CS 610: Loop Transformations for Parallelism

Swarnendu Biswas

Department of Computer Science and Engineering, Indian Institute of Technology Kanpur

Sem 2025-26-I

Enhancing Program Performance

- Loops are one of most commonly used constructs in HPC programs
- Compilers perform many loop optimizations automatically to
 - Exploit fine-grained parallelism
 - Multiple pipelined functional units in each core
 - Vector instruction sets (SSE, AVX, AVX-512)
 - Exploit coarse-grained parallelism for SMP systems
 - Keep multiple asynchronous processors busy with work
 - Minimize cost of memory accesses
- In some cases, source code modifications can enhance the optimizer's ability to transform code

Different Levels of Parallelization in Hardware

Instruction-level Parallelism

Microarchitectural techniques like pipelining, OOO execution, and superscalar instruction issue

Data-level Parallelism

Use Single Instruction Multiple Data (SIMD) vector processing instructions and units

Thread-level Parallelism

Simultaneous multithreading or hyperthreading

- Vectorization is the process of transforming a scalar operation on single data elements at a time (SISD) to an operation on multiple data elements at once (SIMD)
- Helps transforms a loop nest so that the same operation is performed on several vector elements at the same time

Don't use a single Vector lane/thread!

Un-vectorized and un-threaded software will under perform

Permission to Design for All Lanes

Threading and Vectorization needed to fully utilize modern hardware


```
double *a, *b, *c;
for (int i = 0; i < N; i++)
  c[i] = a[i] + b[i];</pre>
```

Scalar mode

One instruction (e.g., vaddsd/vaddss) produces one result

Vector mode

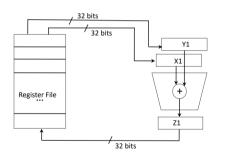
One instruction (e.g., vaddpd/vaddps) can produce multiple results

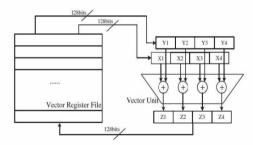
 $\begin{array}{c} \text{ld r1, addr1} \\ \text{ld r2, addr2} \\ \text{add r3, r1, r2} \\ \text{st r3, addr3} \end{array}$

```
for (i=0; i<n; i++) {
   c[i] = a[i] + b[i];
}</pre>
```

 $\frac{n}{4}$ times $\left\{\right.$

ldv vr1, addr1 ldv vr2, addr2 addv vr3, vr1, vr2 stv vr3, addr3

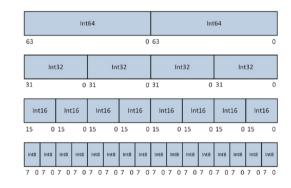




SIMD Vectorization

- Use of SIMD units can speed up the program
- Intel SSE has 128-bit vector registers and functional units
- Assuming a single ALU, these SIMD units can execute 4 single precision floating point number or 2 double precision operations in the time it takes to do only one of these operations by a scalar unit

128-bit wide operands using integer types



Intel-Supported SIMD Extensions

SIMD Extensions	Width (bits)	SP calculations	DP calculations	Introduced
SSE2/SSE3/SSE4	128	4	2	~2001–2007
AVX/AVX2	256	8	4	~2011–2015
AVX-512	512	16	8	\sim 2017

Other platforms that support SIMD have different extensions (e.g., ARM Neon and Power AltiVec)

Intel-Supported SIMD Extensions

64-bit architecture

SSE	XMMo-XMM15	
AVX	YMMo-YMM15	Low-order 128 bits of each YMM register is aliased
		to a corresponding XMM register
AVX-512	ZMMo-ZMM31	Low-order 256 and 128 bits are aliased to registers YMMO–YMM31 and XMMO–XMM31 respectively

[] required () optional

Example instructions

```
Move (V)MOV[A/U][P/S][D/S]
```

Comparison (V)CMP[P/S][D/S]

Arithmetic (V)[ADD/SUB/MUL/DIV][P/S][D/S]

Instruction decoding

V AVX

P,S packed, scalar

A,U aligned, unaligned

D,S double-, single-precision

B,W,D,Q byte, word, doubleword, quadword integers

x86_64 Vector Operations

```
movss xmm1, xmm2 Copy scalar single-precision floating-point value (low 32 bits) from xmm2 to xmm1
```

vmovapd xmm1, xmm2 Move aligned packed double-precision floating-point values from xmm2 to xmm1

```
vaddss xmmo,xmm1,xmm2
```

```
xmmo[31:0] = xmm1[31:0] + xmm2[31:0]

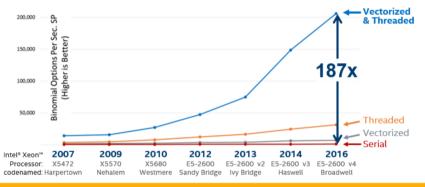
xmmo[127:32] = xmm1[127:32]
```

```
vaddsd xmmo,xmm1,xmm2
```

```
xmmo[63:0] = xmm1[63:0] + xmm2[63:0]

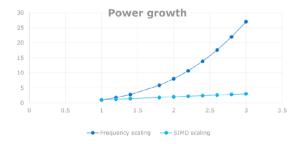
xmmo[127:64] = xmm1[127:64]
```

The combined effect of vectorization and threading



The Difference Is Growing With Each New Generation of Hardware

Why SIMD vector parallelism?



Wider SIMD -- Linear increase in area and power Wider superscalar – Quadratic increase in area and power Higher frequency – Cubic increase in power

With SIMD we can go faster with less power

Cumulative (app.) # of Vector Instructions

Enhancing Fine-Grained Parallelism

Focus is on vectorization of inner loops

Data Dependence Graph and Vectorization

- Loop dependences guide vectorization
 - Statements not data dependent on each other can be reordered, executed in parallel, or coalesced into a vector operation
- If the Data Dependence Graph (DDG) is acyclic, then vectorizing the program is straightforward

```
for (i=1; i<=n; i++) {
S1    a[i] = b[i] + 1;
S2    c[i] = a[i-1] + 2;
}</pre>
```

```
\Rightarrow
```

```
a[1:n] = b[1:n] + 1;
c[1:n] = a[0:n-1] + 2;
```

Loop Interchange (Loop Permutation)

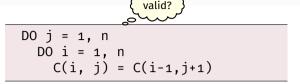
- Switch the nesting order of loops in a perfect loop nest
- Can increase parallelism, can improve spatial locality

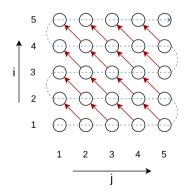
 Dependence is now carried by the outer loop, inner loop can be vectorized

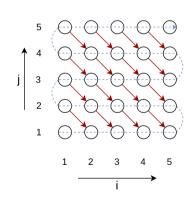
DO I = 1, N
DO J = 1, M

$$A(I+1,J) = A(I,J) + B$$

Example of Loop Interchange







Validity of Loop Permutation

- (i) Construct direction vectors for all possible dependences in the loop to form a direction matrix
 - ▶ Identical direction vectors are represented by a single row in the matrix
- (ii) Compute direction vectors based on the intended loop permutation
- (iii) Permutation is illegal if any permuted vector is lexicographically negative

A loop nest is **fully** permutable if any permutation transformation to the loop nest is legal

```
Example: d_1 = (1, -1, 1) and d_2 = (0, 2, -1)

ijk \rightarrow jik? (1, -1, 1) \rightarrow (-1, 1, 1): illegal

ijk \rightarrow kij? (0, 2, -1) \rightarrow (-1, 0, 2): illegal

ijk \rightarrow ikj? (0, 2, -1) \rightarrow (0, -1, 2): illegal
```

Does Loop Interchange/Permutation Always Help?

```
D0 i = 1, 10000

D0 j = 1, 1000

a(i) = a(i) + b(j,i) * c(i)
```

```
DO i = 1, N

DO j = 1, M

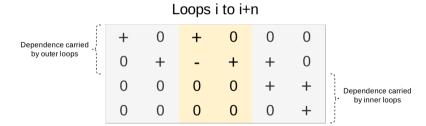
DO k = 1, L

a(i+1,j+1,k) = a(i,j,k) + b
```

- Benefits from loop interchange depends on the target machine, the data structures accessed, memory layout, and stride patterns
- Optimization choices for the snippet on the right
 - Vectorize J and K
 - Move K outermost and parallelize K with threads
 - ▶ Move I innermost and vectorize assuming column-major layout

Loop Shifting

- In a perfect loop nest, if loops at level $i, i+1, \ldots i+n$ carry no dependence, i.e., all dependences are carried by loops at level smaller than i or greater than i+n, then it is always legal to shift these loops inside of loop i+n+1
- These loops will not carry any dependences in their new position



Loop Shift for Matrix Multiply

```
DO I = 1, N

DO J = 1, N

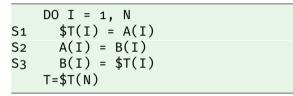
DO K = 1, N

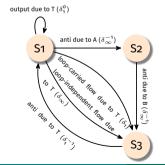
A(I,J) = A(I,J) + B(I,K)*C(K,J)
```

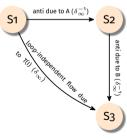
Is the loop nest vectorizable as is?

Scalar Expansion

Eliminates dependences that arise from reuse of memory locations at the cost of extra memory



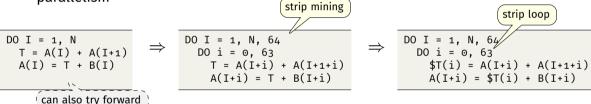




Understanding Scalar Expansion

Pros Cons

- + Eliminates dependences due to reuse of memory locations, helps with parallelism
- Increases memory and addressing overhead



Strip mining (also known as sectioning) is a special case of 1-D loop tiling

substitution

Limits of Scalar Expansion

```
$T(0) = T

DO I = 1, N

$T(I) = $T(I-1) + A(I) + A(I-1)

A(I) = $T(I)

T = $T(N)
```

Can we parallelize the I loop?

```
DO I = 1, 100

S1         T = A(I) + B(I)

S2         C(I) = T + T

S3         T = D(I) - B(I)

S4         A(I+1) = T * T
```

Can we vectorize the loop nest?

Scalar Renaming

```
DO I = 1, 100

S1         T = A(I) + B(I)

S2         C(I) = T + T

S3         T = D(I) - B(I)

S4         A(I+1) = T * T
```

Can we vectorize the loop nest?

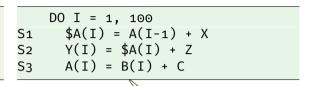
Allows Vectorization with Statement Interchange

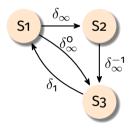
```
S3 \quad T2(1:100) = D(1:100) - B(1:100)
S4 \quad A(2:101) = T2(1:100) * T2(1:100)
S1 \quad T1(1:100) = A(1:100) + B(1:100)
S2 \quad C(1:100) = T1(1:100) + T1(1:100)
T = T2(100)
```

Array Renaming

D0 I = 1, 100
S1
$$A(I) = A(I-1) + X$$

S2 $Y(I) = A(I) + Z$
S3 $A(I) = B(I) + C$





Array renaming requires sophisticated analysis

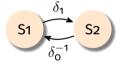
Node Splitting

DO I = 1, 100
S1 A(I) =
$$\frac{X(I+1)}{B(I)} + \frac{X(I)}{A(I)}$$

S2 X(I+1) = B(I) + $\frac{X(I)}{A(I)}$

DO I = 1, 100
So
$$\$X(I) = X(I+1)$$

S1 $A(I) = \$X(I) + X(I)$
S2 $X(I+1) = B(I) + 10$



Can we vectorize the loop nest?

Index-Set Splitting

An index-set splitting transformation subdivides the loop into different iteration ranges

Loop Splitting

$$M = N/2$$
DO I = 1, M-1
 $A(I) = A(N/2) + B(I)$
 $A(M) = A(N/2) + B(I)$
DO I = M+1, N
 $A(I) = A(N/2) + B(I)$

Loop Peeling

- Splits any problematic iterations (could be first, middle, or last few) from the loop body
- Change a loop-carried dependence to a loop-independent dependence
- Transformed loop carries no dependence, can be parallelized
- Peeled iterations execute in the original order, transformation is always legal to perform

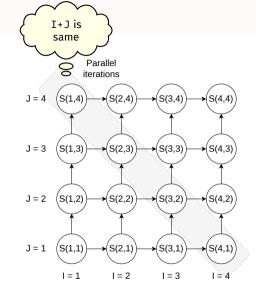
```
A(1) = A(1) + A(1)
DO I = 2, N
A(I) = A(I) + A(1)
```

Section-Based Splitting

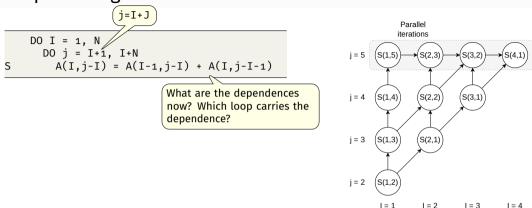
```
DO I = 1.N
                                                      DO I = 1.N
      DO J = 1, N/2
                                                        DO J = 1, N/2
     B(J.I) = A(J.I) + C
                                                       B(J.I) = A(J.I) + C
S1
                                                  S1
                                                        DO J = 1.N/2
      DO J = 1.N
                                      S<sub>3</sub> is
      A(J,I+1) = B(J,I) + D
                                                       A(J.I+1) = B(J.I) + D
S2
                                                  S2
                                      independent
                                                        DO J = N/2+1, N
                                                         A(J.I+1) = B(J.I) + D
    DO I = 1.N
                                                      M = N/2
      DO J = N/2+1, N
                                                  S<sub>3</sub> A(M+1:N.2:N+1) = B(M+1:N.1:N) + D
     A(J,I+1) = B(J,I) + D
S<sub>3</sub>
                                                      DO I = 1. N
    DO I = 1,N
                                                        B(1:M,I) = A(1:M,I) + C
      DO J = 1.N/2
                                                       A(1:M.I+1) = B(1:M.I) + D
                                      cannot
     B(J,I) = A(J,I) + C
S1
                                      vectorize I
      DO J = 1. N/2
      A(J.I+1) = B(J.I) + D
S2
```

Loop Skewing

Which loops carry dependences?



Loop Skewing



Loop skewing skews the inner loop relative to the outer loop by adding the index of the outer loop times a skewing factor f to the bounds of the inner loop and subtracting the same value from all the uses of the inner loop index

Perform Loop Interchange

Given a dependency vector (a, b), skewing transforms it to (a, fa + b)

```
DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)
```

```
DO j = 2, N+N

DO I = max(1,j-N), min(N,j-1)

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)
```

Understanding Loop Skewing

Pros

- + Reshapes the iteration space to find possible parallelism
- + Preserves lexicographic order of the dependences, is always legal
- + Allows for loop interchange in future

Cons

- Resulting iteration space can be trapezoidal
- Irregular loops are not very amenable for vectorization
- Need to be careful about load imbalance

Loop Unrolling (Loop Unwinding)

- Reduce number of iterations of loops
- Add statement(s) to do work of missing iterations
- JIT compilers try to perform unrolling at run-time

4-way inner loop unrolling

```
for (i=0; i<n; i++) {
   for (j=0; j<n; j++) {
     y[i] = y[i] + a[i][j]*x[j];
   }
}</pre>
```

Outer Loop Unrolling + Inner Loop Jamming

```
for (i=0; i<2*n; i++) {
  for (j=0; j<m; j++) {
    loop-body(i,j);
  }
}</pre>
```

```
for (i=0; i<2*n; i+=2) {
   for (j=0; j<m; j++) {
     loop-body(i,j);
   }
   for (j=0; j<m; j++) {
     loop-body(i+1,j);
   }
}</pre>
```

```
for (i=0; i<2*n; i+=2) {
  for (j=0; j<m; j++) {
    loop-body(i,j);
    loop-body(i+1,j);
  }
}</pre>
```

2-way outer unroll does not increase operation-level parallelism in the inner loop

Is Loop Unroll and Jam Legal?

```
DO I = 1, N

DO J = 1, M

A(I,J) = A(I-1,J+1)+C
```

```
DO I = 1, N, 2

DO J = 1, M

A(I,J) = A(I-1,J+1)+C

A(I+1,J) = A(I,J+1)+C
```

Validity Condition for Loop Unroll and Jam

- Complete unroll and jam of a loop is equivalent to a loop permutation that moves that loop innermost, without changing order of other loops
- If such a loop permutation is valid, unroll and jam of the loop is valid
- Example: 4D loop ijkl; $d_1=(1,-1,0,2)$, $d_2=(1,1,-2,-1)$ i $d_1 \rightarrow (-1,0,2,1)$, \Longrightarrow invalid to unroll and jam j $d_1 \rightarrow (1,0,2,-1)$; $d_2 \rightarrow (1,-2,-1,1)$, \Longrightarrow valid to unroll and jam k $d_1 \rightarrow (1,-1,2,0)$; $d_2 \rightarrow (1,1,-1,-2)$, \Longrightarrow valid to unroll and jam l d_1 and d_2 are unchanged; innermost loop can always be unrolled

Understanding Loop Unrolling

Pros

- + Small loop bodies are problematic, reduces control overhead of loops
- + Increases operation-level parallelism in loop body
- + Allows other optimizations like reuse of temporaries across iterations

Cons

- Increases the executable size
- Increases register usage
- May prevent function inlining

Loop Tiling (Loop Blocking)

- Improve data reuse by chunking the data in to smaller tiles (blocks)
 - ▶ All the required blocks are supposed to fit in the cache
- Performs strip mining in multiple array dimensions
- Tries to exploit spatial and temporal locality of data
- Determining the tile size
 - ▶ Requires accurate estimate of array accesses and the cache size of the target machine
 - ► Loop nest order also influences performance
 - Difficult theoretical problem, usually heuristics are applied
 - ► Cache-oblivious algorithms make efficient use of cache without explicit blocking

```
for (i = 0; i < N; i++) {
    ...
}</pre>
```

```
for (ii = 0; ii < N; ii+=B) {
  for (i = ii; i < min(N,ii+B), i++) {
    ...
  }
}</pre>
```

Validity Condition for Loop Tiling

- A band of loops is fully permutable if all permutations of the loops in that band are legal
- A contiguous band of loops can be tiled if they are fully permutable
- Example: d = (1, 2, -3)
 - Tiling all three loops ijk is not valid, since the permutation kij is invalid
 - ▶ 2D tiling of band ij is valid
 - > 2D tiling of band jk is valid

```
for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
    for (k = 0; k < n; k++)
       loop_body(i,j,k)</pre>
```

```
for (it = 0; it < n; it+=T)
  for (jt = 0; jt < n; jt+=T)
  for (i = it; i < it+T; i++)
    for (j = jt; j < jt+T; j++)
    for (k = 0; k < n; k++)
        loop_body(i,j,k)</pre>
```

Ways to Vectorize Code

Ways to Vectorize Code

• Auto-vectorizing compiler

Vector intrinsics

• Assembly programming

 Use SIMD-capable libraries like Intel Math Kernel Library (MKL)

```
easier, but less
control
```

```
for (i=0; i<LEN; i++)
  c[i] = a[i] + b[i];</pre>
```

```
void example() {
   __m128 rA, rB, rC;
   for (int i = 0; i <LEN; i+=4) {
      rA = _mm_load_ps(6a[i]);
      rB = _mm_load_ps(8b[i]);
      rC = _mm_add_ps(rA,rB);
      _mm_store_ps(6C[i], rC);
   }
}</pre>
```

```
..B8.5
movaps a(,%rdx,4), %xmmo
addps b(,%rdx,4), %xmmo
movaps %xmmo, c(,%rdx,4)
addq $4, %rdx
cmpq $rdi, %rdx
jl ..B8.5
```

harder, but more control

Auto-Vectorization

Compiler vectorizes automatically No code changes

Semi auto-vectorization Use pragmas as hints to guide compiler

Explicit vector programming OpenMP SIMD pragmas

Advantages

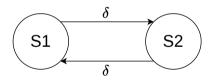
- + Transparent to programmers
- + Compilers can apply other transformations
- + Code is portabile across architectures
 - Vectorization instructions may differ, but compilers take care of it

Compilers may fail to vectorize

- Programmers may give hints to help the compiler
- Programmers may have to manually vectorize their code

Data Dependence Graph and Vectorization

- If the DDG is cyclic, then try to transform the DDG to an acyclic graph
 - ▶ When cycles are present, vectorization can be achieved by
 - Separating (distributing) the statements not in a cycle
 - Removing dependences
 - Freezing loops
 - Changing the algorithm



Vectorization in Presence of Cycles

Loop Distribution

```
for (i=1; i<n; i++) {
S1    b[i] = b[i] + c[i];
S2    a[i] = a[i-1]*a[i-2]+b[i];
S3    c[i] = a[i] + 1;
}</pre>
```

```
S1 b[1:n-1] = b[1:n-1] + c[1:n-1];

for (i=1; i<n; i++){

S2 a[i] = a[i-1]*a[i-2]+b[i];

}

S3 c[1:n-1] = a[1:n-1] + 1;
```

Scalar Expansion

```
for (i=0; i<n; i++) {
S1     a = b[i] + 1;
S2     c[i] = a + 2;
}</pre>
```

```
$a[o:n-1] = b[o:n-1] + 1;
c[o:n-1] = $a[o:n-1] + 2;
a = $a[n-1]
```

Vectorization in Presence of Cycles

Freezing Loops

```
for (i=1; i<n; i++) {
  for (j=1; j<n; j++) {
    a[i][j]=a[i][j]+a[i-1][j];
  }
}</pre>
```

```
for (i=1; i<n; i++) {
   a[i][1:n-1]=a[i][1:n-1]+a[i-1][1:n-1];
}</pre>
```

Changing the Algorithm

- When there is a recurrence, it is necessary to change the algorithm in order to vectorize
- Compilers use pattern matching to identify the recurrence and then replace it with a parallel version
- Examples of recurrences include

```
Reductions sum += A[i]
Linear recurrences A[i] = B[i]*A[i-1]+C[i]
Boolean recurrences if (A[i]>max) { max = A[i] }
```

Loop Vectorization

- Compiler computes the dependences
 - (i) The compiler figures out dependences by
 - Solving a system of (integer) equations (with constraints)
 - ▶ Demonstrating that there is no solution to the system of equations
 - (ii) Removes cycles in the dependence graph
 - (iii) Determines data alignment
 - (iv) Determines if vectorization is profitable
 - ▶ Loop vectorization is not always a legal and profitable transformation
- Vectorizing a loop with several statements is equivalent to strip-mining the loop and then applying loop distribution

```
for (i=0; i<LEN; i++) {
    a[i] = b[i] + 1;
    c[i] = b[i] + 2;
}</pre>
```

```
for (i=0; i<LEN; i+=strip_size){
  for (j=i; j<i+strip_size; j++)
    a[j] = b[j] + 1;
  for (j=i; j<i+strip_size; j++)
    c[j] = b[j] + 2;
}</pre>
```

Dependence Graphs and Compiler Vectorization

- No dependences: easy case, just check for profitability
- Acyclic graphs:
 - All dependences are forward: vectorized by the compiler
 - ▶ Some backward dependences: sometimes vectorized by the compiler
- Cycles in the dependence graph
 - ► Self anti-dependence: vectorized by the compiler
 - Recurrence: usually not vectorized by the compiler

Acyclic Dependences

Forward dependences are vectorized

```
for (i=0; i<LEN; i++) {
   a[i]= b[i] + c[i]
   d[i] = a[i] + 1;
}</pre>
```

Backward dependences can sometimes be vectorized

```
for (i=0; i<LEN; i++) {
S1    a[i] = b[i] + c[i]
S2    d[i] = a[i+1] + 1;
}</pre>
```

```
for (int i = 1; i<LEN; i++) {
S1    a[i] = d[i-1] + sqrt(c[i]);
S2    d[i] = b[i] + sqrt(e[i]);
}</pre>
```

```
for (i=0; i<LEN; i++) {
S2    d[i] = a[i+1] + 1;
S1    a[i]= b[i] + c[i]
}</pre>
```

```
for (int i = 1; i<LEN; i++) {

S2     d[i] = b[i] + sqrt(e[i]);
S1     a[i] = d[i-1] + sqrt(c[i]);
}</pre>
```

Cycles in the DDG

Are there transformations which allow vectorizing the following loops?

```
for (int i=0; i<LEN-1; i++) {
S1  b[i] = a[i] + 1;
S2  a[i+1] = b[i] + 2;
}
```

Statements cannot be reordered

```
for (int i=1; i<LEN; i++) {
S1    a[i] = b[i] + c[i];
S2    d[i] = a[i] + e[i-1];
S3    e[i] = d[i] + c[i];
}</pre>
```

All the statements are not involved in a cycle

Cycles in the DDG

```
for (int i=0; i<LEN-1; i++) {
S1    a[i]=a[i+1]+b[i];
}</pre>
```

Self anti-dependence can be vectorized

```
for (int i=1; i<LEN; i++) {
S1  a[i]=a[i-1]+b[i];
}</pre>
```

Self true dependence cannot be vectorized

```
for (int i=1; i<LEN; i++) {
S1    a[i]=a[i-4]+b[i];
}</pre>
```

Self true dependence with larger distance vectors can be vectorized

Cycles in the DDG

```
for (int i=0; i<LEN; i++) {
S1  a[r[i]] = a[r[i]] * 2;
}</pre>
```

```
Are there i and i' such that r[i] == r[i'] and i \neq i?
```

Cycles can appear in the DDG because the compiler cannot prove that there cannot be dependences

Challenges in Vectorization

Loop Transformations using Compiler Directives

When the compiler does not vectorize automatically due to dependences the programmer can inform the compiler that it is safe to vectorize

```
#pragma ivdep (ICC compiler)
```

```
for (int i=val; i<LEN-k; i++)
  a[i]=a[i+k]+b[i];</pre>
```

- Assume vector width is 4 elements
- This loop can be vectorized when k <
 -3 and k >= 0
- Suppose programmers know that k>o

How can the programmer tell the compiler that $k \ge 0$?

Compiler Directives

Compiler vectorizes many loops, but many more can be vectorized if appropriate directives are used

Intel ICC	
#pragma ivdep	Ignore data dependences
<pre>#pragma vector always</pre>	Override efficiency heuristics
<pre>#pragma novector</pre>	Disable vectorization

Aliasing

```
void test(float* A,float* B,float* C) {
  for (int i = 0; i <LEN; i++) {
    A[i]=B[i]+C[i];
  }
}</pre>
```

Aliasing

```
void test(float* A,float* B,float* C) {
  for (int i = 0; i <LEN; i++) {
    A[i]=B[i]+C[i];
  }
}</pre>
```

```
float *A = &B[i];
void test(float* A,float* B, float* C) {
   for (int i = 0; i <LEN; i++) {
        A[i]=B[i]+C[i];
   }
}</pre>
```

Aliasing

- To vectorize, the compiler needs to guarantee that the pointers are not aliased
- When the compiler does not know if two pointers are aliases, it can still vectorize but needs to add up to $\mathcal{O}(n^2)$ run-time checks, where n is the number of pointers
 - ▶ When the number of pointers is large, the compiler may decide to not vectorize

- Two possible workarounds
 - (i) Static and globally defined arrays
 - (ii) Use the __restrict__ keyword

Resolving Aliases Using Static and Global Arrays

```
float A[LEN] __attribute__ ((aligned(16)));
float B[LEN] attribute ((aligned(16)));
float C[LEN] __attribute__ ((aligned(16)));
void func1() {
 for (int i=0; i<LEN; i++)
   A[i] = B[i] + C[i]:
int main() {
 func1();
```

Resolving Aliases Using __restrict__ Keyword

```
float *A = &B[i]:
void test(float* restrict A,float* restrict B,
                               float* restrict C) {
 assume aligned(A, 16);
 __assume_aligned(B, 16);
 __assume_aligned(C, 16);
 for (int i = 0; i <LEN; i++) {
   A[i]=B[i]+C[i]:
int main() {
 float* A=(float*) memalign(16,LEN*sizeof(float));
 float* B=(float*) memalign(16.LEN*sizeof(float)):
 float* C=(float*) memalign(16,LEN*sizeof(float));
 func1(A,B,C);
```

Aliasing in Multidimensional Arrays



Aliasing in Multidimensional Arrays

Three solutions to try when __restrict__ does not enable vectorization

- (i) Static and global arrays
- (ii) Linearize the arrays and then use __restrict__ keyword
- (iii) Use compiler directives

Static and global declaration

```
float a[N][N] __attribute__ ((aligned(16)));
void t() {
    a[i][j] ...
}
int main() {
    ...
    t();
    ...
}
```

Aliasing in Multidimensional Arrays

Linearize the array

```
void t(float* __restrict__ a){
    // Access to a[i][j] is now a[i*128+j]
    ...
}
int main() {
    float* a = (float*) memalign(16,128*128*sizeof(float));
    ...
    t(a);
}
```

Use compiler directives

```
void func1(float **a, float **b, float **c) {
    for (int i=0; i<m; i++) {
#pragma ivdep
        for (int j=0; j<LEN; j++)
            c[i][j] = b[i][j] * a[i][j];
    }
}</pre>
```

Reductions

Reduction is an operation, such as addition, which is applied to the elements of an array to produce a result of a lesser rank

```
sum = 0;
for (int i=0; i<LEN; ++i) {
   sum += a[i];
}</pre>
```

```
x = a[o];
index = o;
for (int i=o; i<LEN; ++i) {
   if (a[i] > x) {
      x = a[i];
      index = i;
   }
}
```

Induction Variables

Induction variables can be expressed as a function of the loop iteration variable

```
float s = 0.0;
for (int i=0; i<LEN; i++) {
   s += 2.0;
   a[i] = s * b[i];
}</pre>
```

```
for (int i=0; i<LEN; i++) {
   a[i] = 2.0*(i+1)*b[i];
}</pre>
```

Coding style may influence a compiler's ability to vectorize

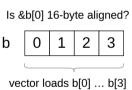
```
for (int i=0; i<LEN; i++) {
   *a = *b + *c;
   a++; b++; c++;
}</pre>
```

```
for (int i=0; i<LEN; i++) {
   a[i] = b[i] + c[i];
}</pre>
```

Data Alignment

- Vector loads/stores load/store 128 consecutive bits to a vector register
- Data addresses need to be 16-byte (128 bits) aligned to be loaded/stored
 - ▶ Intel platforms support aligned and unaligned load/stores
 - ▶ IBM platforms do not support unaligned load/stores

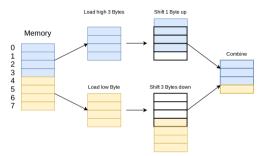
```
void test1(float *a,float *b,float *c) {
  for (int i=0;i<LEN;i++) {
    a[i] = b[i] + c[i];
  }
}</pre>
```



Why Data Alignment May Improve Efficiency?

- Vector load/store from aligned data requires one memory access
- Vector load/store from unaligned data requires multiple memory accesses and some shift operations
- A pointer is 16-byte aligned if the address is divisible by 16
 - ► That is, the last digit of the pointer address in hex must be o

Read 4 Bytes from Address 1



```
float B[1024] __attribute__ ((aligned(16)));
int main() {
   printf("%p, %p\n", &B[0], &B[4]);
}
// Output: 0x7fff1e9d8580, 0x7fff1e9d8590
```

Data Alignment

Manual 16-byte alignment can be achieved by forcing the base address to be a multiple of 16

```
// Static allocation
float b[N] __attribute__ ((aligned(16)));
// Dynamic allocation
float* a = (float*) memalign(16,N*sizeof(float));
```

When a pointer is passed to a function, the compiler can be made aware of alignment

```
void func1(float *a, float *b, float *c) {
    __assume_aligned(a, 16);
    __assume_aligned(b, 16);
    __assume_aligned(c, 16);
    for int (i=0; i<LEN; i++)
        a[i] = b[i] + c[i];
}</pre>
```

Alignment in a struct

```
struct st {
 char A:
 int B[64]:
 float C:
 int D[64]:
int main() {
 st s1:
 printf("%p\n". &s1.A); // ox7fffe6765fo0
 printf("%p\n", &s1.B); // ox7fffe6765f04
 printf("%p\n", &s1.C); // ox7fffe6766004
 printf("%p\n", &s1.D); // ox7fffe6766008
```

```
struct st {
 char A;
 int B[64] __attribute__ ((aligned(16))):
 float C:
 int D[64] attribute ((aligned(16)));
int main() {
 st s1:
 printf("%p\n", &s1.A); // ox7fffe6765f00
 printf("%p\n". &s1.B): // ox7fff1e9d8590
 printf("%p\n", &s1.C); // ox7fffe6766004
 printf("%p\n", &s1.D); // ox7fff1e9d86ao
```

Arrays B and D are not 16-bytes aligned

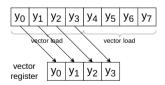
Non-unit Stride

Array of structures

```
typedef struct{int x, y, z} point;
point pt[LEN];
for (int i=0; i<LEN; i++) {
  pt[i].y *= scale;
}</pre>
```


Structure of arrays

```
int ptx[LEN], pty[LEN], ptz[LEN];
for (int i=0; i<LEN; i++) {
  pty[i] *= scale;
}</pre>
```



Conditional Statements

- A compiler may not vectorize a loop with a conditional if it is unsure about the profitability
 - ► Furthermore, removing the condition may lead to exceptions
- You may need to introduce #pragma vector always
- Compiler may create multiple versions of the code (e.g., scalar and vector)
 - Compiler may remove the conditions when generating the vector version

```
#pragma vector always
for (int i = 0; i < LEN; i++) {
  if (c[i] < 0.0)
    a[i] = a[i] * b[i] + d[i];
}</pre>
```

Vectorization Examples

- Check the Makefile for relevant options passed to GCC
- Vectorization output can vary across compiler versions and architecture generations
- Correlate the assembly code with the high-level C++ statements
- Vectorize a loop nest with increasing control
- Understanding alignment
 - ▶ struct.cpp 🖹
 - ▶ unaligned-cost-gcc.cpp 🖹
- Makefile 🖹

Vectorization	with	Intrinsics	
VCCLOTIZATION	VVICII		

Vector Intrinsics

- Intrinsics are useful when
 - the compiler fails to vectorize, or
 - when the programmer thinks it is possible to generate better code than what is produced by the compiler
- Intrinsics are architecture specific

Intel Intrinsics Header Files

- We will focus on the Intel vector intrinsics
- You have to include one of the following header files for using intrinsics

```
SSE #include <xmmintrin.h>
SSE2 #include <emmintrin.h>
SSE3 #include <pmmintrin.h>
SSSE3 #include <tmmintrin.h>
SSE4.1 #include <smmintrin.h>
SSE4.2 #include <nmmintrin.h>
AVX #include <immintrin.h>
AVX2 #include <immintrin.h>
AVX512 #include <immintrin.h>
```

• Alternatively, use #include <x86intrin.h>, it includes all relevant headers

Format of Intel Intrinsic APIs

```
_mm_instruction_suffix(...)
_mm256_instruction_suffix(...)
```

```
Suffix can take many forms
ss scalar single precision
ps packed (vector) singe precision
sd scalar double precision
pd packed double precision
si# scalar integer (8, 16, 32, 64, or 128 bits)
```

su# scalar unsigned integer (8, 16, 32, 64, or 128 bits)

Data Types

Few examples

- __m128 packed single precision (vector XMM register)
- __m128d packed double precision (vector XMM register)
- __m128i packed integer (vector XMM register)

Load four 16-byte aligned single precision values in a vector

```
float a[4]={1.0,2.0,3.0,4.0}; // a must be 16-byte aligned
__m128 x = _mm_load_ps(a);
```

Add two vectors containing four single precision values

```
__m128 a, b;
__m128 c = _mm_add_ps(a, b);
```

Examples with Intrinsics

- Check CPU features
- Understanding alignment cost with intrinsics
- ullet Inclusive prefix sum with SSE ullet
- Makefile 🖹

Summary

- Relevance of vectorization to improve program performance is likely to increase in the future as vector lengths grow
- Compilers are often only partially successful at vectorizing code
- When the compiler fails, programmers can
 - add compiler directives, or
 - apply loop transformations
- If after transforming the code, the compiler still fails to vectorize (or the performance of the generated code is poor), use vector extensions (e.g., intrinsics or assembly) directly

Enhancing Coarse-Grained Parallelism

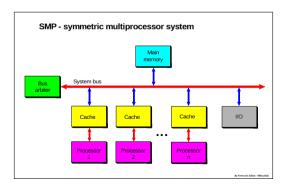
Focus is on parallelization of outer loops

Find Work for Threads

Setup

- Symmetric multiprocessors with shared memory
- Threads are running on each core and are coordinating execution with occasional synchronization

Challenge Balance the granularity of parallelism with communication overheads



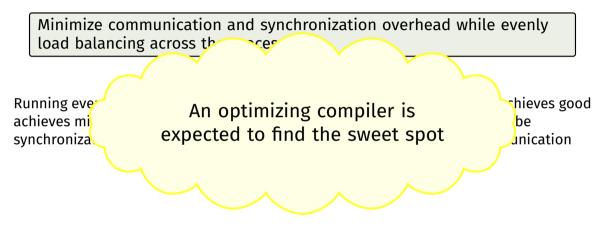
Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly load balancing across the processors

Running everything on one processor achieves minimal communication and synchronization overhead

Very fine-grained parallelism achieves good load balance, but benefits may be outweighed by frequent communication and synchronization

Challenges in Coarse-Grained Parallelism



Privatization

- Privatization is similar to scalar expansion
- Temporaries can be made local to each iteration

```
DO I = 1,N
S1         T = A(I)
S2         A(I) = B(I)
S3         B(I) = T
```

```
PARALLEL DO I = 1,N
PRIVATE t
S1 t = A(I)
S2 A(I) = B(I)
S3 B(I) = t
```

Privatization

A scalar variable x in a loop L is privatizable if every path from the entry of L to a use of x in the loop passes through a definition of x

- No use of the variable is upward exposed, i.e., the use never reads a value that was assigned outside the loop
- No use of the variable is from an assignment in an earlier iteration

Computing upward-exposed variables from a block BB

$$up(BB) = use(BB) \cup \left(\neg def(BB) \cap \bigcup_{y \in succ(BB)} up(y)\right)$$

Computing privatizable variables for a loop body B where BB_0 is the entry block

$$private(B) = \neg up(BB_o) \cap \left(\bigcup_{y \in B} def(y)\right)$$

Privatization

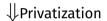
- If all dependences carried by a loop involve a privatizable variable, then loop can be parallelized by making the variables private
- Preferred compared to scalar expansion
 - ▶ Less memory requirement
 - Scalar expansion may suffer from false sharing
- However, there can be situations where scalar expansion works but privatization does not

Comparing Privatization and Scalar Expansion

DO I = 1, N

$$T = A(I) + B(I)$$

 $A(I-1) = T$



Loop Distribution (Loop Fission)

DO I = 1, 100
DO J = 1, 100
S1
$$A(I,J) = B(I,J) + C(I,J)$$

S2 $D(I,J) = A(I,J-1) * 2.0$

```
DO I = 1, 100

DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

DO J = 1, 100

S2 D(I,J) = A(I,J-1) * 2.0
```

Eliminates loop-carried dependences

Validity Condition for Loop Distribution

A loop with two statements can be distributed if there are no dependences from any instance of the **later** statement to any instance of the **earlier** one

- Sufficient (but not necessary) condition
- Generalizes to more statements

```
DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I+1) * D(I)
```

```
DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I-1) * D(I)
```

Performing Loop Distribution

Steps

- (i) Build the DDG
- (ii) Identify strongly-connected components (SCCs) in the DDG
- (iii) Make each SCC a separate loop
- (iv) Arrange the new loops in a topological order of the DDG

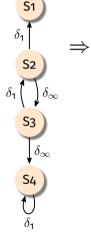
```
DO I = 1, N

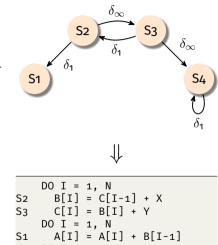
S1   A[I] = A[I] + B[I-1]

S2   B[I] = C[I-1] + X

S3   C[I] = B[I] + Y

S4   D[I] = C[I] + D[I-1]
```





Understanding Loop Distribution

Pros

- + Execute source of a dependence before the sink
- + Reduces the memory footprint of the original loop for both data and code
- + Improves opportunities for vectorization

Cons

 Can increase the synchronization required between dependence points

Loop Alignment

Unlike loop distribution, realign the loop to compute and use the values in the same iteration

```
DO I = 2, N

S1 A(I) = B(I) + C(I)

S2 D(I) = A(I-1) * 2.0
```

```
DO i = 1, N+1

if i > 1 && i < N+1

S1    A(i) = B(i) + C(i)

if i < N

S2    D(i+1) = A(i) * 2.0
```

carried dependence becomes loop independent

Can Loop Alignment Eliminate All Carried Dependences?

```
DO I = 1, N

S1  A(I) = B(I) + C

S2  B(I+1) = A(I) + D

A is aligned, B is misaligned
```

```
DO i = 1, N+1

if i > 1

S2  B(i) = A(i-1) + D

if i < N+1

S1  A(i) = B(i) + C
```

```
DO I = 1, N
S1 A(I+1) = B(I) + C
S2 X(I) = A(I+1) + A(I)
```

```
\Rightarrow
```

```
DO i = 0, N

if i > 0

S1    A(i+1) = B(i) + C

if i < N

S2    X(i+1) = A(i+2) + A(i+1)
```

Loop Fusion (Loop Jamming)

L13 D0 I = 1, N

$$A(I) = B(I) + 1$$

 $D(I) = A(I) + X$
L2 D0 I = 1, N
 $C(I) = A(I) + C(I-1)$

Validity Condition for Loop Fusion

- Consider a loop-independent dependence between statements in two different loops (i.e., from S1 to S2)
- A dependence is fusion-preventing if fusing the two loops causes the dependence to be carried by the combined loop in the reverse direction (from S2 to S1)

flow dependence

DO I = 1, N S1 A(I) = B(I) + CS2 D(I) = A(I+1) + E

backward loop-carried anti dependence

Understanding Loop Fusion

Pros

- + Reduce overhead of loops
- + May improve temporal locality

DO I = 1, N
S1
$$A(I) = B(I) + C$$

DO I = 1, N
S2 $D(I) = A(I-1) + E$

Cons

May decrease data locality in the fused loop

```
DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I-1) + E
```

Loop Interchange

Parallelizing J is good for vectorization, but not for coarse-grained parallelism

$$\Rightarrow \begin{array}{c} DO \ J = 1, \ M \\ DO \ I = 1, \ N \\ A(I+1,J) = A(I,J) + B(I,J) \end{array}$$

Dependence-free loops should move to the outermost level

Condition for Loop Interchange

In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contains only "o" entries

```
DO I = 1, N

DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)
```

Code Generation Strategy

- (i) Continue till there are no more columns to move
 - ▶ Choose a loop from the direction matrix that has all "o" entries in the column
 - Move it to the outermost position
 - ▶ Eliminate the column from the direction matrix
- (ii) Pick loop with most "+" entries, move to the next outermost position
 - Generate a sequential loop
 - ▶ Eliminate the column
 - Eliminate any rows that represent dependences carried by this loop
- (iii) Repeat from Step (i)

Code Generation Example

```
DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3
```

```
DO I = 1, N

PARALLEL DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3
```

How did we pick loop J for parallelization?

How can we parallelize this loop?

```
DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```

No single loop carries all the dependences, so we can only parallelize loop K

Loop Reversal

```
DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```

 \Downarrow

```
DO I = 2, N+1

DO J = 2, M+1

DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```

- When the iteration space of a loop is reversed, the direction of dependences within that reversed iteration space are also reversed
 - ▶ A "+" dependence becomes a "-" dependence, and vice versa
- We cannot perform loop reversal if the loop carries a dependence

Perform Interchange after Loop Reversal

```
DO I = 2, N+1

DO J = 2, M+1

DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```



```
DO K = L, 1, -1

DO I = 2, N+1

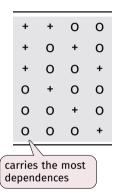
DO J = 2, M+1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
```

increases options for performing other optimizations

Which Transformations are Most Important?

- Selecting the best loops for parallelization is a NP-complete problem
- Flow dependences are difficult to remove
 - Try to reorder statements as in loop peeling, loop distribution
- Techniques like scalar expansion, privatization can be useful
 - Loops often use scalars for temporary values



Unimodular Transformations

Challenges in Applying Transformations

- We have discussed transformations (legality and benefits) in isolation
- Compilers need to apply compound transformations (e.g., loop interchange followed by reversal)
- It is challenging to decide on the desired transformations and their order of application
 - ▶ Choice and order is sensitive to the program input, a priori order does not work

Unimodular Transformations

- A unimodular matrix is a square integer matrix having determinant 1 or -1 (e.g., $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$)
- Few loop transformations can be modeled as matrix transformations involving unimodular matrices
 - ▶ Loop interchange maps iteration (i, j) to iteration (j, i)

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} j \\ i \end{bmatrix}$$

▶ Given transformation *T* is linear, the transformed dependence is given by *Td* where *d* is the dependence vector in the original iteration space

$$\begin{bmatrix} \mathsf{O} & \mathsf{1} \\ \mathsf{1} & \mathsf{O} \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} d_2 \\ d_1 \end{bmatrix}$$

- ► The transformation matrix for loop reversal of the outer loop i in a 2D loop nest is $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- The transformation matrix for loop skewing of a 2D loop nest (i,j) is the identity matrix T with $T_{j,i}$ equal to f, where we skew loop j with respect to loop i by a factor f

Example of Loop Skewing

Original

Dependences $D = \{(1, 0), (0, 1)\}$

Skewed

Transformation matrix =
$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Dependences
$$D' = TD = \{(1, 1), (0, 1)\}$$

Representing Compound Transformations

Loop interchange is illegal because

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Let us try loop interchange followed by loop reversal. The transformation matrix T is

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Applying T to the loop nest is legal because

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Challenges for Real-World Compilers

- Conditional execution
- Symbolic loop bounds
- Indirect memory accesses
- ...

References

- S. Midkiff. Automatic Parallelization: An Overview of Fundamental Compiler Techniques. Sections 4.1–4.2, 4.5, 5.1–5.6, Springer Cham.
- J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Sections 4.1–4.2, 4.5, 6th edition, Morgan Kaufmann.
- M. Garzarán et al. Program Optimization Through Loop Vectorization.
- M. Voss. Topics in Loop Vectorization.
- K. Rogozhin. Vectorization.