙𝑖𝑠𝑡 𝑏𝑖𝑡 | 𝑏𝑖𝑡
𝑏𝑖𝑡 → 0 | 1

Symbol Attributes

𝑛𝑢𝑚𝑏𝑒𝑟 𝑣𝑎𝑙

𝑠𝑖𝑔𝑛 𝑛𝑒𝑔

𝑙𝑖𝑠𝑡 𝑝𝑜𝑠, 𝑣𝑎𝑙

𝑏𝑖𝑡 𝑝𝑜𝑠, 𝑣𝑎𝑙

Example Attribute Grammar
Production Attribute Rule

𝑛𝑢𝑚𝑏𝑒𝑟 → 𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡 𝑙𝑖𝑠𝑡. 𝑝𝑜𝑠 = 0
if 𝑠𝑖𝑔𝑛. 𝑛𝑒𝑔:
𝑛𝑢𝑚𝑏𝑒𝑟. 𝑣𝑎𝑙 = −𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙

else:
𝑛𝑢𝑚𝑏𝑒𝑟. 𝑣𝑎𝑙 = −𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙

𝑠𝑖𝑔𝑛 → + 𝑠𝑖𝑔𝑛. 𝑛𝑒𝑔 = false

𝑠𝑖𝑔𝑛 → − 𝑠𝑖𝑔𝑛. 𝑛𝑒𝑔 = true

𝑙𝑖𝑠𝑡 → 𝑏𝑖𝑡 𝑏𝑖𝑡. 𝑝𝑜𝑠 = 𝑙𝑖𝑠𝑡. 𝑝𝑜𝑠
𝑙𝑖𝑠𝑡. 𝑣𝑎𝑙 = 𝑏𝑖𝑡. 𝑣𝑎𝑙

𝑙𝑖𝑠𝑡0 → 𝑙𝑖𝑠𝑡1𝑏𝑖𝑡 𝑙𝑖𝑠𝑡1. 𝑝𝑜𝑠 = 𝑙𝑖𝑠𝑡0. 𝑝𝑜𝑠 + 1
𝑏𝑖𝑡. 𝑝𝑜𝑠 = 𝑙𝑖𝑠𝑡0. 𝑝𝑜𝑠
𝑙𝑖𝑠𝑡0. 𝑣𝑎𝑙 = 𝑙𝑖𝑠𝑡1. 𝑣𝑎𝑙 + 𝑏𝑖𝑡. 𝑣𝑎𝑙

𝑏𝑖𝑡 → 0 𝑏𝑖𝑡. 𝑣𝑎𝑙 = 0

𝑏𝑖𝑡 → 1 𝑏𝑖𝑡. 𝑣𝑎𝑙 = 2𝑏𝑖𝑡.𝑝𝑜𝑠

CS 335 Swarnendu Biswas

Parse Tree

CS 335 Swarnendu Biswas

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

−

Annotated Parse Tree

• A parse tree showing the
value(s) of its attribute(s) is
called an annotated parse
tree

CS 335 Swarnendu Biswas

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

−

Annotated Parse Tree

• A parse tree showing the
value(s) of its attribute(s) is
called an annotated parse
tree

CS 335 Swarnendu Biswas

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

−

𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 = 2 𝑝𝑜𝑠 =1

𝑝𝑜𝑠 = 2

1

2

3

2

3

4

Annotated Parse Tree

• A parse tree showing
the value(s) of its
attribute(s) is called
an annotated parse
tree

CS 335 Swarnendu Biswas

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

−

𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 = 2 𝑝𝑜𝑠 =1

𝑝𝑜𝑠 = 2

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑣𝑎𝑙 =?

Annotated Parse Tree

• A parse tree showing
the value(s) of its
attribute(s) is called
an annotated parse
tree

CS 335 Swarnendu Biswas

1 0 1

𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑙𝑖𝑠𝑡 𝑏𝑖𝑡

𝑠𝑖𝑔𝑛 𝑙𝑖𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟

−

𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 =1 𝑝𝑜𝑠 = 0

𝑝𝑜𝑠 = 2 𝑝𝑜𝑠 =1

𝑝𝑜𝑠 = 2

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑛𝑒𝑔 = 𝑡𝑟𝑢𝑒

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 1

𝑣𝑎𝑙 = 0
𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 4

𝑣𝑎𝑙 = 5

𝑣𝑎𝑙 = −5

Dependency Graph

• If an attribute 𝑏 depends on an attribute 𝑐 then the semantic rule for
𝑏 must be evaluated after the semantic rule for 𝑐

• The dependencies among the nodes are depicted by a directed graph
called dependency graph

CS 335 Swarnendu Biswas

Dependency Graph

• Suppose 𝐴. 𝑎 = 𝑓 𝑋. 𝑥, 𝑌. 𝑦 is a semantic rule for 𝐴 → 𝑋𝑌

• Suppose 𝑋. 𝑥 = 𝑓(𝐴. 𝑎, 𝑌. 𝑦) is a semantic rule for 𝐴 → 𝑋𝑌

CS 335 Swarnendu Biswas

𝐴

𝑋 𝑌 𝑌. 𝑦

𝐴. 𝑎

𝑋. 𝑥

𝐴

𝑋 𝑌 𝑌. 𝑦

𝐴. 𝑎

𝑋. 𝑥

Parse tree Dependency
graph

Construct Dependency Graph

for each node 𝑛 in the parse tree do

for each attribute 𝑎 of the grammar symbol do

construct a node in the dependency graph for 𝑎

for each node 𝑛 in the parse tree do

for each semantic rule 𝑏 = 𝑓(𝑐1, 𝑐2, … , 𝑐𝑘) do // Associated with production at node 𝑛

for 𝑖 = 1 to 𝑘 do

construct an edge from 𝑐𝑖 to 𝑏

CS 335 Swarnendu Biswas

Evaluating an SDD

• In what order do we evaluate attributes?
• SDDs do not specify any order of evaluation

• We must evaluate all the attributes upon which the attribute of a node
depends

• Any topological sort of dependency graph gives a valid order in which
semantic rules must be evaluated

• For SDD’s with both synthesized and inherited attributes, there is no
guarantee of an order of evaluation existing

CS 335 Swarnendu Biswas

Evaluating an SDD

• Parse tree method
• Use topological sort of the dependency graph to find the evaluation order

• Rule-based method
• Semantic rules are analyzed and order of evaluation is predetermined

• Oblivious method
• Evaluation order ignores the semantic rules

CS 335 Swarnendu Biswas

Circular Dependency of Attributes

Production Semantic Rules

𝐴 → 𝐵 𝐴. 𝑠 = 𝐵. 𝑖
𝐵. 𝑖 = 𝐴. 𝑠 + 1

CS 335 Swarnendu Biswas

A

B

𝐴. 𝑠

𝐵. 𝑖

Types of Nonterminal Attributes

Synthesized

• Value of a synthesized attribute for a nonterminal 𝐴 at a node 𝑁 is computed from
the values of children nodes and 𝑁 itself

• Defined by a semantic rule associated with a production at 𝑁 such that the
production has 𝐴 as its head

Inherited

• Value of an inherited attribute for a nonterminal 𝐵 at a node 𝑁 is computed from
the values at 𝑁’s parent, 𝑁 itself, and 𝑁’s siblings

• Defined by a semantic rule associated with the production at the parent of 𝑁 such
that the production has 𝐵 in its body

CS 335 Swarnendu Biswas

Syntax-Directed Definition

• A grammar production 𝐴 → 𝛼 has an associated semantic rule 𝑏 =
𝑓(𝑐1, 𝑐2, … , 𝑐𝑘)
• 𝑏 is a synthesized attribute of 𝐴 and 𝑐1, 𝑐2, …, 𝑐𝑘 are attributes of symbols in

the production

• 𝑏 is an inherited attribute of a symbol in the body, and 𝑐1, 𝑐2, …, 𝑐𝑘 are
attributes of symbols in the production

• Start symbol does not have inherited attributes

CS 335 Swarnendu Biswas

Terminal Attributes

• Terminals can have synthesized attributes, but not inherited
attributes

• Attributes for terminals have lexical values that are supplied by the
lexical analyzer

CS 335 Swarnendu Biswas

Postfix Notation

• Postfix notation for an expression 𝐸 is defined inductively
• If 𝐸 is a variable or constant, then postfix notation is 𝐸

• If 𝐸 = 𝐸1op𝐸2 where op is any binary operator, then the postfix notation is
𝐸1
′𝐸2

′op, where 𝐸1
′ and 𝐸2

′ are postfix notations for 𝐸1 and 𝐸2 respectively

• If 𝐸 = (𝐸1), then postfix notation for 𝐸1 is the notation for 𝐸

CS 335 Swarnendu Biswas

SDD for Infix to Postfix Translation

Production Semantic Rules

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 + 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||"+"

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 − 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||" − "

𝑒𝑥𝑝𝑟 → 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒

𝑡𝑒𝑟𝑚 → 0 1 … | 9

𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "0"
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "1"
…
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "9"

CS 335 Swarnendu Biswas

Annotated Parse Tree

CS 335 Swarnendu Biswas

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = "95 − 2 + "

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = "95 − " 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "2"

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = "9" 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "5"

𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "9"

"9"

" − "

"5"

" + "

"2"

Types of SDDs

• Arbitrary SDDs can have cycles

• Cycles need to be avoided
• Can no longer meaningfully proceed with evaluation

• Expensive to detect

• Two types of SDDs guarantee no cycles
• S-attributed and L-attributed

CS 335 Swarnendu Biswas

S-Attributed Definition

• An SDD that involves only synthesized attributes is called S-attributed
definition
• Each rule computes an attribute for the head nonterminal from attributes

taken from the body of the production

• Semantic rules in a S-attributed definition can be evaluated by a
bottom-up or postorder traversal of the parse tree

• An S-attributed SDD can be implemented naturally in conjunction with an LR
parser

CS 335 Swarnendu Biswas

Example SDD

Production Semantic Rules

𝐿 → 𝐸 $ 𝐿. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑣𝑎𝑙 = 𝐸1. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙

𝐸 → 𝑇 𝐸. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙

𝑇 → 𝑇1 ∗ 𝐹 𝑇. 𝑣𝑎𝑙 = 𝑇1. 𝑣𝑎𝑙 × 𝐹. 𝑣𝑎𝑙

𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙

𝐹 → (𝐸) 𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙

CS 335 Swarnendu Biswas

Annotated Parse Tree for 3 ∗ 5 + 4 $

CS 335 Swarnendu Biswas

𝑇. 𝑣𝑎𝑙 = 4

𝐹. 𝑣𝑎𝑙 = 4

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 4

𝐸. 𝑣𝑎𝑙 = 15

𝑇. 𝑣𝑎𝑙 = 15

𝑇. 𝑣𝑎𝑙 = 3

𝐹. 𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 3

𝐹. 𝑣𝑎𝑙 = 5

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 5

𝐿. 𝑣𝑎𝑙 = 19

𝐸. 𝑣𝑎𝑙 = 19 $

+

∗

Abstract Syntax Tree (AST)

• Condensed form of a parse tree used for representing language
constructs
• ASTs do not check for string membership in the language for a grammar
• ASTs represent relationships between language constructs, do not bother

with derivations

• Parse trees are also called concrete syntax trees

CS 335 Swarnendu Biswas

𝑆 → if 𝑃 then 𝑆1else 𝑆2

if−then−else

𝐵 𝑆1 𝑆2

Parse Tree and Abstract Syntax Tree

Parse Tree Abstract Syntax Tree

CS 335 Swarnendu Biswas

𝐸𝑥𝑝𝑟

name

𝐸𝑥𝑝𝑟

𝐸𝑥𝑝𝑟 + 𝑇𝑒𝑟𝑚

− 𝑇𝑒𝑟𝑚 𝐹𝑎𝑐𝑡𝑜𝑟

name𝐹𝑎𝑐𝑡𝑜𝑟

name

𝑇𝑒𝑟𝑚

𝐹𝑎𝑐𝑡𝑜𝑟

+

name−

name name

Inherited Attributes

• Useful when the structure of the parse tree does not match the
abstract syntax of the source code

CS 335 Swarnendu Biswas

Production Semantic Rules

𝑇 → 𝐹𝑇′ 𝑇′. 𝑖𝑛ℎ = 𝐹. 𝑣𝑎𝑙
𝑇. 𝑣𝑎𝑙 = 𝑇′. 𝑠𝑦𝑛

𝑇′ →∗ 𝐹𝑇1
′ 𝑇1

′. 𝑖𝑛ℎ = 𝑇′. 𝑖𝑛ℎ × 𝐹. 𝑣𝑎𝑙
𝑇′. 𝑠𝑦𝑛 = 𝑇1

′. 𝑠𝑦𝑛

𝑇′ → 𝜖 𝑇′. 𝑠𝑦𝑛 = 𝑇′. 𝑖𝑛ℎ

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙

Parse Tree and Annotated Parse Tree for 3 ∗ 5

CS 335 Swarnendu Biswas

𝑇. 𝑣𝑎𝑙 = 15

∗ 𝐹. 𝑣𝑎𝑙 = 5

𝑇′. 𝑖𝑛ℎ = 3
𝑇′. 𝑠𝑦𝑛 = 15

𝐹. 𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 5

𝑇1
′. 𝑖𝑛ℎ = 15

𝑇1
′. 𝑠𝑦𝑛 = 15

𝑇

∗ 𝐹

𝑇′𝐹

digit

digit

𝑇1
′

𝜖
𝜖

Parse Tree and Annotated Parse Tree for 3 ∗ 5

CS 335 Swarnendu Biswas

𝑇. 𝑣𝑎𝑙 = 15

∗ 𝐹. 𝑣𝑎𝑙 = 5

𝑇′. 𝑖𝑛ℎ = 3
𝑇′. 𝑠𝑦𝑛 = 15

𝐹. 𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 3

digit. 𝑙𝑒𝑥𝑣𝑎𝑙 = 5

𝑇1
′. 𝑖𝑛ℎ = 15

𝑇1
′. 𝑠𝑦𝑛 = 15

𝑇

∗ 𝐹

𝑇′𝐹

digit

digit

𝑇1
′

𝜖
𝜖

Another Example

CS 335 Swarnendu Biswas

Production Semantic Rules

𝐷 → 𝑇𝐿 𝐿. 𝑖𝑛 = 𝑇. 𝑡𝑦𝑝𝑒

𝑇 → float 𝑇. 𝑡𝑦𝑝𝑒 = float

𝑇 → int 𝑇. 𝑡𝑦𝑝𝑒 = int

𝐿 → 𝐿1, id 𝐿1. 𝑖𝑛 = 𝐿. 𝑖𝑛; 𝑎𝑑𝑑𝑡𝑦𝑝𝑒(id. 𝑒𝑛𝑡𝑟𝑦, 𝐿. 𝑖𝑛)

𝐿 → id 𝑎𝑑𝑑𝑡𝑦𝑝𝑒(id. 𝑒𝑛𝑡𝑟𝑦, 𝐿. 𝑖𝑛)

Parse Tree for “float 𝑥, 𝑦, 𝑧”

𝐷

𝑇 𝐿

float 𝐿 id,

𝐿 id,

id

𝑎𝑑𝑑𝑡𝑦𝑝𝑒() installs 𝐿. 𝑖𝑛 as the type of the symbol table object
pointed to by id. 𝑒𝑛𝑡𝑟𝑦

Dependency Graph for float 𝑥, 𝑦, 𝑧

CS 335 Swarnendu Biswas

𝐷

𝑇

float

𝐿

𝐿 , id

𝐿 , id

id

𝑡𝑦𝑝𝑒 𝑖𝑛ℎ 𝑒𝑛𝑡𝑟𝑦

𝑒𝑛𝑡𝑟𝑦

𝑒𝑛𝑡𝑟𝑦

𝑒𝑛𝑡𝑟𝑦

𝑖𝑛ℎ 𝑒𝑛𝑡𝑟𝑦

𝑖𝑛ℎ 𝑒𝑛𝑡𝑟𝑦

Evaluating S-Attributed Definitions

• Attributes can be evaluated with a postorder traversal of the parse
tree

postorder(𝑁) {

for (each child 𝐶 of 𝑁, from left to right)

postorder(𝐶)

evaluate the attributes associated with node 𝑁

}

CS 335 Swarnendu Biswas

Notes about Inherited Attributes

• Always possible to rewrite a SDD to use only synthesized attributes
• Inherited attributes can be simulated with synthesized attributes

• May be more logical to use both synthesized and inherited attributes

• Inherited attributes usually cannot be evaluated by a simple preorder
traversal of the parse tree
• Attributes may depend on both left and right siblings!

• Attributes that do not depend from right children can be evaluated by a
preorder traversal

CS 335 Swarnendu Biswas

Bottom-up Evaluation of S-Attributed
Definitions
• Suppose 𝐴 → 𝑋𝑌𝑍, and

semantic rule is 𝐴. 𝑎 =
𝑓(𝑋. 𝑥, 𝑌. 𝑦, 𝑍. 𝑧)

• Can be computed during
bottom-up parsing
• On reduction, value of new

synthesized attribute 𝐴. 𝑎 is
computed from the attributes
on the stack

• Extend stack to hold values

CS 335 Swarnendu Biswas

… … 𝑤 $

LR Parsing
Program

Input

𝑍. 𝑧

𝑌. 𝑦

𝑋. 𝑥

$

𝑍

𝑌

𝑋

$

State
stack

Value
stack

Example S-Attributed Definition

Production Semantic Rules

𝐿 → 𝐸 $ 𝐿. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑣𝑎𝑙 = 𝐸1. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙

𝐸 → 𝑇 𝐸. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙

𝑇 → 𝑇1 ∗ 𝐹 𝑇. 𝑣𝑎𝑙 = 𝑇1. 𝑣𝑎𝑙 × 𝐹. 𝑣𝑎𝑙

𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙

𝐹 → (𝐸) 𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙

CS 335 Swarnendu Biswas

Bottom-up Evaluation of S-Attributed Definitions
Value State Input Action

$ $ 3 ∗ 5 + 4$ Shift

$3 $digit ∗ 5 + 4$ Reduce by 𝐹 → digit

$3 $𝐹 ∗ 5 + 4$ Reduce by 𝑇 → 𝐹

$3 $𝑇 ∗ 5 + 4$ Shift

$3 $𝑇 ∗ 5 + 4$ Shift

$3 5 $𝑇 ∗ digit +4$ Reduce by 𝐹 → digit

$3 5 $𝑇 ∗ 𝐹 +4$ Reduce by 𝑇 → 𝑇 ∗ 𝐹

$15 $𝑇 +4$ Reduce by 𝐸 → 𝑇

$15 $𝐸 +4$ Shift

$15 $𝐸 + 4$ Shift

$15 4 $𝐸 + digit $ Reduce by 𝐹 → digit

$15 4 $𝐸 + 𝐹 $ Reduce by 𝑇 → 𝐹

$15 4 $𝐸 + 𝑇 $ Reduce by 𝐸 → 𝐸 + 𝑇

$19 $𝐸 $ …
CS 335 Swarnendu Biswas

L-Attributed Definitions

• Each attribute must be either
I. Synthesized

II. Suppose 𝐴 → 𝑋1𝑋2…𝑋𝑛 and
𝑋𝑖 . 𝑎 is an inherited attribute.
𝑋𝑖 . 𝑎 can be computed using

a) Only inherited attributes from 𝐴,
or

b) Either inherited or synthesized
attributes associated with
𝑋1, … , 𝑋𝑖−1, or

c) Inherited or synthesized attributes
associated with 𝑋𝑖.

CS 335 Swarnendu Biswas

Production Semantic Rules

𝑇 → 𝐹𝑇′ 𝑇′. 𝑖𝑛ℎ = 𝐹. 𝑣𝑎𝑙
𝑇. 𝑣𝑎𝑙 = 𝑇′. 𝑠𝑦𝑛

𝑇′ →∗ 𝐹𝑇1
′ 𝑇1

′. 𝑖𝑛ℎ = 𝑇′. 𝑖𝑛ℎ × 𝐹. 𝑣𝑎𝑙
𝑇′. 𝑠𝑦𝑛 = 𝑇1

′. 𝑠𝑦𝑛

𝑇′ → 𝜖 𝑇′. 𝑠𝑦𝑛 = 𝑇′. 𝑖𝑛ℎ

𝐹 → digit 𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙

Are these SDDs S- or L-attributed?

Production Semantic Rules

𝐴 → 𝐵𝐶
𝐴. 𝑎 = 𝐵. 𝑏1
𝐵. 𝑏2 = 𝑓(𝐴. 𝑎, 𝐶. 𝑐)

CS 335 Swarnendu Biswas

Production Semantic Rules

𝐴 → 𝐵𝐶
𝐵. 𝑖 = 𝑓1(𝐴. 𝑖)
𝐶. 𝑖 = 𝑓2(𝐵. 𝑠)
𝐴. 𝑠 = 𝑓3(𝐶. 𝑠)

Production Semantic Rules

𝐴 → 𝐵𝐶
𝐶. 𝑖 = 𝑓4(𝐴. 𝑖)
𝐵. 𝑖 = 𝑓5(𝐶. 𝑠)
𝐴. 𝑠 = 𝑓6(𝐵. 𝑠)

S-Attributed and L-Attributed Definitions

Every S-attributed grammar is also a L-attributed
grammar

All L-attributed grammars are not S-attributed

CS 335 Swarnendu Biswas

Syntax-Directed Translation

CS 335 Swarnendu Biswas

Associating Semantic Rules with Productions

• Syntax-directed definition (SDD)
• Defines a set of attributes and translations at every node of the parse tree,

output is available at the root

• Declarative style which hides implementation details
• Evaluation order is not specified among multiple attributes for a production

• Only requirement is there should not be any circularity

CS 335 Swarnendu Biswas

Associating Semantic Rules with Productions

• Syntax-directed translation (SDT)
• Program fragments are embedded as semantic actions in production body

• Generates code while parsing

• Indicates order in which semantic rules are to be evaluated

• Executable specification of an SDD, easier to implement and can be more
efficient

• Yacc uses translation schemes

CS 335 Swarnendu Biswas

𝑟𝑒𝑠𝑡 → +𝑡𝑒𝑟𝑚 { 𝑝𝑟𝑖𝑛𝑡("+") } 𝑟𝑒𝑠𝑡1

SDT for Infix to Postfix Translation

SDD

Production Semantic Rules

𝑒𝑥𝑝𝑟
→ 𝑒𝑥𝑝𝑟1 + 𝑡𝑒𝑟𝑚

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 =
𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||" + "

𝑒𝑥𝑝𝑟
→ 𝑒𝑥𝑝𝑟1 − 𝑡𝑒𝑟𝑚

𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 =
𝑒𝑥𝑝𝑟1. 𝑐𝑜𝑑𝑒||𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒||" − "

𝑒𝑥𝑝𝑟 → 𝑡𝑒𝑟𝑚 𝑒𝑥𝑝𝑟. 𝑐𝑜𝑑𝑒 = 𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒

𝑡𝑒𝑟𝑚 → 0 1 … | 9

𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "0"
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "1"
…
𝑡𝑒𝑟𝑚. 𝑐𝑜𝑑𝑒 = "9"

SDT

Production Semantic Rules

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 + 𝑡𝑒𝑟𝑚 { 𝑝𝑟𝑖𝑛𝑡 " + " }

𝑒𝑥𝑝𝑟 → 𝑒𝑥𝑝𝑟1 − 𝑡𝑒𝑟𝑚 { 𝑝𝑟𝑖𝑛𝑡 " − " }

𝑒𝑥𝑝𝑟 → 𝑡𝑒𝑟𝑚

𝑡𝑒𝑟𝑚 → 0 1 … | 9

{ 𝑝𝑟𝑖𝑛𝑡("0") }
{ 𝑝𝑟𝑖𝑛𝑡("1") }
…
{ 𝑝𝑟𝑖𝑛𝑡("9") }

CS 335 Swarnendu Biswas

SDT Actions

CS 335 Swarnendu Biswas

𝑒𝑥𝑝𝑟

𝑒𝑥𝑝𝑟 𝑡𝑒𝑟𝑚

𝑒𝑥𝑝𝑟 𝑡𝑒𝑟𝑚

𝑡𝑒𝑟𝑚

"9"

" − "

"5"

" + "

"2"{ 𝑝𝑟𝑖𝑛𝑡 " − " }

{ 𝑝𝑟𝑖𝑛𝑡 "5" }

{ 𝑝𝑟𝑖𝑛𝑡 "2" }

{ 𝑝𝑟𝑖𝑛𝑡 "9" }

{ 𝑝𝑟𝑖𝑛𝑡 "+" }

SDDs and SDTs

• Evaluation of the semantic rules may
• Generate code

• Save information in the symbol table

• Issue error messages

• Perform any other activity

CS 335 Swarnendu Biswas

input
string

parse
tree

dependency
graph

evaluation order for
semantic rules

Construction of AST for Expressions

• Idea: Construct subtrees for subexpressions by creating an operator
and operand nodes

• Internal node: 𝑁𝑜𝑑𝑒(𝑜𝑝, 𝑐1, 𝑐2, … , 𝑐𝑘)

• Create a node with label 𝑜𝑝, and 𝑘 fields for 𝑘 children

• Leaf node: 𝐿𝑒𝑎𝑓(𝑜𝑝, 𝑣𝑎𝑙)
• Create a node with label 𝑜𝑝, and 𝑣𝑎𝑙 is the lexical value

CS 335 Swarnendu Biswas

Creating an AST

• Following sequence of function calls create an AST for 𝑎 − 4 + 𝑐

1. 𝑝1 = new 𝐿𝑒𝑎𝑓(id, 𝑒𝑛𝑡𝑟𝑦𝑎)

2. 𝑝2 = new 𝐿𝑒𝑎𝑓(num, 4)

3. 𝑝3 = new𝑁𝑜𝑑𝑒(“ − ”, 𝑝1, 𝑝2)

4. 𝑝4 = new 𝐿𝑒𝑎𝑓(id, 𝑒𝑛𝑡𝑟𝑦𝑐)

5. 𝑝5 = new𝑁𝑜𝑑𝑒(“ + ”, 𝑝3, 𝑝4)

CS 335 Swarnendu Biswas

num 4id

entry for 𝑎

+

− id

entry for 𝑐

S-Attributed Definition for Constructing
Syntax Trees

Production Semantic Rules

𝐸 → 𝐸1 + 𝑇 ???

𝐸 → 𝐸1 − 𝑇 ???

𝐸 → 𝑇 ???

𝑇 → (𝐸) ???

𝑇 → id ???

𝑇 → num ???

CS 335 Swarnendu Biswas

S-Attributed Definition for Constructing
Syntax Trees

Production Semantic Rules

𝐸 → 𝐸1 + 𝑇 𝐸. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝑁𝑜𝑑𝑒(" + ", 𝐸1. 𝑛𝑜𝑑𝑒, 𝑇. 𝑛𝑜𝑑𝑒)

𝐸 → 𝐸1 − 𝑇 𝐸. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝑁𝑜𝑑𝑒(" − ", 𝐸1. 𝑛𝑜𝑑𝑒, 𝑇. 𝑛𝑜𝑑𝑒)

𝐸 → 𝑇 𝐸. 𝑛𝑜𝑑𝑒 = 𝑇. 𝑛𝑜𝑑𝑒

𝑇 → (𝐸) 𝑇. 𝑛𝑜𝑑𝑒 = 𝐸. 𝑛𝑜𝑑𝑒

𝑇 → id 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(id, id. 𝑒𝑛𝑡𝑟𝑦)

𝑇 → num 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(num, num. 𝑣𝑎𝑙)

CS 335 Swarnendu Biswas

Construction of AST for 𝑎 − 4 + 𝑐

CS 335 Swarnendu Biswas

𝐸

𝐸

𝐸

𝑇

id

−

+ 𝑇

id𝑇

𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒 𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒

𝑛𝑜𝑑𝑒

id

num

num 4

id
−

+

entry for 𝑎

entry for 𝑐

id

𝑛𝑜𝑑𝑒

AST edge

Parse Tree edge

L-Attributed Definition for Constructing
Syntax Trees

Production Semantic Rules

𝐸 → 𝑇𝐸′ 𝐸. 𝑛𝑜𝑑𝑒 = 𝐸′. 𝑠𝑦𝑛
𝐸′. 𝑖𝑛ℎ = 𝑇. 𝑛𝑜𝑑𝑒

𝐸′ → +𝑇𝐸1
′ 𝐸1

′ . 𝑖𝑛ℎ = 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒(" + ", 𝐸′. 𝑖𝑛ℎ, 𝑇. 𝑛𝑜𝑑𝑒)
𝐸′. 𝑠𝑦𝑛 = 𝐸1

′ . 𝑠𝑦𝑛

𝐸′ → −𝑇𝐸1
′ 𝐸1

′ . 𝑖𝑛ℎ = 𝑛𝑒𝑤 𝑁𝑜𝑑𝑒(" − ", 𝐸′. 𝑖𝑛ℎ, 𝑇. 𝑛𝑜𝑑𝑒)
𝐸′. 𝑠𝑦𝑛 = 𝐸1

′ . 𝑠𝑦𝑛

𝐸′ → 𝜖 𝐸′. 𝑠𝑦𝑛 = 𝐸′. 𝑖𝑛ℎ

𝑇 → (𝐸) 𝑇. 𝑛𝑜𝑑𝑒 = 𝐸. 𝑛𝑜𝑑𝑒

𝑇 → id 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(id, id. 𝑒𝑛𝑡𝑟𝑦)

𝑇 → num 𝑇. 𝑛𝑜𝑑𝑒 = 𝐧𝐞𝐰 𝐿𝑒𝑎𝑓(num,num. 𝑣𝑎𝑙)

CS 335 Swarnendu Biswas

Dependency Graph for 𝑎 − 4 + 𝑐

CS 335 Swarnendu Biswas

𝐸

𝑇

id

𝑛𝑜𝑑𝑒

𝐸′

𝑇

num

𝐸′

𝑇 𝐸′

id 𝜖

−

+

𝑛𝑜𝑑𝑒

𝑒𝑛𝑡𝑟𝑦

𝑠𝑦𝑛𝑖𝑛ℎ

𝑣𝑎𝑙

𝑛𝑜𝑑𝑒

𝑠𝑦𝑛𝑖𝑛ℎ𝑛𝑜𝑑𝑒

𝑠𝑦𝑛𝑖𝑛ℎ

𝑒𝑛𝑡𝑟𝑦

Implementing SDTs

• SDTs can be implemented by
1. building a parse tree

2. performing the actions in a left-to-right depth-first order, i.e., preorder
traversal

• SDTs are often implemented during parsing, but without a parse tree
• Underlying grammar is LR, and the SDD is S-attributed

• Underlying grammar is LL, and the SDD is L-attributed

CS 335 Swarnendu Biswas

Postfix SDT for the Desk Calculator

CS 335 Swarnendu Biswas

• Consider S-attributed SDD for a
bottom-up grammar

• We can construct an equivalent
SDT with actions at the end of
each production

• SDT with all actions at the right-
end of a production are called
postfix SDT

𝐿 → 𝐸$ { 𝑝𝑟𝑖𝑛𝑡 𝐸. 𝑣𝑎𝑙 }

𝐸 → 𝐸1 + 𝑇 { 𝐸. 𝑣𝑎𝑙 = 𝐸1. 𝑣𝑎𝑙 + 𝑇. 𝑣𝑎𝑙 }

𝐸 → 𝑇 { 𝐸. 𝑣𝑎𝑙 = 𝑇. 𝑣𝑎𝑙 }

𝑇 → 𝑇1 ∗ 𝐹 { 𝑇. 𝑣𝑎𝑙 = 𝑇1. 𝑣𝑎𝑙 × 𝐹. 𝑣𝑎𝑙 }

𝑇 → 𝐹 𝑇. 𝑣𝑎𝑙 = 𝐹. 𝑣𝑎𝑙

𝐹 → 𝐸 { 𝐹. 𝑣𝑎𝑙 = 𝐸. 𝑣𝑎𝑙 }

𝐹 → 𝑑𝑖𝑔𝑖𝑡 {𝐹. 𝑣𝑎𝑙 = digit. 𝑙𝑒𝑥𝑣𝑎𝑙 }

Implementing Postfix SDTs During LR Parsing

CS 335 Swarnendu Biswas

… … 𝑤 $

LR Parsing
Program

Input

𝑍. 𝑧

𝑌. 𝑦

𝑋. 𝑥

$

𝑍

𝑌

𝑋

$

State
stack

Value
stack

• Execute actions when reductions take place
• Use a value stack to maintain attributes along

with the states (grammar symbols)
• Manipulating the stack is done by the LR parser

Implementing Postfix SDTs with Bottom-up Parsing

CS 335 Swarnendu Biswas

Production Actions

𝐿 → 𝐸$ { 𝑝𝑟𝑖𝑛𝑡 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 1 . 𝑣𝑎𝑙 ; 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 1 }

𝐸 → 𝐸1 + 𝑇 { 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 = 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 +
𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 . 𝑣𝑎𝑙; 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2; }

𝐸 → 𝑇

𝑇 → 𝑇1 ∗ 𝐹 { 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 = 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 ×
𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 . 𝑣𝑎𝑙; 𝑡𝑜𝑝 = 𝑡𝑜𝑝 − 2; }

𝑇 → 𝐹

𝐹 → 𝐸 { 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 2 . 𝑣𝑎𝑙 = 𝑠𝑡𝑎𝑐𝑘 𝑡𝑜𝑝 − 1 . 𝑣𝑎𝑙; 𝑡𝑜𝑝 =
𝑡𝑜𝑝 − 2; }

𝐹 → 𝑑𝑖𝑔𝑖𝑡

SDT with Actions Inside Productions

• For bottom-up parsing, execute action 𝑎 as soon as 𝑋 occurs on top of
the stack

• For top-down parsing, execute action 𝑎 just before expanding
nonterminal 𝑌 or checking for terminal 𝑌 in the input

CS 335 Swarnendu Biswas

𝐵 → 𝑋 𝑎 𝑌

Example of an SDT Problematic for Parsing

𝐿 → 𝐸$

𝐸 → { 𝑝𝑟𝑖𝑛𝑡("+"); } 𝐸1 + 𝑇

𝐸 → 𝑇

𝑇 → 𝑝𝑟𝑖𝑛𝑡 " ∗ " ; 𝑇1 ∗ 𝐹

𝑇 → 𝐹

𝐹 → 𝐸

𝐹 → 𝑑𝑖𝑔𝑖𝑡 { 𝑝𝑟𝑖𝑛𝑡 digit. 𝑙𝑒𝑥𝑣𝑎𝑙 ; }

CS 335 Swarnendu Biswas

Implementation of Any SDT

• Parse the input and produce a parse tree
• Ignore the actions for this step

• Examine each interior node 𝑁, say one for production 𝐴 → 𝛼
• Add additional children to 𝑁 for the actions in 𝛼, in left to right order

• Perform a preorder traversal of the tree
• Perform an action as a node labeled by an action is visited

CS 335 Swarnendu Biswas

Parse Tree with Embedded Actions

CS 335 Swarnendu Biswas

$

𝐹

digit

digit { 𝑝𝑟𝑖𝑛𝑡 5 ; }

{ 𝑝𝑟𝑖𝑛𝑡 3 ; }

𝑇 𝐹∗{ 𝑝𝑟𝑖𝑛𝑡 ′ ∗′ ; }

𝐹
𝑇

digit { 𝑝𝑟𝑖𝑛𝑡 4 ; }

𝐸 + 𝑇{ 𝑝𝑟𝑖𝑛𝑡 ′ +′ ; }

𝐿

𝐸

• Parse tree for 3*5+4
• Traverse the tree in preorder

Design of Translation Schemes

• Make all attribute values available when the semantic action is
executed

• When semantic action involves only synthesized attributes, the action
can be put at the end of the production

CS 335 Swarnendu Biswas

Design of Translation Schemes

• Rules for L-attributed SDDs
• An inherited attribute for a symbol

in the body of a production must
be computed in an action before
the symbol

• A synthesized attribute for the
nonterminal on the LHS can only
be computed when all the
attributes it references have been
computed
• The action is usually put at the end

of the production

𝑆 → 𝐴1𝐴2 { 𝐴1. 𝑖𝑛 = 1, 𝐴2. 𝑖𝑛 = 2 }

𝐴 → 𝑎 { 𝑝𝑟𝑖𝑛𝑡 𝐴. 𝑖𝑛 }

CS 335 Swarnendu Biswas

𝑆

𝐴2

𝑎 𝑝𝑟𝑖𝑛𝑡(𝐴2. 𝑖𝑛)

𝐴1

𝑎 𝑝𝑟𝑖𝑛𝑡(𝐴1. 𝑖𝑛)

𝐴1. 𝑖𝑛 = 1
𝐴2. 𝑖𝑛 = 2

What will happen on a DFS?

References

• A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapter 2.3, Chapter 5.

• K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 4.

• M. Scott. Programming Language Pragmatics, 4th edition, Chapter 4.

CS 335 Swarnendu Biswas

