CS335: A Brief Introduction
to Lex and Flex

Swarnendu Biswas

Semester 2019-2020-I1
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Lex and Flex

* Lex and Flex generate programs whose control flow is directed by
instances of regular expressions in the input stream

* Basically, Lex and Flex are lexical analyzer generators
* Lex and Flex are good at matching patterns

* Lex was originally written by Mike Lesk and Eric Schmidt in 1975

* Flex is an open-source alternative to Lex
* Lex was originally proprietary software

* Lex and Flex are available on many Unix-like platforms
 Commonly used with Yacc and Bison, which are parser generators

Block Diagram for Lex

Lex source program

lex. 1

lex.yy.c

Input character
stream

[
L Compiler

Lex]
)

{ C Compiler J

» lex.yy.cC

» a.out

» Sequence of tokens

required

—

Structure of Lex programs

* Lex program structure * Declarations

definitions

%%

translation rules
%%

user functions

e Declaration of variables, manifest
constants, and regular definitions

required

—

Structure of Lex programs

* Lex program structure * Translation rules
definitions Pattern { Action }
%%
translation rules e Each pattern is a regular expression

%% e Starts from the first column

user functions :
* Actions are code fragments

* Must begin on the same line

* Multiple sentences are enclosed
within braces ({ })

* Unmatched input characters are
copied to stdout

required

—

Structure of Lex programs

* Lex program structure e User functions are additional

. functions used in Actions
definitions

%%

translation rules
%%

user functions

A Sample Specification

stmt — if expr then stmt digit — [0-9]
if expr then stmt else stmt digits — digit™
€ number — digits (.digits)? (E[+—]?digits)?

letter — [A — Za — z]
expr — termrelop term
P P id — letter (letter | digit)*

term .)
] if —if
term — id then — then
number else — else
relop —»<|>|<=|>=|=|<>

ws — (blank | tab | newline)™*

Tokens, Lexemes, and Attributes

Attribute Value

Any ws == ==
iLf if --
then then -~
else else -~
Any id id Pointer to symbol table entry
Any number number Pointer to symbol table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT

>= relop GE

Lex Program for Recognizing the Grammar

All definitions within braces
%{ is copied to file lex.yy.c
/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE, IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */

delim | \t\n]

ws {delim}+

letter |[A—Za—Zz]

digit [0—9]

id {letter} ({letter}|{digit}) *

number {digit} + (\ .{digit}+)? (E [+—] ?{digit}+)?

Lex Program for Recognizing the Grammar

%%

{ws} {/*no action and no returnx*/}
if {printf("%s\n",yytext);}
then {printf("%s\n",yytext);}
else {printf("%s\n",yytext);}
{id} {printf("%s\n",yytext);}
{number} {printf("%s\n",yytext);}
" {printf("%s\n",yytext);}
" =" {printf("%s\n",yytext);}
" {printf("%s\n" yytext);}
"> {printf("%s\n",yytext);}
"~ {printf("%s\n",yytext);}
"> {printf("%s\n",yytext);}

Sample Execution

%% “lex predicate.l; gcc lex.yy.c
+/a.out

{ws} {/*no action and no returnx/}
if {printf("%s\n",yytext);} ::Lf (a) 1 x=y+z; } else {x=y+z;}
then {printf("%s\n",yytext);} 1-!:
else {printf("%s\n",yytext);} g ;dd . a
{id} {printf("%s\n",yytext);} . 1 X
{number} {printf("%s\n",yytext);} id: vy
<" {printf("%s\n",yytext);} +id: 7z
=" {printf("%s\n",yytext);} :lelse
=" {printf("%s\n",yytext);} {id: x
<> {printf("%s\n",yytext);} =
"> {printf("%s\n",yytext);} id: vy
">=" {printf("%s\n",yytext);} +:}%d - Z

’

Lex Workflow

* Lex is invoked
e Reads remaining input, one character at a time

* Finds the longest input prefix that matches one of the patterns P;
* Executes associated action 4;
* A; returns control to the parser, along with the token name
* Additional information is passed through the global variable yylval

lexical grammar
rules rules

Parsed
input

Input — yylex > yyparse —

CS 335 Swarnendu Biswas

Pattern Matching Primitives

RE Syntax vatch

Any character except newline

\n Newline

* Zero or more copies of the preceding expression
+ One or more copies of the preceding expression
? Zero or one copy of the preceding expression

$ End of line

alb aorb

(ab)+ One or more copies of ab (grouping)

"a+b" Literal "a+b" (C escapes still work)

[] Character class

Predefined Names in Lex
Name [Function

int yylex(void)

char *yytext

int yyleng
yylval

int yywrap(void)

FILE *yyout
FILE *yyin
INITIAL
BEGIN

ECHO

Call to invoke lexer, carries out action when match is found, returns
token

Pointer to the NULL-terminated matched string
Length of the matched string
Value associated with the token

Function which is called when input is exhausted, returns 1 if done,
0 if not done

Refers to the output file and defaults to stdout
Input file

Initial start condition

Condition switch start condition

Write matched string

Conflict Resolution

* Several prefixes of the input match one or more patterns

1. Prefer longest match
* Fore.g., prefer “<=" as a lexeme rather than “<“

2. If the longest possible prefix matches two or more patterns, prefer the
pattern listed first
* For e.g., make keywords reserved by listing keywords before id

Context Sensitivity

* Lex recognizes a small amount of surrounding context
* For e.g., operators like * and $

* Expression ab/cd matches string ab but only if followed by cd
* Thus ab$ is sameis as ab/\n

START Condition

 “start conditions” can be used to specify that a pattern match only in
specific situations

* Used to activate rules conditionally

* Any rule prefixed with <S> will be activated only when the scanner is in start
condition S

* Define start conditions: %Start namel, name?2, ...

* Recognize rule only when Lex is in start condition namel:
<namel>expression

 Enter a start condition: BEGIN namel
e Return to normal state: BEGIN 0O;

Use of START Conditions

int flag; %START AA BB CC

%% %%

"a {flag = 'a'; ECHO;} “a {ECHO; BEGIN AA;}

"b {flag = 'b'; ECHO;} b {ECHO; BEGIN BB:;}

e {flag = 'c'; ECHO;} N

\n [flag = 0 ; ECHO:} c {ECHO; BEGIN CC;}

magic { \n {ECHO; BEGIN 0;}

switch (flag) { <AA>magic printf("first");

case ‘a’': { <BB>magic printf("second");

printf("first"); break; }
case ‘b’': {

printf("second"); break; }
case ‘c’': {

printf("third"); break; }
default: ECHO; break;

<CC>magic printf("third");

Lex vs Flex

Lex Flex

* In Lex, you can provide your own ¢ Rewrite of the Lex tool, but does
input code and modify the not reuse code
character stream; Flex won't let

do that * Supposed to be more efficient
you do that.

* Faster compilation and execution
time, smaller transition table

Potential Issues in Using Lex/Flex

* These tools are mostly not reentrant, that is, their states can get
corrupted if invoked concurrently by multiple threads

* Generated code may use Unix-specific features
* You need to disable those features to generate portable code

References

* A. Aho et al. Compilers: Principles, Techniques, and Tools, 2"? edition, Chapter 3.
* http://dinosaur.compilertools.net/lex/index.html

» S. Debray. A brief [f]lex tutorial. https://www?2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/

CS 335 Swarnendu Biswas

http://dinosaur.compilertools.net/lex/index.html
https://www2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/

