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Enhancing Program Performance

• Loops are one of most commonly used constructs in HPC programs
• Compilers perform many loop optimizations automatically to

▶ Exploit fine-grained parallelism
▶ Multiple pipelined functional units in each core
▶ Vector instruction sets (SSE, AVX, AVX-512)

▶ Exploit coarse-grained parallelism for SMP systems
▶ Keep multiple asynchronous processors busy with work

▶ Minimize cost of memory accesses
• In some cases, source code modifications can enhance the optimizer’s ability to

transform code
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Different Levels of Parallelization in Hardware

Instruction-level Parallelism
Microarchitectural techniques like pipelining, OOO execution, and superscalar instruction
issue

Data-level Parallelism
Use Single Instruction Multiple Data (SIMD) vector processing instructions and units

Thread-level Parallelism
Simultaneous multithreading or hyperthreading
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Vectorization



Vectorization

• Vectorization is the process of transforming a scalar operation on single data
elements at a time (SISD) to an operation on multiple data elements at once (SIMD)

• Helps transforms a loop nest so that the same operation is performed on several
vector elements at the same time

K. Rogozhin. Vectorization.
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Vectorization
double *a, *b, *c;
for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

Scalar mode

One instruction (e.g., vaddsd/vaddss)
produces one result

a[i]

b[i]
+

=
c[i]

Vector mode

One instruction (e.g., vaddpd/vaddps) can
produce multiple results

a[i+4]
+

=

a[i+3] a[i+2]a[i+5] a[i+1] a[i]a[i+6]a[i+7]

b[i+4] b[i+3] b[i+2]b[i+5] b[i+1] b[i]b[i+6]b[i+7]

c[i+4] c[i+3] c[i+2]c[i+5] c[i+1] c[i]c[i+6]c[i+7]
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Vectorization

ld r1, addr1
ld r2, addr2
add r3, r1, r2
st r3, addr3

for (i=0; i<n; i++) {
c[i] = a[i] + b[i];

}

ldv vr1, addr1
ldv vr2, addr2
addv vr3, vr1, vr2
stv vr3, addr3

n times n
4 times
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SIMD Vectorization

• Use of SIMD units can speed up the
program

• Intel SSE has 128-bit vector registers
and functional units

• Assuming a single ALU, these SIMD
units can execute 4 single precision
floating point number or 2 double
precision operations in the time it
takes to do only one of these
operations by a scalar unit

128-bit wide operands using integer types

Daniel Kusswurm. Modern X86 Assembly Language Programming. 2nd edition, Apress.
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Intel-Supported SIMD Extensions

SIMD Extensions Width (bits) SP calculations DP calculations Introduced

SSE2/SSE3/SSE4 128 4 2 ∼2001–2007
AVX/AVX2 256 8 4 ∼2011–2015
AVX-512 512 16 8 ∼2017

Other platforms that support SIMD have different extensions (e.g., ARM Neon and Power
AltiVec)
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Intel-Supported SIMD Extensions

YMM XMMZMM
128 bits

256 bits

512 bits

64-bit architecture

SSE XMM0–XMM15
AVX YMM0–YMM15 Low-order 128 bits of each YMM register is aliased

to a corresponding XMM register
AVX-512 ZMM0–ZMM31 Low-order 256 and 128 bits are aliased to registers

YMM0–YMM31 and XMM0–XMM31 respectively
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x86_64 Vector Operations

Example instructions
Move (V)MOV[A/U][P/S][D/S]

Comparison (V)CMP[P/S][D/S]
Arithmetic (V)[ADD/SUB/MUL/DIV][P/S][D/S]

Instruction decoding
V AVX

P,S packed, scalar
A,U aligned, unaligned
D,S double-, single-precision

B,W,D,Q byte, word, doubleword, quadword integers

[] required
() optional
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x86_64 Vector Operations

movss xmm1, xmm2 Copy scalar single-precision floating-point value (low 32 bits)
from xmm2 to xmm1

vmovapd xmm1, xmm2 Move aligned packed double-precision floating-point values
from xmm2 to xmm1

vaddss xmm0,xmm1,xmm2 xmm0[31:0] = xmm1[31:0] + xmm2[31:0]
xmm0[127:32] = xmm1[127:32]

vaddsd xmm0,xmm1,xmm2 xmm0[63:0] = xmm1[63:0] + xmm2[63:0]
xmm0[127:64] = xmm1[127:64]

Intel Intrinsics Guide
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M. Voss. Topics in Loop Vectorization.

https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/vectorization-voss.pdf






Enhancing Fine-Grained Parallelism

Focus is on vectorization of inner loops



Data Dependence Graph and Vectorization

• Loop dependences guide vectorization
▶ Statements not data dependent on each other can be reordered, executed in parallel, or

coalesced into a vector operation
• If the Data Dependence Graph (DDG) is acyclic, then vectorizing the program is

straightforward

for (i=1; i<=n; i++) {
S1 a[i] = b[i] + 1;
S2 c[i] = a[i-1] + 2;

}

=⇒ a[1:n] = b[1:n] + 1;
c[1:n] = a[0:n-1] + 2;
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Loop Interchange (Loop Permutation)

• Switch the nesting order of loops in a
perfect loop nest

• Can increase parallelism, can improve
spatial locality

• Dependence is now carried by the
outer loop, inner loop can be
vectorized

DO J = 1, M
DO I = 1, N

S A(I+1,J) = A(I,J) + B

⇓

DO I = 1, N
DO J = 1, M

S A(I+1,J) = A(I,J) + B
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Example of Loop Interchange

DO i = 1, n
DO j = 1, n
C(i, j) = C(i-1,j+1)

DO j = 1, n
DO i = 1, n

C(i, j) = C(i-1,j+1)

1 2 3 4 5

j

1

2

3

4

5

i

1 2 3 4 5

i

1

2

3

4

5

j

valid?
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Validity of Loop Permutation

(i) Construct direction vectors for all possible dependences in the loop to form a
direction matrix
▶ Identical direction vectors are represented by a single row in the matrix

(ii) Compute direction vectors based on the intended loop permutation
(iii) Permutation is illegal if any permuted vector is lexicographically negative

A loop nest is fully permutable if any permutation transformation to the loop nest is legal

Example: d1 = (1,−1, 1) and d2 = (0, 2,−1)
ijk→ jik? (1,−1, 1) → (−1, 1, 1): illegal
ijk→ kij? (0, 2,−1) → (−1,0, 2): illegal
ijk→ ikj? (0, 2,−1) → (0,−1, 2): illegal
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Does Loop Interchange/Permutation Always Help?

DO i = 1, 10000
DO j = 1, 1000

a(i) = a(i) + b(j,i) * c(i)

DO i = 1, N
DO j = 1, M

DO k = 1, L
a(i+1,j+1,k) = a(i,j,k) + b

• Benefits from loop interchange depends on the target machine, the data structures
accessed, memory layout, and stride patterns

• Optimization choices for the snippet on the right
▶ Vectorize J and K
▶ Move K outermost and parallelize K with threads
▶ Move I innermost and vectorize assuming column-major layout
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Loop Shifting

• In a perfect loop nest, if loops at level i, i+ 1, . . . i+ n carry no dependence, i.e., all
dependences are carried by loops at level smaller than i or greater than i+ n, then it
is always legal to shift these loops inside of loop i+ n+ 1

• These loops will not carry any dependences in their new position

+ 0 + 0 0 0
0 + - + + 0
0 0 0 0 + +
0 0 0 0 0 +

Loops i to i+n

Dependence carried
by outer loops

Dependence carried
by inner loops
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Loop Shift for Matrix Multiply

DO I = 1, N
DO J = 1, N

DO K = 1, N
S A(I,J) = A(I,J) + B(I,K)*C(K,J)

Is the loop nest
vectorizable as is?
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Scalar Expansion
Eliminates dependences that arise from reuse of memory locations at the cost of extra
memory

DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

S1 S2

S3

anti due to A (δ−1
∞ )

loop-independent flow
due

to
T
(δ∞

)

loop-carried
flow

due
to

T
(δ1 )

antidue
to

B
(δ

−
1

∞
)

anti due
to

T
(δ −

11
)

output due to T (δo1 )

DO I = 1, N
S1 $T(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = $T(I)

T=$T(N)

S1 S2

S3

loop-independent flow
due

to
T(I)

(δ∞
)

anti due to A (δ−1
∞ )

antidue
to

B
(δ

−
1

∞
)
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Understanding Scalar Expansion

Pros

+ Eliminates dependences due to reuse
of memory locations, helps with
parallelism

Cons

− Increases memory and addressing
overhead

DO I = 1, N
T = A(I) + A(I+1)
A(I) = T + B(I)

=⇒ DO I = 1, N, 64
DO i = 0, 63
T = A(I+i) + A(I+1+i)
A(I+i) = T + B(I+i)

=⇒ DO I = 1, N, 64
DO i = 0, 63

$T(i) = A(I+i) + A(I+1+i)
A(I+i) = $T(i) + B(I+i)

can also try forward
substitution

strip mining
strip loop

Strip mining (also known as sectioning) is a special case of 1-D loop tiling
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Limits of Scalar Expansion

DO I = 1, N
T = T + A(I) + A(I-1)
A(I) = T

$T(0) = T
DO I = 1, N

$T(I) = $T(I-1) + A(I) + A(I-1)
A(I) = $T(I)

T = $T(N)

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T

DO I = 1, 100
S1 $T(I) = A(I) + B(I)
S2 C(I) = $T(I) + $T(I)
S3 $T(I) = D(I) - B(I)
S4 A(I+1) = $T(I) * $T(I)

Can we parallelize
the I loop?

Can we vectorize the
loop nest?
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Scalar Renaming

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2

T = T2

Can we vectorize the
loop nest?
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Allows Vectorization with Statement Interchange

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2

T = T2

=⇒
DO I = 1, 100

S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1

T = T2

=⇒
S3 T2(1:100) = D(1:100) - B(1:100)
S4 A(2:101) = T2(1:100) * T2(1:100)
S1 T1(1:100) = A(1:100) + B(1:100)
S2 C(1:100) = T1(1:100) + T1(1:100)

T = T2(100)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 28 / 112



Array Renaming

DO I = 1, 100
S1 A(I) = A(I-1) + X
S2 Y(I) = A(I) + Z
S3 A(I) = B(I) + C

DO I = 1, 100
S1 $A(I) = A(I-1) + X
S2 Y(I) = $A(I) + Z
S3 A(I) = B(I) + C

S1 S2

S3

δ∞

δ−1
∞

δ0
∞

δ1

Array renaming requires
sophisticated analysis
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Node Splitting

DO I = 1, 100
S1 A(I) = X(I+1) + X(I)
S2 X(I+1) = B(I) + 10

DO I = 1, 100
S0 $X(I) = X(I+1)
S1 A(I) = $X(I) + X(I)
S2 X(I+1) = B(I) + 10

S1 S2
δ1

δ−1
0

Can we vectorize the
loop nest?
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Index-Set Splitting

DO I = 1, 100
A(I+20) = A(I) + B

DO I = 1, 100, 20
DO i = I, I+19

A(i+20) = A(i) + B

An index-set splitting transformation subdivides the loop into different iteration ranges

strip mining
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Loop Splitting

DO I = 1, N
A(I) = A(N/2) + B(I)

S1

δ−1
∞

M = N/2
DO I = 1, M-1

A(I) = A(N/2) + B(I)
A(M) = A(N/2) + B(I)
DO I = M+1, N

A(I) = A(N/2) + B(I)

assume N is
divisible by 2
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Loop Peeling

• Splits any problematic iterations (could be first, middle, or last few) from the loop
body

• Change a loop-carried dependence to a loop-independent dependence
• Transformed loop carries no dependence, can be parallelized
• Peeled iterations execute in the original order, transformation is always legal to

perform

DO I = 1, N
A(I) = A(I) + A(1)

A(1) = A(1) + A(1)
DO I = 2, N

A(I) = A(I) + A(1)

Loop splitting
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Section-Based Splitting

DO I = 1,N
DO J = 1, N/2

S1 B(J,I) = A(J,I) + C
DO J = 1,N

S2 A(J,I+1) = B(J,I) + D

=⇒ DO I = 1,N
DO J = 1, N/2

S1 B(J,I) = A(J,I) + C
DO J = 1,N/2

S2 A(J,I+1) = B(J,I) + D
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D

=⇒

DO I = 1,N
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D
DO I = 1,N
DO J = 1,N/2

S1 B(J,I) = A(J,I) + C
DO J = 1, N/2

S2 A(J,I+1) = B(J,I) + D

=⇒ M = N/2
S3 A(M+1:N,2:N+1) = B(M+1:N,1:N) + D

DO I = 1, N
S1 B(1:M,I) = A(1:M,I) + C
S2 A(1:M,I+1) = B(1:M,I) + D

S3 is
independent

cannot
vectorize I
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Loop Skewing

DO I = 1, N
DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

S(1,1) S(2,1) S(3,1) S(4,1)

S(1,2) S(2,2) S(3,2) S(4,2)

S(1,3) S(2,3) S(3,3) S(4,3)

S(1,4) S(2,4) S(3,4) S(4,4)

I = 1 I = 2 I = 3 I = 4

J = 1

J = 2

J = 3

J = 4

Parallel
iterations

Which loops carry
dependences?

I+J is
same
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Loop Skewing

DO I = 1, N
DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

S(1,2)

S(1,3) S(2,1)

S(1,4) S(2,2) S(3,1)

S(1,5) S(2,3) S(3,2) S(4,1)

I = 1 I = 2 I = 3 I = 4

j = 2

j = 3

j = 4

j = 5

Parallel
iterations

Loop skewing skews the inner loop relative to the outer loop by adding the index of the
outer loop times a skewing factor f to the bounds of the inner loop and subtracting the
same value from all the uses of the inner loop index

j=I+J

What are the dependences
now? Which loop carries the
dependence?
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Perform Loop Interchange

Given a dependency vector (a,b), skewing transforms it to (a, fa+ b)

DO I = 1, N
DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

⇓

DO j = 2, N+N
DO I = max(1,j-N), min(N,j-1)

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

can use Fourier-
Motzkin elimination
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Understanding Loop Skewing

Pros

+ Reshapes the iteration space to find
possible parallelism

+ Preserves lexicographic order of the
dependences, is always legal

+ Allows for loop interchange in future

Cons

− Resulting iteration space can be
trapezoidal

− Irregular loops are not very amenable
for vectorization

− Need to be careful about load
imbalance
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Loop Unrolling (Loop Unwinding)

• Reduce number of iterations of loops
• Add statement(s) to do work of missing iterations
• JIT compilers try to perform unrolling at run-time

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
y[i] = y[i] + a[i][j]*x[j];

}
}

for (i=0; i<n; i++) {
for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j]
+ a[i][j+1]*x[j+1]
+ a[i][j+2]*x[j+2]
+ a[i][j+3]*x[j+3];

}
}

4-way inner
loop unrolling
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Outer Loop Unrolling + Inner Loop Jamming

for (i=0; i<2*n; i++) {
for (j=0; j<m; j++) {
loop-body(i,j);

}
}

for (i=0; i<2*n; i+=2) {
for (j=0; j<m; j++) {

loop-body(i,j);
}
for (j=0; j<m; j++) {

loop-body(i+1,j);
}

}

for (i=0; i<2*n; i+=2) {
for (j=0; j<m; j++) {
loop-body(i,j);
loop-body(i+1,j);

}
}

2-way outer unroll does not increase
operation-level parallelism in the in-
ner loop
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Is Loop Unroll and Jam Legal?

DO I = 1, N
DO J = 1, M

A(I,J) = A(I-1,J+1)+C

DO I = 1, N, 2
DO J = 1, M

A(I,J) = A(I-1,J+1)+C
A(I+1,J) = A(I,J+1)+C
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Validity Condition for Loop Unroll and Jam

• Complete unroll and jam of a loop is equivalent to a loop permutation that moves
that loop innermost, without changing order of other loops

• If such a loop permutation is valid, unroll and jam of the loop is valid

• Example: 4D loop ijkl; d1 = (1,−1,0, 2), d2 = (1, 1,−2,−1)
i d1 → (−1,0, 2, 1), =⇒ invalid to unroll and jam
j d1 → (1,0, 2,−1);d2 → (1,−2,−1, 1), =⇒ valid to unroll and jam
k d1 → (1,−1, 2,0);d2 → (1, 1,−1,−2), =⇒ valid to unroll and jam
l d1 and d2 are unchanged; innermost loop can always be unrolled
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Understanding Loop Unrolling

Pros

+ Small loop bodies are problematic,
reduces control overhead of loops

+ Increases operation-level parallelism
in loop body

+ Allows other optimizations like reuse
of temporaries across iterations

Cons

− Increases the executable size
− Increases register usage
− May prevent function inlining
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Loop Tiling (Loop Blocking)
• Improve data reuse by chunking the data in to smaller tiles (blocks)

▶ All the required blocks are supposed to fit in the cache
• Performs strip mining in multiple array dimensions
• Tries to exploit spatial and temporal locality of data
• Determining the tile size

▶ Requires accurate estimate of array accesses and the cache size of the target machine
▶ Loop nest order also influences performance
▶ Difficult theoretical problem, usually heuristics are applied
▶ Cache-oblivious algorithms make efficient use of cache without explicit blocking

for (i = 0; i < N; i++) {
...

}

for (ii = 0; ii < N; ii+=B) {
for (i = ii; i < min(N,ii+B), i++) {

...
}

}
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Validity Condition for Loop Tiling

• A band of loops is fully permutable if
all permutations of the loops in that
band are legal

• A contiguous band of loops can be
tiled if they are fully permutable

• Example: d = (1, 2,−3)
▶ Tiling all three loops ijk is not valid,

since the permutation kij is invalid
▶ 2D tiling of band ij is valid
▶ 2D tiling of band jk is valid

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
loop_body(i,j,k)

for (it = 0; it < n; it+=T)
for (jt = 0; jt < n; jt+=T)

for (i = it; i < it+T; i++)
for (j = jt; j < jt+T; j++)

for (k = 0; k < n; k++)
loop_body(i,j,k)
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Ways to Vectorize Code



Ways to Vectorize Code

• Auto-vectorizing compiler

• Vector intrinsics

• Assembly programming

• Use SIMD-capable libraries like Intel
Math Kernel Library (MKL)

for (i=0; i<LEN; i++)
c[i] = a[i] + b[i];

void example() {
__m128 rA, rB, rC;
for (int i = 0; i <LEN; i+=4) {

rA = _mm_load_ps(&a[i]);
rB = _mm_load_ps(&b[i]);
rC = _mm_add_ps(rA,rB);
_mm_store_ps(&C[i], rC);

}
}

..B8.5
movaps a(,%rdx,4), %xmm0
addps b(,%rdx,4), %xmm0
movaps %xmm0, c(,%rdx,4)
addq $4, %rdx
cmpq $rdi, %rdx
jl ..B8.5

easier, but less
control

harder, but more
control
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Auto-Vectorization
Compiler vectorizes automatically No code changes

Semi auto-vectorization Use pragmas as hints to guide compiler
Explicit vector programming OpenMP SIMD pragmas

Advantages
+ Transparent to programmers
+ Compilers can apply other transformations
+ Code is portabile across architectures

▶ Vectorization instructions may differ, but compilers take care of it

Compilers may fail to vectorize
• Programmers may give hints to help the compiler
• Programmers may have to manually vectorize their code
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Data Dependence Graph and Vectorization

• If the DDG is cyclic, then try to transform the DDG to an acyclic graph
▶ When cycles are present, vectorization can be achieved by

▶ Separating (distributing) the statements not in a cycle
▶ Removing dependences
▶ Freezing loops
▶ Changing the algorithm

FOR I=1, N
FOR J=1, M

S1 A(I,J) = B(I-1,J+1) + C
S2 B(I,J) = A(I-1,J-1) + K

S1 S2
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Vectorization in Presence of Cycles

Loop Distribution
for (i=1; i<n; i++) {

S1 b[i] = b[i] + c[i];
S2 a[i] = a[i-1]*a[i-2]+b[i];
S3 c[i] = a[i] + 1;

}

S1 b[1:n-1] = b[1:n-1] + c[1:n-1];
for (i=1; i<n; i++){

S2 a[i] = a[i-1]*a[i-2]+b[i];
}

S3 c[1:n-1] = a[1:n-1] + 1;

Scalar Expansion
for (i=0; i<n; i++) {

S1 a = b[i] + 1;
S2 c[i] = a + 2;

}

for (i=0; i<n; i++) {
S1 $a[i] = b[i] + 1;
S2 c[i] = $a[i] + 2;

}
a = $a[n-1]

$a[0:n-1] = b[0:n-1] + 1;
c[0:n-1] = $a[0:n-1] + 2;
a = $a[n-1]
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Vectorization in Presence of Cycles

Freezing Loops
for (i=1; i<n; i++) {
for (j=1; j<n; j++) {
a[i][j]=a[i][j]+a[i-1][j];

}
}

for (i=1; i<n; i++) {
a[i][1:n-1]=a[i][1:n-1]+a[i-1][1:n-1];

}
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Changing the Algorithm

• When there is a recurrence, it is necessary to change the algorithm in order to
vectorize

• Compilers use pattern matching to identify the recurrence and then replace it with a
parallel version

• Examples of recurrences include
Reductions sum += A[i]

Linear recurrences A[i] = B[i]*A[i-1]+C[i]
Boolean recurrences if (A[i]>max) { max = A[i] }
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Loop Vectorization
• Compiler computes the dependences

(i) The compiler figures out dependences by
▶ Solving a system of (integer) equations (with constraints)
▶ Demonstrating that there is no solution to the system of equations

(ii) Removes cycles in the dependence graph
(iii) Determines data alignment
(iv) Determines if vectorization is profitable

▶ Loop vectorization is not always a legal and profitable transformation
• Vectorizing a loop with several statements is equivalent to strip-mining the loop and

then applying loop distribution

for (i=0; i<LEN; i++) {
a[i] = b[i] + 1;
c[i] = b[i] + 2;

}

for (i=0; i<LEN; i+=strip_size){
for (j=i; j<i+strip_size; j++)

a[j] = b[j] + 1;
for (j=i; j<i+strip_size; j++)

c[j] = b[j] + 2;
}
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Dependence Graphs and Compiler Vectorization

• No dependences: easy case, just check for profitability
• Acyclic graphs:

▶ All dependences are forward: vectorized by the compiler
▶ Some backward dependences: sometimes vectorized by the compiler

• Cycles in the dependence graph
▶ Self anti-dependence: vectorized by the compiler
▶ Recurrence: usually not vectorized by the compiler
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Acyclic Dependences
Forward dependences are vectorized
for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i] + 1;

}

Backward dependences can sometimes be vectorized
for (i=0; i<LEN; i++) {

S1 a[i] = b[i] + c[i]
S2 d[i] = a[i+1] + 1;

}

for (i=0; i<LEN; i++) {
S2 d[i] = a[i+1] + 1;
S1 a[i]= b[i] + c[i]

}

for (int i = 1; i<LEN; i++) {
S1 a[i] = d[i-1] + sqrt(c[i]);
S2 d[i] = b[i] + sqrt(e[i]);

}

for (int i = 1; i<LEN; i++) {
S2 d[i] = b[i] + sqrt(e[i]);
S1 a[i] = d[i-1] + sqrt(c[i]);

}
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Cycles in the DDG

Are there transformations which allow vectorizing the following loops?

for (int i=0; i<LEN-1; i++) {
S1 b[i] = a[i] + 1;
S2 a[i+1] = b[i] + 2;

}

Statements cannot be reordered

for (int i=1; i<LEN; i++) {
S1 a[i] = b[i] + c[i];
S2 d[i] = a[i] + e[i-1];
S3 e[i] = d[i] + c[i];

}

All the statements are not involved in a
cycle
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Cycles in the DDG

for (int i=0; i<LEN-1; i++) {
S1 a[i]=a[i+1]+b[i];

}

Self anti-dependence can be vectorized

for (int i=1; i<LEN; i++) {
S1 a[i]=a[i-1]+b[i];

}

Self true dependence cannot be vectorized

for (int i=1; i<LEN; i++) {
S1 a[i]=a[i-4]+b[i];

}

Self true dependence with larger distance
vectors can be vectorized
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Cycles in the DDG

for (int i=0; i<LEN; i++) {
S1 a[r[i]] = a[r[i]] * 2;

}

Are there i and i’ such that r[i] ==
r[i’] and i ̸= i’?

Cycles can appear in the DDG because the compiler cannot prove that there cannot be
dependences
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Challenges in Vectorization



Loop Transformations using Compiler Directives

When the compiler does not vectorize automatically due to dependences the
programmer can inform the compiler that it is safe to vectorize

#pragma ivdep (ICC compiler)

for (int i=val; i<LEN-k; i++)
a[i]=a[i+k]+b[i];

• Assume vector width is 4 elements
• This loop can be vectorized when k <
-3 and k >= 0

• Suppose programmers know that k>0

How can the programmer tell the compiler that k >= 0?
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Compiler Directives

Compiler vectorizes many loops, but many more can be vectorized if appropriate
directives are used

Intel ICC

#pragma ivdep Ignore data dependences
#pragma vector always Override efficiency heuristics
#pragma novector Disable vectorization
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Aliasing

...
void test(float* A,float* B,float* C) {
for (int i = 0; i <LEN; i++) {
A[i]=B[i]+C[i];

}
}
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Aliasing

...
void test(float* A,float* B,float* C) {
for (int i = 0; i <LEN; i++) {
A[i]=B[i]+C[i];

}
}

...
float *A = &B[i];
void test(float* A,float* B, float* C) {
for (int i = 0; i <LEN; i++) {
A[i]=B[i]+C[i];

}
}
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Aliasing

• To vectorize, the compiler needs to guarantee that the pointers are not aliased
• When the compiler does not know if two pointers are aliases, it can still vectorize but

needs to add up to O (n2) run-time checks, where n is the number of pointers
▶ When the number of pointers is large, the compiler may decide to not vectorize

• Two possible workarounds
(i) Static and globally defined arrays

(ii) Use the __restrict__ keyword
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Resolving Aliases Using Static and Global Arrays

float A[LEN] __attribute__ ((aligned(16)));
float B[LEN] __attribute__ ((aligned(16)));
float C[LEN] __attribute__ ((aligned(16)));
void func1() {

for (int i=0; i<LEN; i++)
A[i] = B[i] + C[i];

}
int main() {

...
func1();

}
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Resolving Aliases Using __restrict__ Keyword
...
float *A = &B[i];
void test(float* __restrict__ A,float* __restrict__ B,

float* __restrict__ C) {
__assume_aligned(A, 16);
__assume_aligned(B, 16);
__assume_aligned(C, 16);
for (int i = 0; i <LEN; i++) {
A[i]=B[i]+C[i];

}
}
int main() {
float* A=(float*) memalign(16,LEN*sizeof(float));
float* B=(float*) memalign(16,LEN*sizeof(float));
float* C=(float*) memalign(16,LEN*sizeof(float));
...
func1(A,B,C);

}
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Aliasing in Multidimensional Arrays

void func1(float** __restrict__ a,float** __restrict__ b,
float** __restrict__ c) {

for (int i=0; i<LEN; i++)
for (int j=1; j<LEN; j++)
a[i][j] = b[i][j-1] * c[i][j];

}

c c[0]
c[1]
c[2]

c[0][0] c[0][1] ...
c[1][0] c[1][1] ...
c[2][0] c[2][1] ...
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Aliasing in Multidimensional Arrays

Three solutions to try when __restrict__ does not enable vectorization
(i) Static and global arrays

(ii) Linearize the arrays and then use __restrict__ keyword
(iii) Use compiler directives

Static and global declaration

float a[N][N] __attribute__ ((aligned(16)));
void t() {
a[i][j] ...

}
int main() {
...
t();
...

}
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Aliasing in Multidimensional Arrays
Linearize the array void t(float* __restrict__ a){

// Access to a[i][j] is now a[i*128+j]
...

}
int main() {
float* a = (float*) memalign(16,128*128*sizeof(float));
...
t(a);

}

Use compiler
directives

void func1(float **a, float **b, float **c) {
for (int i=0; i<m; i++) {

#pragma ivdep
for (int j=0; j<LEN; j++)

c[i][j] = b[i][j] * a[i][j];
}

}
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Reductions

Reduction is an operation, such as addition, which is applied to the elements of an array
to produce a result of a lesser rank

sum = 0;
for (int i=0; i<LEN; ++i) {
sum += a[i];

}

x = a[0];
index = 0;
for (int i=0; i<LEN; ++i) {
if (a[i] > x) {

x = a[i];
index = i;

}
}
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Induction Variables

Induction variables can be expressed as a function of the loop iteration variable

float s = 0.0;
for (int i=0; i<LEN; i++) {
s += 2.0;
a[i] = s * b[i];

}

for (int i=0; i<LEN; i++) {
a[i] = 2.0*(i+1)*b[i];

}

Coding style may influence a compiler’s ability to vectorize
for (int i=0; i<LEN; i++) {
*a = *b + *c;
a++; b++; c++;

}

for (int i=0; i<LEN; i++) {
a[i] = b[i] + c[i];

}
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Data Alignment

• Vector loads/stores load/store 128 consecutive bits to a vector register
• Data addresses need to be 16-byte (128 bits) aligned to be loaded/stored

▶ Intel platforms support aligned and unaligned load/stores
▶ IBM platforms do not support unaligned load/stores

void test1(float *a,float *b,float *c) {
for (int i=0;i<LEN;i++) {
a[i] = b[i] + c[i];

}
}

0 1 2 3b

Is &b[0] 16-byte aligned?

vector loads b[0] … b[3]
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Why Data Alignment May Improve Efficiency?

• Vector load/store from aligned data
requires one memory access

• Vector load/store from unaligned data
requires multiple memory accesses
and some shift operations

• A pointer is 16-byte aligned if the
address is divisible by 16
▶ That is, the last digit of the pointer

address in hex must be 0

0
1
2
3
4
5
6
7

Read 4 Bytes from Address 1

Memory

Load high 3 Bytes

Load low Byte

Shift 1 Byte up

Shift 3 Bytes down

Combine

float B[1024] __attribute__ ((aligned(16)));
int main() {
printf("%p, %p\n", &B[0], &B[4]);

}
// Output: 0x7fff1e9d8580, 0x7fff1e9d8590
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Data Alignment

Manual 16-byte alignment can be achieved by forcing the base address to be a multiple
of 16

// Static allocation
float b[N] __attribute__ ((aligned(16))) ;
// Dynamic allocation
float* a = (float*) memalign(16,N*sizeof(float));

When a pointer is passed to a function, the compiler can be made aware of alignment
void func1(float *a, float *b, float *c) {

__assume_aligned(a, 16);
__assume_aligned(b, 16);
__assume_aligned(c, 16);
for int (i=0; i<LEN; i++)
a[i] = b[i] + c[i];

}
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Alignment in a struct

struct st {
char A;
int B[64];
float C;
int D[64];

};
int main() {
st s1;
printf("%p\n", &s1.A); // 0x7fffe6765f00
printf("%p\n", &s1.B); // 0x7fffe6765f04
printf("%p\n", &s1.C); // 0x7fffe6766004
printf("%p\n", &s1.D); // 0x7fffe6766008

}

Arrays B and D are not 16-bytes aligned

struct st {
char A;
int B[64] __attribute__ ((aligned(16)));
float C;
int D[64] __attribute__ ((aligned(16)));

};
int main() {

st s1;
printf("%p\n", &s1.A); // 0x7fffe6765f00
printf("%p\n", &s1.B); // 0x7fff1e9d8590
printf("%p\n", &s1.C); // 0x7fffe6766004
printf("%p\n", &s1.D); // 0x7fff1e9d86a0

}
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Non-unit Stride

Array of structures

typedef struct{int x, y, z} point;
point pt[LEN];
for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

x0 y0 z0 x1 x2y1 y2z1 z2

point pt[N];

vector load vector load

y0 y1 y2 y3
vector

register

Structure of arrays

int ptx[LEN], pty[LEN], ptz[LEN];
for (int i=0; i<LEN; i++) {

pty[i] *= scale;

}

y0 y1 y2 y3 y6y4 y7y5

vector load vector load

y0 y1 y2 y3
vector

register
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Conditional Statements

• A compiler may not vectorize a loop with a conditional if it is unsure about the
profitability
▶ Furthermore, removing the condition may lead to exceptions

• You may need to introduce #pragma vector always
• Compiler may create multiple versions of the code (e.g., scalar and vector)

▶ Compiler may remove the conditions when generating the vector version

#pragma vector always
for (int i = 0; i < LEN; i++) {
if (c[i] < 0.0)

a[i] = a[i] * b[i] + d[i];
}
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Vectorization Examples

• Check the Makefile for relevant options passed to GCC
• Vectorization output can vary across compiler versions and architecture generations
• Correlate the assembly code with the high-level C++ statements

• Vectorize a loop nest with increasing control
• Understanding alignment

▶ struct.cpp
▶ unaligned-cost-gcc.cpp

• Makefile
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Vectorization with Intrinsics



Vector Intrinsics

• Intrinsics are useful when
▶ the compiler fails to vectorize, or
▶ when the programmer thinks it is possible to generate better code than what is

produced by the compiler
• Intrinsics are architecture specific
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Intel Intrinsics Header Files

• We will focus on the Intel vector intrinsics
• You have to include one of the following header files for using intrinsics

SSE #include <xmmintrin.h>
SSE2 #include <emmintrin.h>
SSE3 #include <pmmintrin.h>

SSSE3 #include <tmmintrin.h>
SSE4.1 #include <smmintrin.h>
SSE4.2 #include <nmmintrin.h>

AVX #include <immintrin.h>
AVX2 #include <immintrin.h>

AVX512 #include <immintrin.h>

• Alternatively, use #include <x86intrin.h>, it includes all relevant headers

Intel Intrinsics Guide

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 78 / 112

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html


Format of Intel Intrinsic APIs

_mm_instruction_suffix(...)
_mm256_instruction_suffix(...)

Suffix can take many forms
ss scalar single precision
ps packed (vector) singe precision
sd scalar double precision
pd packed double precision
si# scalar integer (8, 16, 32, 64, or 128 bits)

su# scalar unsigned integer (8, 16, 32, 64, or 128 bits)
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Data Types

Few examples
__m128 packed single precision (vector XMM register)

__m128d packed double precision (vector XMM register)
__m128i packed integer (vector XMM register)

Load four 16-byte aligned single precision values in a vector
float a[4]={1.0,2.0,3.0,4.0}; // a must be 16-byte aligned
__m128 x = _mm_load_ps(a);

Add two vectors containing four single precision values
__m128 a, b;
__m128 c = _mm_add_ps(a, b);
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Examples with Intrinsics

• Check CPU features
• Understanding alignment cost with intrinsics
• Inclusive prefix sum with SSE
• Makefile
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Summary

• Relevance of vectorization to improve program performance is likely to increase in
the future as vector lengths grow

• Compilers are often only partially successful at vectorizing code
• When the compiler fails, programmers can

▶ add compiler directives, or
▶ apply loop transformations

• If after transforming the code, the compiler still fails to vectorize (or the
performance of the generated code is poor), use vector extensions (e.g., intrinsics or
assembly) directly
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Enhancing Coarse-Grained Parallelism

Focus is on parallelization of outer loops



Find Work for Threads

Setup • Symmetric multiprocessors with shared memory
• Threads are running on each core and are coordinating execution with

occasional synchronization
Challenge Balance the granularity of parallelism with communication overheads

SMP - symmetric multiprocessor system

System bus

Cache Cache Cache

Processor
1

Processor
2

Processor
n

Main
memory

By Ferruccio Zulian - Milan.Italy

Bus
arbiter

I/O
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Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly
load balancing across the processors

Running everything on one processor
achieves minimal communication and
synchronization overhead

Very fine-grained parallelism achieves good
load balance, but benefits may be
outweighed by frequent communication
and synchronization

An optimizing compiler is
expected to find the sweet spot
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Privatization

• Privatization is similar to scalar expansion
• Temporaries can be made local to each iteration

DO I = 1,N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

PARALLEL DO I = 1,N
PRIVATE t

S1 t = A(I)
S2 A(I) = B(I)
S3 B(I) = t
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Privatization
A scalar variable x in a loop L is privatizable if every path from the entry of L to a use of x
in the loop passes through a definition of x
• No use of the variable is upward exposed, i.e., the use never reads a value that was

assigned outside the loop
• No use of the variable is from an assignment in an earlier iteration

Computing upward-exposed variables from a block BB

up(BB) = use(BB) ∪
(
¬def (BB) ∩

⋃
y∈succ(BB) up(y)

)
Computing privatizable variables for a loop body B where BB0 is
the entry block

private(B) = ¬up(BB0) ∩
(⋃

y∈B def (y)
)
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Privatization

• If all dependences carried by a loop involve a privatizable variable, then loop can be
parallelized by making the variables private

• Preferred compared to scalar expansion
▶ Less memory requirement
▶ Scalar expansion may suffer from false sharing

• However, there can be situations where scalar expansion works but privatization
does not
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Comparing Privatization and Scalar Expansion

DO I = 1, N
T = A(I) + B(I)
A(I-1) = T

⇓Privatization

DO I = 1, N
PRIVATE T
T = A(I) + B(I)
A(I-1) = T

Scalar
======⇒
expansion

PARALLEL DO I = 1, N
T$(I) = A(I) + B(I)
A(I-1) = T$(I)

⇓

PARALLEL DO I = 1, N
T$(I) = A(I) + B(I)

PARALLEL DO I = 1, N
A(I-1) = T$(I)
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Loop Distribution (Loop Fission)

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)
S2 D(I,J) = A(I,J-1) * 2.0

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

DO J = 1, 100
S2 D(I,J) = A(I,J-1) * 2.0

Eliminates loop-carried
dependences
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Validity Condition for Loop Distribution

A loop with two statements can be distributed if there are no dependences from any
instance of the later statement to any instance of the earlier one
• Sufficient (but not necessary) condition
• Generalizes to more statements

DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I+1) * D(I)

DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I-1) * D(I)
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Performing Loop Distribution

Steps
(i) Build the DDG

(ii) Identify strongly-connected
components (SCCs) in the DDG

(iii) Make each SCC a separate loop
(iv) Arrange the new loops in a

topological order of the DDG

DO I = 1, N
S1 A[I] = A[I] + B[I-1]
S2 B[I] = C[I-1] + X
S3 C[I] = B[I] + Y
S4 D[I] = C[I] + D[I-1]

=⇒

S1

S2

S3

S4

δ1

δ∞δ1

δ∞

δ1

=⇒
S1

S2 S3

S4
δ1

δ∞

δ1
δ∞

δ1

⇓
DO I = 1, N

S2 B[I] = C[I-1] + X
S3 C[I] = B[I] + Y

DO I = 1, N
S1 A[I] = A[I] + B[I-1]

DO I = 1, N
S4 D[I] = C[I] + D[I-1]
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Understanding Loop Distribution

Pros

+ Execute source of a dependence before
the sink

+ Reduces the memory footprint of the
original loop for both data and code

+ Improves opportunities for
vectorization

Cons

− Can increase the synchronization
required between dependence points
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Loop Alignment

Unlike loop distribution, realign the loop to compute and use the values in the same
iteration

DO I = 2, N
S1 A(I) = B(I) + C(I)
S2 D(I) = A(I-1) * 2.0

DO i = 1, N+1
if i > 1 && i < N+1

S1 A(i) = B(i) + C(i)
if i < N

S2 D(i+1) = A(i) * 2.0

cannot be parallelized
carried dependence becomes
loop independent
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Can Loop Alignment Eliminate All Carried Dependences?

DO I = 1, N
S1 A(I) = B(I) + C
S2 B(I+1) = A(I) + D

DO I = 1, N
S1 A(I+1) = B(I) + C
S2 X(I) = A(I+1) + A(I)

=⇒

=⇒

DO i = 1, N+1
if i > 1

S2 B(i) = A(i-1) + D
if i < N+1

S1 A(i) = B(i) + C

DO i = 0, N
if i > 0

S1 A(i+1) = B(i) + C
if i < N

S2 X(i+1) = A(i+2) + A(i+1)

A is aligned, B
is misaligned
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Loop Fusion (Loop Jamming)

DO I = 1, N
S1 A(I) = B(I) + 1
S2 C(I) = A(I) + C(I-1)
S3 D(I) = A(I) + X

=⇒
L1 DO I = 1, N

A(I) = B(I) + 1
L2 DO I = 1, N

C(I) = A(I) + C(I-1)
L3 DO I = 1, N

D(I) = A(I) + X

=⇒
L13 DO I = 1, N

A(I) = B(I) + 1
D(I) = A(I) + X

L2 DO I = 1, N
C(I) = A(I) + C(I-1)
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Validity Condition for Loop Fusion

• Consider a loop-independent dependence between statements in two different
loops (i.e., from S1 to S2)

• A dependence is fusion-preventing if fusing the two loops causes the dependence to
be carried by the combined loop in the reverse direction (from S2 to S1)

DO I = 1, N
S1 A(I) = B(I) + C

DO I = 1, N
S2 D(I) = A(I+1) + E

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I+1) + E

loop-independent
flow dependence

backward loop-carried
anti dependence
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Understanding Loop Fusion

Pros

+ Reduce overhead of loops
+ May improve temporal locality

Cons

− May decrease data locality in the fused
loop

DO I = 1, N
S1 A(I) = B(I) + C

DO I = 1, N
S2 D(I) = A(I-1) + E

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I-1) + E
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Loop Interchange

DO I = 1, N
DO J = 1, M
A(I+1,J) = A(I,J) + B(I,J)

=⇒
DO J = 1, M
DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

⇓

PARALLEL DO J = 1, M
DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

Parallelizing J is good for vector-
ization, but not for coarse-grained
parallelism

Dependence-free loops should
move to the outermost level
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Condition for Loop Interchange

In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the
column of the direction matrix for that nest contains only “0” entries

DO I = 1, N
DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)
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Code Generation Strategy

(i) Continue till there are no more columns to move
▶ Choose a loop from the direction matrix that has all “0” entries in the column
▶ Move it to the outermost position
▶ Eliminate the column from the direction matrix

(ii) Pick loop with most “+” entries, move to the next outermost position
▶ Generate a sequential loop
▶ Eliminate the column
▶ Eliminate any rows that represent dependences carried by this loop

(iii) Repeat from Step (i)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 100 / 112



Code Generation Example

DO I = 1, N
DO J = 1, M
DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

DO I = 1, N
PARALLEL DO J = 1, M

DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

How did we pick loop
J for parallelization?
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How can we parallelize this loop?

DO I = 2, N+1
DO J = 2, M+1
DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

No single loop carries all the dependences,
so we can only parallelize loop K
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Loop Reversal
DO I = 2, N+1

DO J = 2, M+1
DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

⇓
DO I = 2, N+1

DO J = 2, M+1
DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

• When the iteration space of a loop is reversed, the direction of dependences within
that reversed iteration space are also reversed
▶ A “+” dependence becomes a “-” dependence, and vice versa

• We cannot perform loop reversal if the loop carries a dependence
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Perform Interchange after Loop Reversal

DO I = 2, N+1
DO J = 2, M+1
DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

⇓
DO K = L, 1, -1

DO I = 2, N+1
DO J = 2, M+1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

increases options for performing
other optimizations
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Which Transformations are Most Important?

• Selecting the best loops for parallelization is a
NP-complete problem

• Flow dependences are difficult to remove
▶ Try to reorder statements as in loop peeling, loop

distribution
• Techniques like scalar expansion, privatization can be

useful
▶ Loops often use scalars for temporary values

+ + 0 0
+ 0 + 0
+ 0 0 +
0 + 0 0
0 0 + 0
0 0 0 +

carries the most
dependences
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Unimodular Transformations



Challenges in Applying Transformations

• We have discussed transformations (legality and benefits) in isolation
• Compilers need to apply compound transformations (e.g., loop interchange followed

by reversal)
• It is challenging to decide on the desired transformations and their order of

application
▶ Choice and order is sensitive to the program input, a priori order does not work
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Unimodular Transformations
• A unimodular matrix is a square integer matrix having determinant 1 or -1 (e.g., [ 1 1

1 0 ])
• Few loop transformations can be modeled as matrix transformations involving

unimodular matrices
▶ Loop interchange maps iteration (i, j) to iteration (j, i)[

0 1
1 0

] [
i
j

]
=

[
j
i

]
▶ Given transformation T is linear, the transformed dependence is given by Td where d is

the dependence vector in the original iteration space[
0 1
1 0

] [
d1
d2

]
=

[
d2
d1

]
▶ The transformation matrix for loop reversal of the outer loop i in a 2D loop nest is [−1 0

0 1 ]
▶ The transformation matrix for loop skewing of a 2D loop nest (i, j) is the identity matrix

T with Tj,i equal to f , where we skew loop j with respect to loop i by a factor f

M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. TPDS’91.
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Example of Loop Skewing

Original

FOR I=1,5
FOR J=1,5
A(I,J) = A(I-1,J) + A(I,J-1)

Dependences D = {(1,0), (0, 1)}

Skewed

FOR I=1,5
FOR j=I+1,I+5

A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

Transformation matrix = [ 1 0
1 1 ]

Dependences D′
= TD = {(1, 1), (0, 1)}
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Representing Compound Transformations
DO I = 1, N

DO J = 1, N
A(I,J) = A(I-1,J+1) + C

Loop interchange is illegal because[
0 1
1 0

] [
1
−1

]
=

[
−1
1

]
Let us try loop interchange followed by loop reversal. The transformation matrix T is[

−1 0
0 1

] [
0 1
1 0

]
=

[
0 −1
1 0

]
Applying T to the loop nest is legal because[

0 −1
1 0

] [
1
−1

]
=

[
1
1

]
DO J = N, 1, -1

DO I = 1, N
A[I,J] = A[I-1,J+1] + C
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Challenges for Real-World Compilers

• Conditional execution
• Symbolic loop bounds
• Indirect memory accesses
• . . .
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