
CS 610: Programming GPUs with OpenMP

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2025-26-I



Programming GPUs

Correctly and efficiently programming GPUs is challenging
− Different programming model compared to CPUs, arguably more sophisticated

synchronization APIs, and requires awareness of the memory hierarchy for efficiency
− Development tools are less mature compared to CPU programming

Ways to program a GPU
(i) Use frameworks like Kokkos or AMReX to automate the parallelization

(ii) Identify compute-intensive accelerator-offloadable regions and use directive-based
models like OpenMP or OpenACC

(iii) Natively program the GPU with CUDA, HIP, OpenCL, or SYCL

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 2 / 22



Shared Memory Programming with OpenMP
OpenMP is the de facto standard for thread-based shared memory parallelism
• Hints (directives) are used to parallelize relevant regions of code
• Goal is to ease parallelization of sequential programs

#include <omp.h>
int main() {

// serial code, master thread
...
// begin parallel section,
// fork a team of threads

#pragma omp parallel ...
{

// parallel region executed by
// all threads
...
// all parallel threads join
// the master thread

}
// resume serial code
...

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 3 / 22



OpenMP Offload
• By a heterogeneous setup, we mean a general-purpose processor connected to one

or more accelerators (e.g., Intel Xeon processor connected with an NVIDIA GPU)
• OpenMP v4+ provides directives to support heterogeneous computing (e.g., GPU, TPU,

DSP, and FPGA)

copy entire
data

Memory controller
DDR3 PHY

MMU IOMMU

Cache hierarchy

GDDR5 PHY
Memory controller

Cache hierarchy

CPU GPU

system memory graphics memory

128-bit DDR3-2133
= 34.13 GB/s
Latency: unknown

384-bit GDDR5-6000
= 336.4 GB/s

Latency: unknown

PCI Express bus

PCIe 2.0 x16 = 8GB/s
PCIe 3.0 x16 = 15.75 GB/s
Latency: unknown

System memory bus Graphics memory bus

Virtual CPU memory Virtual GPU memory

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 4 / 22



How to Offload Computation?

High level steps
(i) Identify compute-intensive code regions (i.e., kernels) that can benefit from data

parallelism
(ii) Express the parallelism in the kernel

(iii) Manage data transfer between the host and the device

Execution model
• There is a single host device but there can be multiple target devices
• A device is a logical execution engine with its own local storage and data

environment

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 5 / 22



Offload using the target directive

#pragma omp target [clause ...]

• When a host thread encounters the target directive, the region specified by it is
executed by a new thread running on an accelerator, similar to a CUDA kernel

• The target construct offloads the enclosed code (control and data) and transfers
control to the accelerator via a target task

• Transfer of control is synchronous, i.e., host thread waits for the offloaded
computation to complete

• Offloaded code should be a data-parallel structured block that can be benefit from
multiple threads on the accelerator

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 6 / 22



Offload Example Using GCC

Configure GCC to run OpenMP offload
• Check whether GCC was built with offload support with gcc -v
• The output should contain entries like –enable-offload-targets=nvptx-none
• You may need to install additional packages

sudo apt install gcc-12 g++-12 gcc-12-offload-nvptx nvptx-tools

• If not, then we will need to build from source with offload support

hello-world.cpp

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 7 / 22

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/omp-offload/hello-world.cpp


Device Execution Directives

#pragma omp target teams num_teams(16)
• The teams construct creates a league of teams where each team is composed of a

master thread and a number of worker threads
▶ num_teams clause specifies the number of teams
▶ The number of teams is implementation-dependent without a num_teams clause

• The master thread of each team executes the code region

#pragma omp target teams distribute
Worksharing construct that distributes iterations of a loop among the master threads of
the teams, so each master thread executes a subset of the iterations

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 8 / 22



Device Execution Directives

#pragma omp target teams distribute parallel for
A league of thread teams are created, and loop iterations are distributed and executed in
parallel by all threads of the teams

team of
threads

master
thread

league of
teams

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 9 / 22



Expressing Parallelism: Increasing Device Utilization

Swaroop Pophale, Reuben Budiardja, and Wael Elwasif. Introduction to OpenMP Offload: Part 1.

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 10 / 22

https://www.olcf.ornl.gov/wp-content/uploads/OpenMP_Introduction_to_Offload_Part1.pdf


Hierarchical Parallelization

OpenMP separates offload and parallelism
• Programmers need to explicitly create parallel regions on the target device

#pragma omp target teams distribute parallel for num_teams(4096)
thread_limit(128) map(to : A[0 : N], B[0 : N]) map(from : C_gpu[0 : N])

for (uint64_t i = 0; i < N; i++) {
C_gpu[i] = A[i] + B[i];

}

vector-addition.cpp

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 11 / 22

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/omp-offload/vector-addition.cpp


Summary of Device Execution Directives
#pragma omp target
• Offloads the enclosed code to the accelerator

#pragma omp target teams
• Creates a league of teams
• The master thread of each team executes the code region

#pragma omp target teams distribute
• Creates a league of thread teams
• Loop iterations are distributed and executed by the master threads in the teams

#pragma omp target teams distribute parallel for
• A league of thread teams are created
• Loop iterations are distributed and executed in parallel by all threads of the teams

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 12 / 22



Offloading using target teams + loop

#pragma omp target teams
{
// bind(teams) is implicit
#pragma omp loop

for (int i = 0; i < N; ++i) {
C[i] = A[i] + B [i]

}
}

void fun1() {
// Orphaned loop needs explicit binding
#pragma omp loop bind(teams)

for (int i = 0; i < N; ++i) {
C[i] = A[i] + B [i]

}
}
...
#pragma omp target teams
{

fun1();
}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 13 / 22



Summary of Device Execution Directives
#pragma omp target parallel
• Creates one team of OpenMP threads that execute the same region

#pragma omp target parallel for
• Creates one thread team and distributes the inner loop iterations over threads

#pragma omp target parallel loop
• Creates a team of OpenMP threads that execute the region
• Allows concurrent execution of the associated loops

#pragma omp target teams loop
• Allows concurrent execution of the associated loops by different teams

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 14 / 22



Comparing CUDA and OpenMP Terminologies

CUDA OpenMP

target Kernel launch
CUDA thread OpenMP thread or SIMD lane
Thread block Team
Thread block size Team size
Number of thread blocks Number of teams
Warp (size = 32) SIMD chunk (simdlen = 8, 16, 32)
Maximum number of threads per block Thread limit
parallel inside teams Threads inside a block
distribute splitting loop across blocks
parallel for inside distribute splitting across threads

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 15 / 22



Mapping Data Between Host and Device

The map clause specifies how data items are mapped from the host to the device

map(to:list) On entering the region, allocates memory on the device and
initializes them using the values from the host

map(from:list) Allocates memory on the device, and copies the values to the
variables on the host on exiting the region.

map(tofrom:list) Bidirectional copy
map(alloc:list) On entering the region, data is allocated on the device

map(delete:list) Free device memory

If a variable is not a scalar then it is treated as if it is mapped with a map-type of tofrom

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 16 / 22



Optimizing Data Transfers
// Maps variables to a device data environment for the extent of the region
#pragma omp target data map(to: A, B)
{
#pragma omp target map(from: C)
{
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
C[i][j] = A[i][j] + B[i][j];

} // end inner target
/* Some computation on host using C (no changes to A and B) */
#pragma omp target map(to: C) map(from: D)
{
for (int i = 0; i < N; ++i)

for (int j = 0; j < N; ++j)
D[i][j] = A[i][j] + B[i][j] C[i][j];

} // end inner target
} // end outer target

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 17 / 22



Asynchronous Offload

• OpenMP target constructs are synchronous by default
− The host thread waits for the target region to end before continuing

• Try to overlap CPU and GPU computations for better performance
▶ Use nowait clause if the host thread does not need to wait
▶ Use taskwait to ensure that the host thread waits for the completion of dependent

offloaded tasks

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 18 / 22



Overlap CPU and GPU Computation

1 int main() {
2 float a[N], b[N], c, d;
3 ...
4 #pragma omp target nowait map(to:b[0:N], c, d) map(from:a[0:N])
5 {
6 #pragma omp teams distribute parallel for
7 for (int i = 0; i < N; i++)
8 a[i] = b[i]*c + d;
9 }

10 func(b); // perform computation independent of device output
11 #pragma omp taskwait
12 func(a); // perform computation dependent of device output
13 ...
14 }

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 19 / 22



Asynchronous Offloads

#pragma omp parallel
#pragma omp single
{
#pragma omp task depend(out:a)
init_data(a);

#pragma omp target map(to:a[:N]) map(from:x[:N]) nowait depend(in:a) depend(
out:x)

compute_1(a, x, N);
#pragma omp target map(to:b[:N]) map(from:z[:N]) nowait depend(in:b) depend(

out:z)
compute_3(b, z, N);

#pragma omp target map(to:z[:N], x[:N]) map(from:y[:N]) nowait depend(in:z,x)
depend(out:y)

compute_4(z, x, y, N);
#pragma omp taskwait

}

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 20 / 22



Code Examples

• README (.org file)

• hello-world.cpp

• vector-addition.cpp

• matmul.cpp

• compute-pi.cpp

• Makefile

Swarnendu Biswas (IIT Kanpur) CS 610: OpenMP Offload Sem 2025-26-I 21 / 22

https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/omp-offload/README
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/omp-offload/hello-world.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/omp-offload/vector-addition.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/omp-offload/matmul.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/omp-offload/compute-pi.cpp
https://www.cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/omp-offload/Makefile


References

Swaroop Pophale, Reuben Budiardja, and Wael Elwasif. Introduction to OpenMP Offload: Part 1.

Swaroop Pophale. Introduction to OpenMP Device Offload: Data Movement

Michael Klemm. Intro to GPU Programming with the OpenMP API.

EuroCC National Competence Center Sweden. OpenMP for GPU Offloading.

Tom Deakin and Wei-Chen Lin. Programming Your GPU with OpenMP.

Joesph Huber. OpenMP Offloading Features in LLVM 15.

https://www.olcf.ornl.gov/wp-content/uploads/OpenMP_Introduction_to_Offload_Part1.pdf
https://www.olcf.ornl.gov/wp-content/uploads/OLCF_OMP_Day2.pdf
https://www.openmp.org/wp-content/uploads/2021-10-20-Webinar-OpenMP-Offload-Programming-Introduction.pdf
https://enccs.github.io/openmp-gpu/
https://www.iwomp.org/wp-content/uploads/iwomp-2023-omp-gpgpu-prog.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-Offloading-in-LLVM-15.pdf

