
CS 610: Loop Transformations for Parallelism

Swarnendu Biswas

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur

Sem 2025-26-I

Enhancing Program Performance

• Loops are one of most commonly used constructs in HPC programs
• Compilers perform many loop optimizations automatically to

▶ Exploit fine-grained parallelism
▶ Multiple pipelined functional units in each core
▶ Vector instruction sets (SSE, AVX, AVX-512)

▶ Exploit coarse-grained parallelism for SMP systems
▶ Keep multiple asynchronous processors busy with work

▶ Minimize cost of memory accesses
• In some cases, source code modifications can enhance the optimizer’s ability to

transform code

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 3 / 112

Different Levels of Parallelization in Hardware

Instruction-level Parallelism
Microarchitectural techniques like pipelining, OOO execution, and superscalar instruction
issue

Data-level Parallelism
Use Single Instruction Multiple Data (SIMD) vector processing instructions and units

Thread-level Parallelism
Simultaneous multithreading or hyperthreading

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 4 / 112

Vectorization

Vectorization

• Vectorization is the process of transforming a scalar operation on single data
elements at a time (SISD) to an operation on multiple data elements at once (SIMD)

• Helps transforms a loop nest so that the same operation is performed on several
vector elements at the same time

K. Rogozhin. Vectorization.

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 5 / 112

https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/vectorization-kirill.pdf

Vectorization
double *a, *b, *c;
for (int i = 0; i < N; i++)

c[i] = a[i] + b[i];

Scalar mode

One instruction (e.g., vaddsd/vaddss)
produces one result

a[i]

b[i]
+

=
c[i]

Vector mode

One instruction (e.g., vaddpd/vaddps) can
produce multiple results

a[i+4]
+

=

a[i+3] a[i+2]a[i+5] a[i+1] a[i]a[i+6]a[i+7]

b[i+4] b[i+3] b[i+2]b[i+5] b[i+1] b[i]b[i+6]b[i+7]

c[i+4] c[i+3] c[i+2]c[i+5] c[i+1] c[i]c[i+6]c[i+7]

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 6 / 112

Vectorization

ld r1, addr1
ld r2, addr2
add r3, r1, r2
st r3, addr3

for (i=0; i<n; i++) {
c[i] = a[i] + b[i];

}

ldv vr1, addr1
ldv vr2, addr2
addv vr3, vr1, vr2
stv vr3, addr3

n times n
4 times

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 7 / 112

SIMD Vectorization

• Use of SIMD units can speed up the
program

• Intel SSE has 128-bit vector registers
and functional units

• Assuming a single ALU, these SIMD
units can execute 4 single precision
floating point number or 2 double
precision operations in the time it
takes to do only one of these
operations by a scalar unit

128-bit wide operands using integer types

Daniel Kusswurm. Modern X86 Assembly Language Programming. 2nd edition, Apress.

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 8 / 112

Intel-Supported SIMD Extensions

SIMD Extensions Width (bits) SP calculations DP calculations Introduced

SSE2/SSE3/SSE4 128 4 2 ∼2001–2007
AVX/AVX2 256 8 4 ∼2011–2015
AVX-512 512 16 8 ∼2017

Other platforms that support SIMD have different extensions (e.g., ARM Neon and Power
AltiVec)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 9 / 112

Intel-Supported SIMD Extensions

YMM XMMZMM
128 bits

256 bits

512 bits

64-bit architecture

SSE XMM0–XMM15
AVX YMM0–YMM15 Low-order 128 bits of each YMM register is aliased

to a corresponding XMM register
AVX-512 ZMM0–ZMM31 Low-order 256 and 128 bits are aliased to registers

YMM0–YMM31 and XMM0–XMM31 respectively

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 10 / 112

x86_64 Vector Operations

Example instructions
Move (V)MOV[A/U][P/S][D/S]

Comparison (V)CMP[P/S][D/S]
Arithmetic (V)[ADD/SUB/MUL/DIV][P/S][D/S]

Instruction decoding
V AVX

P,S packed, scalar
A,U aligned, unaligned
D,S double-, single-precision

B,W,D,Q byte, word, doubleword, quadword integers

[] required
() optional

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 11 / 112

x86_64 Vector Operations

movss xmm1, xmm2 Copy scalar single-precision floating-point value (low 32 bits)
from xmm2 to xmm1

vmovapd xmm1, xmm2 Move aligned packed double-precision floating-point values
from xmm2 to xmm1

vaddss xmm0,xmm1,xmm2 xmm0[31:0] = xmm1[31:0] + xmm2[31:0]
xmm0[127:32] = xmm1[127:32]

vaddsd xmm0,xmm1,xmm2 xmm0[63:0] = xmm1[63:0] + xmm2[63:0]
xmm0[127:64] = xmm1[127:64]

Intel Intrinsics Guide

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 12 / 112

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

M. Voss. Topics in Loop Vectorization.

https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/vectorization-voss.pdf

Enhancing Fine-Grained Parallelism

Focus is on vectorization of inner loops

Data Dependence Graph and Vectorization

• Loop dependences guide vectorization
▶ Statements not data dependent on each other can be reordered, executed in parallel, or

coalesced into a vector operation
• If the Data Dependence Graph (DDG) is acyclic, then vectorizing the program is

straightforward

for (i=1; i<=n; i++) {
S1 a[i] = b[i] + 1;
S2 c[i] = a[i-1] + 2;

}

=⇒ a[1:n] = b[1:n] + 1;
c[1:n] = a[0:n-1] + 2;

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 16 / 112

Loop Interchange (Loop Permutation)

• Switch the nesting order of loops in a
perfect loop nest

• Can increase parallelism, can improve
spatial locality

• Dependence is now carried by the
outer loop, inner loop can be
vectorized

DO J = 1, M
DO I = 1, N

S A(I+1,J) = A(I,J) + B

⇓

DO I = 1, N
DO J = 1, M

S A(I+1,J) = A(I,J) + B

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 17 / 112

Example of Loop Interchange

DO i = 1, n
DO j = 1, n
C(i, j) = C(i-1,j+1)

DO j = 1, n
DO i = 1, n

C(i, j) = C(i-1,j+1)

1 2 3 4 5

j

1

2

3

4

5

i

1 2 3 4 5

i

1

2

3

4

5

j

valid?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 18 / 112

Validity of Loop Permutation

(i) Construct direction vectors for all possible dependences in the loop to form a
direction matrix
▶ Identical direction vectors are represented by a single row in the matrix

(ii) Compute direction vectors based on the intended loop permutation
(iii) Permutation is illegal if any permuted vector is lexicographically negative

A loop nest is fully permutable if any permutation transformation to the loop nest is legal

Example: d1 = (1,−1, 1) and d2 = (0, 2,−1)
ijk→ jik? (1,−1, 1) → (−1, 1, 1): illegal
ijk→ kij? (0, 2,−1) → (−1,0, 2): illegal
ijk→ ikj? (0, 2,−1) → (0,−1, 2): illegal

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 19 / 112

Does Loop Interchange/Permutation Always Help?

DO i = 1, 10000
DO j = 1, 1000

a(i) = a(i) + b(j,i) * c(i)

DO i = 1, N
DO j = 1, M

DO k = 1, L
a(i+1,j+1,k) = a(i,j,k) + b

• Benefits from loop interchange depends on the target machine, the data structures
accessed, memory layout, and stride patterns

• Optimization choices for the snippet on the right
▶ Vectorize J and K
▶ Move K outermost and parallelize K with threads
▶ Move I innermost and vectorize assuming column-major layout

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 20 / 112

Loop Shifting

• In a perfect loop nest, if loops at level i, i+ 1, . . . i+ n carry no dependence, i.e., all
dependences are carried by loops at level smaller than i or greater than i+ n, then it
is always legal to shift these loops inside of loop i+ n+ 1

• These loops will not carry any dependences in their new position

+ 0 + 0 0 0
0 + - + + 0
0 0 0 0 + +
0 0 0 0 0 +

Loops i to i+n

Dependence carried
by outer loops

Dependence carried
by inner loops

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 21 / 112

Loop Shift for Matrix Multiply

DO I = 1, N
DO J = 1, N

DO K = 1, N
S A(I,J) = A(I,J) + B(I,K)*C(K,J)

Is the loop nest
vectorizable as is?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 22 / 112

Scalar Expansion
Eliminates dependences that arise from reuse of memory locations at the cost of extra
memory

DO I = 1, N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

S1 S2

S3

anti due to A (δ−1
∞)

loop-independent flow
due

to
T
(δ∞

)

loop-carried
flow

due
to

T
(δ1)

antidue
to

B
(δ

−
1

∞
)

anti due
to

T
(δ −

11
)

output due to T (δo1)

DO I = 1, N
S1 $T(I) = A(I)
S2 A(I) = B(I)
S3 B(I) = $T(I)

T=$T(N)

S1 S2

S3

loop-independent flow
due

to
T(I)

(δ∞
)

anti due to A (δ−1
∞)

antidue
to

B
(δ

−
1

∞
)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 24 / 112

Understanding Scalar Expansion

Pros

+ Eliminates dependences due to reuse
of memory locations, helps with
parallelism

Cons

− Increases memory and addressing
overhead

DO I = 1, N
T = A(I) + A(I+1)
A(I) = T + B(I)

=⇒ DO I = 1, N, 64
DO i = 0, 63
T = A(I+i) + A(I+1+i)
A(I+i) = T + B(I+i)

=⇒ DO I = 1, N, 64
DO i = 0, 63

$T(i) = A(I+i) + A(I+1+i)
A(I+i) = $T(i) + B(I+i)

can also try forward
substitution

strip mining
strip loop

Strip mining (also known as sectioning) is a special case of 1-D loop tiling

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 25 / 112

Limits of Scalar Expansion

DO I = 1, N
T = T + A(I) + A(I-1)
A(I) = T

$T(0) = T
DO I = 1, N

$T(I) = $T(I-1) + A(I) + A(I-1)
A(I) = $T(I)

T = $T(N)

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T

DO I = 1, 100
S1 $T(I) = A(I) + B(I)
S2 C(I) = $T(I) + $T(I)
S3 $T(I) = D(I) - B(I)
S4 A(I+1) = $T(I) * $T(I)

Can we parallelize
the I loop?

Can we vectorize the
loop nest?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 26 / 112

Scalar Renaming

DO I = 1, 100
S1 T = A(I) + B(I)
S2 C(I) = T + T
S3 T = D(I) - B(I)
S4 A(I+1) = T * T

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2

T = T2

Can we vectorize the
loop nest?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 27 / 112

Allows Vectorization with Statement Interchange

DO I = 1, 100
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1
S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2

T = T2

=⇒
DO I = 1, 100

S3 T2 = D(I) - B(I)
S4 A(I+1) = T2 * T2
S1 T1 = A(I) + B(I)
S2 C(I) = T1 + T1

T = T2

=⇒
S3 T2(1:100) = D(1:100) - B(1:100)
S4 A(2:101) = T2(1:100) * T2(1:100)
S1 T1(1:100) = A(1:100) + B(1:100)
S2 C(1:100) = T1(1:100) + T1(1:100)

T = T2(100)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 28 / 112

Array Renaming

DO I = 1, 100
S1 A(I) = A(I-1) + X
S2 Y(I) = A(I) + Z
S3 A(I) = B(I) + C

DO I = 1, 100
S1 $A(I) = A(I-1) + X
S2 Y(I) = $A(I) + Z
S3 A(I) = B(I) + C

S1 S2

S3

δ∞

δ−1
∞

δ0
∞

δ1

Array renaming requires
sophisticated analysis

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 29 / 112

Node Splitting

DO I = 1, 100
S1 A(I) = X(I+1) + X(I)
S2 X(I+1) = B(I) + 10

DO I = 1, 100
S0 $X(I) = X(I+1)
S1 A(I) = $X(I) + X(I)
S2 X(I+1) = B(I) + 10

S1 S2
δ1

δ−1
0

Can we vectorize the
loop nest?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 30 / 112

Index-Set Splitting

DO I = 1, 100
A(I+20) = A(I) + B

DO I = 1, 100, 20
DO i = I, I+19

A(i+20) = A(i) + B

An index-set splitting transformation subdivides the loop into different iteration ranges

strip mining

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 31 / 112

Loop Splitting

DO I = 1, N
A(I) = A(N/2) + B(I)

S1

δ−1
∞

M = N/2
DO I = 1, M-1

A(I) = A(N/2) + B(I)
A(M) = A(N/2) + B(I)
DO I = M+1, N

A(I) = A(N/2) + B(I)

assume N is
divisible by 2

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 32 / 112

Loop Peeling

• Splits any problematic iterations (could be first, middle, or last few) from the loop
body

• Change a loop-carried dependence to a loop-independent dependence
• Transformed loop carries no dependence, can be parallelized
• Peeled iterations execute in the original order, transformation is always legal to

perform

DO I = 1, N
A(I) = A(I) + A(1)

A(1) = A(1) + A(1)
DO I = 2, N

A(I) = A(I) + A(1)

Loop splitting

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 33 / 112

https://en.wikipedia.org/wiki/Loop_splitting

Section-Based Splitting

DO I = 1,N
DO J = 1, N/2

S1 B(J,I) = A(J,I) + C
DO J = 1,N

S2 A(J,I+1) = B(J,I) + D

=⇒ DO I = 1,N
DO J = 1, N/2

S1 B(J,I) = A(J,I) + C
DO J = 1,N/2

S2 A(J,I+1) = B(J,I) + D
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D

=⇒

DO I = 1,N
DO J = N/2+1, N

S3 A(J,I+1) = B(J,I) + D
DO I = 1,N
DO J = 1,N/2

S1 B(J,I) = A(J,I) + C
DO J = 1, N/2

S2 A(J,I+1) = B(J,I) + D

=⇒ M = N/2
S3 A(M+1:N,2:N+1) = B(M+1:N,1:N) + D

DO I = 1, N
S1 B(1:M,I) = A(1:M,I) + C
S2 A(1:M,I+1) = B(1:M,I) + D

S3 is
independent

cannot
vectorize I

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 34 / 112

Loop Skewing

DO I = 1, N
DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

S(1,1) S(2,1) S(3,1) S(4,1)

S(1,2) S(2,2) S(3,2) S(4,2)

S(1,3) S(2,3) S(3,3) S(4,3)

S(1,4) S(2,4) S(3,4) S(4,4)

I = 1 I = 2 I = 3 I = 4

J = 1

J = 2

J = 3

J = 4

Parallel
iterations

Which loops carry
dependences?

I+J is
same

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 35 / 112

Loop Skewing

DO I = 1, N
DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

S(1,2)

S(1,3) S(2,1)

S(1,4) S(2,2) S(3,1)

S(1,5) S(2,3) S(3,2) S(4,1)

I = 1 I = 2 I = 3 I = 4

j = 2

j = 3

j = 4

j = 5

Parallel
iterations

Loop skewing skews the inner loop relative to the outer loop by adding the index of the
outer loop times a skewing factor f to the bounds of the inner loop and subtracting the
same value from all the uses of the inner loop index

j=I+J

What are the dependences
now? Which loop carries the
dependence?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 36 / 112

Perform Loop Interchange

Given a dependency vector (a,b), skewing transforms it to (a, fa+ b)

DO I = 1, N
DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

⇓

DO j = 2, N+N
DO I = max(1,j-N), min(N,j-1)

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

can use Fourier-
Motzkin elimination

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 37 / 112

Understanding Loop Skewing

Pros

+ Reshapes the iteration space to find
possible parallelism

+ Preserves lexicographic order of the
dependences, is always legal

+ Allows for loop interchange in future

Cons

− Resulting iteration space can be
trapezoidal

− Irregular loops are not very amenable
for vectorization

− Need to be careful about load
imbalance

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 38 / 112

Loop Unrolling (Loop Unwinding)

• Reduce number of iterations of loops
• Add statement(s) to do work of missing iterations
• JIT compilers try to perform unrolling at run-time

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
y[i] = y[i] + a[i][j]*x[j];

}
}

for (i=0; i<n; i++) {
for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j]
+ a[i][j+1]*x[j+1]
+ a[i][j+2]*x[j+2]
+ a[i][j+3]*x[j+3];

}
}

4-way inner
loop unrolling

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 39 / 112

Outer Loop Unrolling + Inner Loop Jamming

for (i=0; i<2*n; i++) {
for (j=0; j<m; j++) {
loop-body(i,j);

}
}

for (i=0; i<2*n; i+=2) {
for (j=0; j<m; j++) {

loop-body(i,j);
}
for (j=0; j<m; j++) {

loop-body(i+1,j);
}

}

for (i=0; i<2*n; i+=2) {
for (j=0; j<m; j++) {
loop-body(i,j);
loop-body(i+1,j);

}
}

2-way outer unroll does not increase
operation-level parallelism in the in-
ner loop

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 40 / 112

Is Loop Unroll and Jam Legal?

DO I = 1, N
DO J = 1, M

A(I,J) = A(I-1,J+1)+C

DO I = 1, N, 2
DO J = 1, M

A(I,J) = A(I-1,J+1)+C
A(I+1,J) = A(I,J+1)+C

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 41 / 112

Validity Condition for Loop Unroll and Jam

• Complete unroll and jam of a loop is equivalent to a loop permutation that moves
that loop innermost, without changing order of other loops

• If such a loop permutation is valid, unroll and jam of the loop is valid

• Example: 4D loop ijkl; d1 = (1,−1,0, 2), d2 = (1, 1,−2,−1)
i d1 → (−1,0, 2, 1), =⇒ invalid to unroll and jam
j d1 → (1,0, 2,−1);d2 → (1,−2,−1, 1), =⇒ valid to unroll and jam
k d1 → (1,−1, 2,0);d2 → (1, 1,−1,−2), =⇒ valid to unroll and jam
l d1 and d2 are unchanged; innermost loop can always be unrolled

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 42 / 112

Understanding Loop Unrolling

Pros

+ Small loop bodies are problematic,
reduces control overhead of loops

+ Increases operation-level parallelism
in loop body

+ Allows other optimizations like reuse
of temporaries across iterations

Cons

− Increases the executable size
− Increases register usage
− May prevent function inlining

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 43 / 112

Loop Tiling (Loop Blocking)
• Improve data reuse by chunking the data in to smaller tiles (blocks)

▶ All the required blocks are supposed to fit in the cache
• Performs strip mining in multiple array dimensions
• Tries to exploit spatial and temporal locality of data
• Determining the tile size

▶ Requires accurate estimate of array accesses and the cache size of the target machine
▶ Loop nest order also influences performance
▶ Difficult theoretical problem, usually heuristics are applied
▶ Cache-oblivious algorithms make efficient use of cache without explicit blocking

for (i = 0; i < N; i++) {
...

}

for (ii = 0; ii < N; ii+=B) {
for (i = ii; i < min(N,ii+B), i++) {

...
}

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 44 / 112

Validity Condition for Loop Tiling

• A band of loops is fully permutable if
all permutations of the loops in that
band are legal

• A contiguous band of loops can be
tiled if they are fully permutable

• Example: d = (1, 2,−3)
▶ Tiling all three loops ijk is not valid,

since the permutation kij is invalid
▶ 2D tiling of band ij is valid
▶ 2D tiling of band jk is valid

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
loop_body(i,j,k)

for (it = 0; it < n; it+=T)
for (jt = 0; jt < n; jt+=T)

for (i = it; i < it+T; i++)
for (j = jt; j < jt+T; j++)

for (k = 0; k < n; k++)
loop_body(i,j,k)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 45 / 112

Ways to Vectorize Code

Ways to Vectorize Code

• Auto-vectorizing compiler

• Vector intrinsics

• Assembly programming

• Use SIMD-capable libraries like Intel
Math Kernel Library (MKL)

for (i=0; i<LEN; i++)
c[i] = a[i] + b[i];

void example() {
__m128 rA, rB, rC;
for (int i = 0; i <LEN; i+=4) {

rA = _mm_load_ps(&a[i]);
rB = _mm_load_ps(&b[i]);
rC = _mm_add_ps(rA,rB);
_mm_store_ps(&C[i], rC);

}
}

..B8.5
movaps a(,%rdx,4), %xmm0
addps b(,%rdx,4), %xmm0
movaps %xmm0, c(,%rdx,4)
addq $4, %rdx
cmpq $rdi, %rdx
jl ..B8.5

easier, but less
control

harder, but more
control

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 46 / 112

Auto-Vectorization
Compiler vectorizes automatically No code changes

Semi auto-vectorization Use pragmas as hints to guide compiler
Explicit vector programming OpenMP SIMD pragmas

Advantages
+ Transparent to programmers
+ Compilers can apply other transformations
+ Code is portabile across architectures

▶ Vectorization instructions may differ, but compilers take care of it

Compilers may fail to vectorize
• Programmers may give hints to help the compiler
• Programmers may have to manually vectorize their code

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 47 / 112

Data Dependence Graph and Vectorization

• If the DDG is cyclic, then try to transform the DDG to an acyclic graph
▶ When cycles are present, vectorization can be achieved by

▶ Separating (distributing) the statements not in a cycle
▶ Removing dependences
▶ Freezing loops
▶ Changing the algorithm

FOR I=1, N
FOR J=1, M

S1 A(I,J) = B(I-1,J+1) + C
S2 B(I,J) = A(I-1,J-1) + K

S1 S2

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 48 / 112

Vectorization in Presence of Cycles

Loop Distribution
for (i=1; i<n; i++) {

S1 b[i] = b[i] + c[i];
S2 a[i] = a[i-1]*a[i-2]+b[i];
S3 c[i] = a[i] + 1;

}

S1 b[1:n-1] = b[1:n-1] + c[1:n-1];
for (i=1; i<n; i++){

S2 a[i] = a[i-1]*a[i-2]+b[i];
}

S3 c[1:n-1] = a[1:n-1] + 1;

Scalar Expansion
for (i=0; i<n; i++) {

S1 a = b[i] + 1;
S2 c[i] = a + 2;

}

for (i=0; i<n; i++) {
S1 $a[i] = b[i] + 1;
S2 c[i] = $a[i] + 2;

}
a = $a[n-1]

$a[0:n-1] = b[0:n-1] + 1;
c[0:n-1] = $a[0:n-1] + 2;
a = $a[n-1]

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 49 / 112

Vectorization in Presence of Cycles

Freezing Loops
for (i=1; i<n; i++) {
for (j=1; j<n; j++) {
a[i][j]=a[i][j]+a[i-1][j];

}
}

for (i=1; i<n; i++) {
a[i][1:n-1]=a[i][1:n-1]+a[i-1][1:n-1];

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 50 / 112

Changing the Algorithm

• When there is a recurrence, it is necessary to change the algorithm in order to
vectorize

• Compilers use pattern matching to identify the recurrence and then replace it with a
parallel version

• Examples of recurrences include
Reductions sum += A[i]

Linear recurrences A[i] = B[i]*A[i-1]+C[i]
Boolean recurrences if (A[i]>max) { max = A[i] }

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 51 / 112

Loop Vectorization
• Compiler computes the dependences

(i) The compiler figures out dependences by
▶ Solving a system of (integer) equations (with constraints)
▶ Demonstrating that there is no solution to the system of equations

(ii) Removes cycles in the dependence graph
(iii) Determines data alignment
(iv) Determines if vectorization is profitable

▶ Loop vectorization is not always a legal and profitable transformation
• Vectorizing a loop with several statements is equivalent to strip-mining the loop and

then applying loop distribution

for (i=0; i<LEN; i++) {
a[i] = b[i] + 1;
c[i] = b[i] + 2;

}

for (i=0; i<LEN; i+=strip_size){
for (j=i; j<i+strip_size; j++)

a[j] = b[j] + 1;
for (j=i; j<i+strip_size; j++)

c[j] = b[j] + 2;
}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 52 / 112

Dependence Graphs and Compiler Vectorization

• No dependences: easy case, just check for profitability
• Acyclic graphs:

▶ All dependences are forward: vectorized by the compiler
▶ Some backward dependences: sometimes vectorized by the compiler

• Cycles in the dependence graph
▶ Self anti-dependence: vectorized by the compiler
▶ Recurrence: usually not vectorized by the compiler

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 53 / 112

Acyclic Dependences
Forward dependences are vectorized
for (i=0; i<LEN; i++) {
a[i]= b[i] + c[i]
d[i] = a[i] + 1;

}

Backward dependences can sometimes be vectorized
for (i=0; i<LEN; i++) {

S1 a[i] = b[i] + c[i]
S2 d[i] = a[i+1] + 1;

}

for (i=0; i<LEN; i++) {
S2 d[i] = a[i+1] + 1;
S1 a[i]= b[i] + c[i]

}

for (int i = 1; i<LEN; i++) {
S1 a[i] = d[i-1] + sqrt(c[i]);
S2 d[i] = b[i] + sqrt(e[i]);

}

for (int i = 1; i<LEN; i++) {
S2 d[i] = b[i] + sqrt(e[i]);
S1 a[i] = d[i-1] + sqrt(c[i]);

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 54 / 112

Cycles in the DDG

Are there transformations which allow vectorizing the following loops?

for (int i=0; i<LEN-1; i++) {
S1 b[i] = a[i] + 1;
S2 a[i+1] = b[i] + 2;

}

Statements cannot be reordered

for (int i=1; i<LEN; i++) {
S1 a[i] = b[i] + c[i];
S2 d[i] = a[i] + e[i-1];
S3 e[i] = d[i] + c[i];

}

All the statements are not involved in a
cycle

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 55 / 112

Cycles in the DDG

for (int i=0; i<LEN-1; i++) {
S1 a[i]=a[i+1]+b[i];

}

Self anti-dependence can be vectorized

for (int i=1; i<LEN; i++) {
S1 a[i]=a[i-1]+b[i];

}

Self true dependence cannot be vectorized

for (int i=1; i<LEN; i++) {
S1 a[i]=a[i-4]+b[i];

}

Self true dependence with larger distance
vectors can be vectorized

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 56 / 112

Cycles in the DDG

for (int i=0; i<LEN; i++) {
S1 a[r[i]] = a[r[i]] * 2;

}

Are there i and i’ such that r[i] ==
r[i’] and i ̸= i’?

Cycles can appear in the DDG because the compiler cannot prove that there cannot be
dependences

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 57 / 112

Challenges in Vectorization

Loop Transformations using Compiler Directives

When the compiler does not vectorize automatically due to dependences the
programmer can inform the compiler that it is safe to vectorize

#pragma ivdep (ICC compiler)

for (int i=val; i<LEN-k; i++)
a[i]=a[i+k]+b[i];

• Assume vector width is 4 elements
• This loop can be vectorized when k <
-3 and k >= 0

• Suppose programmers know that k>0

How can the programmer tell the compiler that k >= 0?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 58 / 112

Compiler Directives

Compiler vectorizes many loops, but many more can be vectorized if appropriate
directives are used

Intel ICC

#pragma ivdep Ignore data dependences
#pragma vector always Override efficiency heuristics
#pragma novector Disable vectorization

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 59 / 112

Aliasing

...
void test(float* A,float* B,float* C) {
for (int i = 0; i <LEN; i++) {
A[i]=B[i]+C[i];

}
}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 60 / 112

Aliasing

...
void test(float* A,float* B,float* C) {
for (int i = 0; i <LEN; i++) {
A[i]=B[i]+C[i];

}
}

...
float *A = &B[i];
void test(float* A,float* B, float* C) {
for (int i = 0; i <LEN; i++) {
A[i]=B[i]+C[i];

}
}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 61 / 112

Aliasing

• To vectorize, the compiler needs to guarantee that the pointers are not aliased
• When the compiler does not know if two pointers are aliases, it can still vectorize but

needs to add up to O (n2) run-time checks, where n is the number of pointers
▶ When the number of pointers is large, the compiler may decide to not vectorize

• Two possible workarounds
(i) Static and globally defined arrays

(ii) Use the __restrict__ keyword

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 62 / 112

Resolving Aliases Using Static and Global Arrays

float A[LEN] __attribute__ ((aligned(16)));
float B[LEN] __attribute__ ((aligned(16)));
float C[LEN] __attribute__ ((aligned(16)));
void func1() {

for (int i=0; i<LEN; i++)
A[i] = B[i] + C[i];

}
int main() {

...
func1();

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 63 / 112

Resolving Aliases Using __restrict__ Keyword
...
float *A = &B[i];
void test(float* __restrict__ A,float* __restrict__ B,

float* __restrict__ C) {
__assume_aligned(A, 16);
__assume_aligned(B, 16);
__assume_aligned(C, 16);
for (int i = 0; i <LEN; i++) {
A[i]=B[i]+C[i];

}
}
int main() {
float* A=(float*) memalign(16,LEN*sizeof(float));
float* B=(float*) memalign(16,LEN*sizeof(float));
float* C=(float*) memalign(16,LEN*sizeof(float));
...
func1(A,B,C);

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 64 / 112

Aliasing in Multidimensional Arrays

void func1(float** __restrict__ a,float** __restrict__ b,
float** __restrict__ c) {

for (int i=0; i<LEN; i++)
for (int j=1; j<LEN; j++)
a[i][j] = b[i][j-1] * c[i][j];

}

c c[0]
c[1]
c[2]

c[0][0] c[0][1] ...
c[1][0] c[1][1] ...
c[2][0] c[2][1] ...

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 65 / 112

Aliasing in Multidimensional Arrays

Three solutions to try when __restrict__ does not enable vectorization
(i) Static and global arrays

(ii) Linearize the arrays and then use __restrict__ keyword
(iii) Use compiler directives

Static and global declaration

float a[N][N] __attribute__ ((aligned(16)));
void t() {
a[i][j] ...

}
int main() {
...
t();
...

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 66 / 112

Aliasing in Multidimensional Arrays
Linearize the array void t(float* __restrict__ a){

// Access to a[i][j] is now a[i*128+j]
...

}
int main() {
float* a = (float*) memalign(16,128*128*sizeof(float));
...
t(a);

}

Use compiler
directives

void func1(float **a, float **b, float **c) {
for (int i=0; i<m; i++) {

#pragma ivdep
for (int j=0; j<LEN; j++)

c[i][j] = b[i][j] * a[i][j];
}

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 67 / 112

Reductions

Reduction is an operation, such as addition, which is applied to the elements of an array
to produce a result of a lesser rank

sum = 0;
for (int i=0; i<LEN; ++i) {
sum += a[i];

}

x = a[0];
index = 0;
for (int i=0; i<LEN; ++i) {
if (a[i] > x) {

x = a[i];
index = i;

}
}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 68 / 112

Induction Variables

Induction variables can be expressed as a function of the loop iteration variable

float s = 0.0;
for (int i=0; i<LEN; i++) {
s += 2.0;
a[i] = s * b[i];

}

for (int i=0; i<LEN; i++) {
a[i] = 2.0*(i+1)*b[i];

}

Coding style may influence a compiler’s ability to vectorize
for (int i=0; i<LEN; i++) {
*a = *b + *c;
a++; b++; c++;

}

for (int i=0; i<LEN; i++) {
a[i] = b[i] + c[i];

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 69 / 112

Data Alignment

• Vector loads/stores load/store 128 consecutive bits to a vector register
• Data addresses need to be 16-byte (128 bits) aligned to be loaded/stored

▶ Intel platforms support aligned and unaligned load/stores
▶ IBM platforms do not support unaligned load/stores

void test1(float *a,float *b,float *c) {
for (int i=0;i<LEN;i++) {
a[i] = b[i] + c[i];

}
}

0 1 2 3b

Is &b[0] 16-byte aligned?

vector loads b[0] … b[3]

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 70 / 112

Why Data Alignment May Improve Efficiency?

• Vector load/store from aligned data
requires one memory access

• Vector load/store from unaligned data
requires multiple memory accesses
and some shift operations

• A pointer is 16-byte aligned if the
address is divisible by 16
▶ That is, the last digit of the pointer

address in hex must be 0

0
1
2
3
4
5
6
7

Read 4 Bytes from Address 1

Memory

Load high 3 Bytes

Load low Byte

Shift 1 Byte up

Shift 3 Bytes down

Combine

float B[1024] __attribute__ ((aligned(16)));
int main() {
printf("%p, %p\n", &B[0], &B[4]);

}
// Output: 0x7fff1e9d8580, 0x7fff1e9d8590

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 71 / 112

Data Alignment

Manual 16-byte alignment can be achieved by forcing the base address to be a multiple
of 16

// Static allocation
float b[N] __attribute__ ((aligned(16))) ;
// Dynamic allocation
float* a = (float*) memalign(16,N*sizeof(float));

When a pointer is passed to a function, the compiler can be made aware of alignment
void func1(float *a, float *b, float *c) {

__assume_aligned(a, 16);
__assume_aligned(b, 16);
__assume_aligned(c, 16);
for int (i=0; i<LEN; i++)
a[i] = b[i] + c[i];

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 72 / 112

Alignment in a struct

struct st {
char A;
int B[64];
float C;
int D[64];

};
int main() {
st s1;
printf("%p\n", &s1.A); // 0x7fffe6765f00
printf("%p\n", &s1.B); // 0x7fffe6765f04
printf("%p\n", &s1.C); // 0x7fffe6766004
printf("%p\n", &s1.D); // 0x7fffe6766008

}

Arrays B and D are not 16-bytes aligned

struct st {
char A;
int B[64] __attribute__ ((aligned(16)));
float C;
int D[64] __attribute__ ((aligned(16)));

};
int main() {

st s1;
printf("%p\n", &s1.A); // 0x7fffe6765f00
printf("%p\n", &s1.B); // 0x7fff1e9d8590
printf("%p\n", &s1.C); // 0x7fffe6766004
printf("%p\n", &s1.D); // 0x7fff1e9d86a0

}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 73 / 112

Non-unit Stride

Array of structures

typedef struct{int x, y, z} point;
point pt[LEN];
for (int i=0; i<LEN; i++) {
pt[i].y *= scale;

}

x0 y0 z0 x1 x2y1 y2z1 z2

point pt[N];

vector load vector load

y0 y1 y2 y3
vector

register

Structure of arrays

int ptx[LEN], pty[LEN], ptz[LEN];
for (int i=0; i<LEN; i++) {

pty[i] *= scale;

}

y0 y1 y2 y3 y6y4 y7y5

vector load vector load

y0 y1 y2 y3
vector

register

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 74 / 112

Conditional Statements

• A compiler may not vectorize a loop with a conditional if it is unsure about the
profitability
▶ Furthermore, removing the condition may lead to exceptions

• You may need to introduce #pragma vector always
• Compiler may create multiple versions of the code (e.g., scalar and vector)

▶ Compiler may remove the conditions when generating the vector version

#pragma vector always
for (int i = 0; i < LEN; i++) {
if (c[i] < 0.0)

a[i] = a[i] * b[i] + d[i];
}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 75 / 112

Vectorization Examples

• Check the Makefile for relevant options passed to GCC
• Vectorization output can vary across compiler versions and architecture generations
• Correlate the assembly code with the high-level C++ statements

• Vectorize a loop nest with increasing control
• Understanding alignment

▶ struct.cpp
▶ unaligned-cost-gcc.cpp

• Makefile

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 76 / 112

https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/vector/diff-variants.cpp
https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/vector/struct.cpp
https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/vector/unaligned-cost-gcc.cpp
https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/vector/Makefile

Vectorization with Intrinsics

Vector Intrinsics

• Intrinsics are useful when
▶ the compiler fails to vectorize, or
▶ when the programmer thinks it is possible to generate better code than what is

produced by the compiler
• Intrinsics are architecture specific

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 77 / 112

Intel Intrinsics Header Files

• We will focus on the Intel vector intrinsics
• You have to include one of the following header files for using intrinsics

SSE #include <xmmintrin.h>
SSE2 #include <emmintrin.h>
SSE3 #include <pmmintrin.h>

SSSE3 #include <tmmintrin.h>
SSE4.1 #include <smmintrin.h>
SSE4.2 #include <nmmintrin.h>

AVX #include <immintrin.h>
AVX2 #include <immintrin.h>

AVX512 #include <immintrin.h>

• Alternatively, use #include <x86intrin.h>, it includes all relevant headers

Intel Intrinsics Guide

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 78 / 112

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Format of Intel Intrinsic APIs

_mm_instruction_suffix(...)
_mm256_instruction_suffix(...)

Suffix can take many forms
ss scalar single precision
ps packed (vector) singe precision
sd scalar double precision
pd packed double precision
si# scalar integer (8, 16, 32, 64, or 128 bits)

su# scalar unsigned integer (8, 16, 32, 64, or 128 bits)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 79 / 112

Data Types

Few examples
__m128 packed single precision (vector XMM register)

__m128d packed double precision (vector XMM register)
__m128i packed integer (vector XMM register)

Load four 16-byte aligned single precision values in a vector
float a[4]={1.0,2.0,3.0,4.0}; // a must be 16-byte aligned
__m128 x = _mm_load_ps(a);

Add two vectors containing four single precision values
__m128 a, b;
__m128 c = _mm_add_ps(a, b);

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 80 / 112

Examples with Intrinsics

• Check CPU features
• Understanding alignment cost with intrinsics
• Inclusive prefix sum with SSE
• Makefile

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 81 / 112

https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/vector/check-cpu-capability.cpp
https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/vector/unaligned-intrinsic-cost.cpp
https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/vector/inclusive-prefix-sum-gcc-sse4.cpp
https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/examples/vector/Makefile

Summary

• Relevance of vectorization to improve program performance is likely to increase in
the future as vector lengths grow

• Compilers are often only partially successful at vectorizing code
• When the compiler fails, programmers can

▶ add compiler directives, or
▶ apply loop transformations

• If after transforming the code, the compiler still fails to vectorize (or the
performance of the generated code is poor), use vector extensions (e.g., intrinsics or
assembly) directly

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 82 / 112

Enhancing Coarse-Grained Parallelism

Focus is on parallelization of outer loops

Find Work for Threads

Setup • Symmetric multiprocessors with shared memory
• Threads are running on each core and are coordinating execution with

occasional synchronization
Challenge Balance the granularity of parallelism with communication overheads

SMP - symmetric multiprocessor system

System bus

Cache Cache Cache

Processor
1

Processor
2

Processor
n

Main
memory

By Ferruccio Zulian - Milan.Italy

Bus
arbiter

I/O

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 83 / 112

Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly
load balancing across the processors

Running everything on one processor
achieves minimal communication and
synchronization overhead

Very fine-grained parallelism achieves good
load balance, but benefits may be
outweighed by frequent communication
and synchronization

An optimizing compiler is
expected to find the sweet spot

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 84 / 112

Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly
load balancing across the processors

Running everything on one processor
achieves minimal communication and
synchronization overhead

Very fine-grained parallelism achieves good
load balance, but benefits may be
outweighed by frequent communication
and synchronization

An optimizing compiler is
expected to find the sweet spot

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 84 / 112

Privatization

• Privatization is similar to scalar expansion
• Temporaries can be made local to each iteration

DO I = 1,N
S1 T = A(I)
S2 A(I) = B(I)
S3 B(I) = T

PARALLEL DO I = 1,N
PRIVATE t

S1 t = A(I)
S2 A(I) = B(I)
S3 B(I) = t

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 85 / 112

Privatization
A scalar variable x in a loop L is privatizable if every path from the entry of L to a use of x
in the loop passes through a definition of x
• No use of the variable is upward exposed, i.e., the use never reads a value that was

assigned outside the loop
• No use of the variable is from an assignment in an earlier iteration

Computing upward-exposed variables from a block BB

up(BB) = use(BB) ∪
(
¬def (BB) ∩

⋃
y∈succ(BB) up(y)

)
Computing privatizable variables for a loop body B where BB0 is
the entry block

private(B) = ¬up(BB0) ∩
(⋃

y∈B def (y)
)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 86 / 112

Privatization

• If all dependences carried by a loop involve a privatizable variable, then loop can be
parallelized by making the variables private

• Preferred compared to scalar expansion
▶ Less memory requirement
▶ Scalar expansion may suffer from false sharing

• However, there can be situations where scalar expansion works but privatization
does not

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 87 / 112

Comparing Privatization and Scalar Expansion

DO I = 1, N
T = A(I) + B(I)
A(I-1) = T

⇓Privatization

DO I = 1, N
PRIVATE T
T = A(I) + B(I)
A(I-1) = T

Scalar
======⇒
expansion

PARALLEL DO I = 1, N
T$(I) = A(I) + B(I)
A(I-1) = T$(I)

⇓

PARALLEL DO I = 1, N
T$(I) = A(I) + B(I)

PARALLEL DO I = 1, N
A(I-1) = T$(I)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 88 / 112

Loop Distribution (Loop Fission)

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)
S2 D(I,J) = A(I,J-1) * 2.0

DO I = 1, 100
DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

DO J = 1, 100
S2 D(I,J) = A(I,J-1) * 2.0

Eliminates loop-carried
dependences

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 89 / 112

Validity Condition for Loop Distribution

A loop with two statements can be distributed if there are no dependences from any
instance of the later statement to any instance of the earlier one
• Sufficient (but not necessary) condition
• Generalizes to more statements

DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I+1) * D(I)

DO I = 1, N
S1 A(I) = B(I) + C(I)
S2 E(I) = A(I-1) * D(I)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 90 / 112

Performing Loop Distribution

Steps
(i) Build the DDG

(ii) Identify strongly-connected
components (SCCs) in the DDG

(iii) Make each SCC a separate loop
(iv) Arrange the new loops in a

topological order of the DDG

DO I = 1, N
S1 A[I] = A[I] + B[I-1]
S2 B[I] = C[I-1] + X
S3 C[I] = B[I] + Y
S4 D[I] = C[I] + D[I-1]

=⇒

S1

S2

S3

S4

δ1

δ∞δ1

δ∞

δ1

=⇒
S1

S2 S3

S4
δ1

δ∞

δ1
δ∞

δ1

⇓
DO I = 1, N

S2 B[I] = C[I-1] + X
S3 C[I] = B[I] + Y

DO I = 1, N
S1 A[I] = A[I] + B[I-1]

DO I = 1, N
S4 D[I] = C[I] + D[I-1]

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 91 / 112

Understanding Loop Distribution

Pros

+ Execute source of a dependence before
the sink

+ Reduces the memory footprint of the
original loop for both data and code

+ Improves opportunities for
vectorization

Cons

− Can increase the synchronization
required between dependence points

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 92 / 112

Loop Alignment

Unlike loop distribution, realign the loop to compute and use the values in the same
iteration

DO I = 2, N
S1 A(I) = B(I) + C(I)
S2 D(I) = A(I-1) * 2.0

DO i = 1, N+1
if i > 1 && i < N+1

S1 A(i) = B(i) + C(i)
if i < N

S2 D(i+1) = A(i) * 2.0

cannot be parallelized
carried dependence becomes
loop independent

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 93 / 112

Can Loop Alignment Eliminate All Carried Dependences?

DO I = 1, N
S1 A(I) = B(I) + C
S2 B(I+1) = A(I) + D

DO I = 1, N
S1 A(I+1) = B(I) + C
S2 X(I) = A(I+1) + A(I)

=⇒

=⇒

DO i = 1, N+1
if i > 1

S2 B(i) = A(i-1) + D
if i < N+1

S1 A(i) = B(i) + C

DO i = 0, N
if i > 0

S1 A(i+1) = B(i) + C
if i < N

S2 X(i+1) = A(i+2) + A(i+1)

A is aligned, B
is misaligned

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 94 / 112

Loop Fusion (Loop Jamming)

DO I = 1, N
S1 A(I) = B(I) + 1
S2 C(I) = A(I) + C(I-1)
S3 D(I) = A(I) + X

=⇒
L1 DO I = 1, N

A(I) = B(I) + 1
L2 DO I = 1, N

C(I) = A(I) + C(I-1)
L3 DO I = 1, N

D(I) = A(I) + X

=⇒
L13 DO I = 1, N

A(I) = B(I) + 1
D(I) = A(I) + X

L2 DO I = 1, N
C(I) = A(I) + C(I-1)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 95 / 112

Validity Condition for Loop Fusion

• Consider a loop-independent dependence between statements in two different
loops (i.e., from S1 to S2)

• A dependence is fusion-preventing if fusing the two loops causes the dependence to
be carried by the combined loop in the reverse direction (from S2 to S1)

DO I = 1, N
S1 A(I) = B(I) + C

DO I = 1, N
S2 D(I) = A(I+1) + E

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I+1) + E

loop-independent
flow dependence

backward loop-carried
anti dependence

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 96 / 112

Understanding Loop Fusion

Pros

+ Reduce overhead of loops
+ May improve temporal locality

Cons

− May decrease data locality in the fused
loop

DO I = 1, N
S1 A(I) = B(I) + C

DO I = 1, N
S2 D(I) = A(I-1) + E

DO I = 1, N
S1 A(I) = B(I) + C
S2 D(I) = A(I-1) + E

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 97 / 112

Loop Interchange

DO I = 1, N
DO J = 1, M
A(I+1,J) = A(I,J) + B(I,J)

=⇒
DO J = 1, M
DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

⇓

PARALLEL DO J = 1, M
DO I = 1, N

A(I+1,J) = A(I,J) + B(I,J)

Parallelizing J is good for vector-
ization, but not for coarse-grained
parallelism

Dependence-free loops should
move to the outermost level

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 98 / 112

Condition for Loop Interchange

In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the
column of the direction matrix for that nest contains only “0” entries

DO I = 1, N
DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 99 / 112

Code Generation Strategy

(i) Continue till there are no more columns to move
▶ Choose a loop from the direction matrix that has all “0” entries in the column
▶ Move it to the outermost position
▶ Eliminate the column from the direction matrix

(ii) Pick loop with most “+” entries, move to the next outermost position
▶ Generate a sequential loop
▶ Eliminate the column
▶ Eliminate any rows that represent dependences carried by this loop

(iii) Repeat from Step (i)

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 100 / 112

Code Generation Example

DO I = 1, N
DO J = 1, M
DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

DO I = 1, N
PARALLEL DO J = 1, M

DO K = 1, L
A(I+1,J,K) = A(I,J,K) + X1
B(I,J,K+1) = B(I,J,K) + X2
C(I+1,J+1,K+1) = C(I,J,K) + X3

How did we pick loop
J for parallelization?

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 102 / 112

How can we parallelize this loop?

DO I = 2, N+1
DO J = 2, M+1
DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

No single loop carries all the dependences,
so we can only parallelize loop K

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 103 / 112

Loop Reversal
DO I = 2, N+1

DO J = 2, M+1
DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

⇓
DO I = 2, N+1

DO J = 2, M+1
DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

• When the iteration space of a loop is reversed, the direction of dependences within
that reversed iteration space are also reversed
▶ A “+” dependence becomes a “-” dependence, and vice versa

• We cannot perform loop reversal if the loop carries a dependence
Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 104 / 112

Perform Interchange after Loop Reversal

DO I = 2, N+1
DO J = 2, M+1
DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

⇓
DO K = L, 1, -1

DO I = 2, N+1
DO J = 2, M+1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

increases options for performing
other optimizations

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 105 / 112

Which Transformations are Most Important?

• Selecting the best loops for parallelization is a
NP-complete problem

• Flow dependences are difficult to remove
▶ Try to reorder statements as in loop peeling, loop

distribution
• Techniques like scalar expansion, privatization can be

useful
▶ Loops often use scalars for temporary values

+ + 0 0
+ 0 + 0
+ 0 0 +
0 + 0 0
0 0 + 0
0 0 0 +

carries the most
dependences

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 106 / 112

Unimodular Transformations

Challenges in Applying Transformations

• We have discussed transformations (legality and benefits) in isolation
• Compilers need to apply compound transformations (e.g., loop interchange followed

by reversal)
• It is challenging to decide on the desired transformations and their order of

application
▶ Choice and order is sensitive to the program input, a priori order does not work

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 107 / 112

Unimodular Transformations
• A unimodular matrix is a square integer matrix having determinant 1 or -1 (e.g., [1 1

1 0])
• Few loop transformations can be modeled as matrix transformations involving

unimodular matrices
▶ Loop interchange maps iteration (i, j) to iteration (j, i)[

0 1
1 0

] [
i
j

]
=

[
j
i

]
▶ Given transformation T is linear, the transformed dependence is given by Td where d is

the dependence vector in the original iteration space[
0 1
1 0

] [
d1
d2

]
=

[
d2
d1

]
▶ The transformation matrix for loop reversal of the outer loop i in a 2D loop nest is [−1 0

0 1]
▶ The transformation matrix for loop skewing of a 2D loop nest (i, j) is the identity matrix

T with Tj,i equal to f , where we skew loop j with respect to loop i by a factor f

M. Wolf and M. Lam. A Loop Transformation Theory and an Algorithm to Maximize Parallelism. TPDS’91.

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 108 / 112

https://ieeexplore.ieee.org/document/97902

Example of Loop Skewing

Original

FOR I=1,5
FOR J=1,5
A(I,J) = A(I-1,J) + A(I,J-1)

Dependences D = {(1,0), (0, 1)}

Skewed

FOR I=1,5
FOR j=I+1,I+5

A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

Transformation matrix = [1 0
1 1]

Dependences D′
= TD = {(1, 1), (0, 1)}

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 109 / 112

Representing Compound Transformations
DO I = 1, N

DO J = 1, N
A(I,J) = A(I-1,J+1) + C

Loop interchange is illegal because[
0 1
1 0

] [
1
−1

]
=

[
−1
1

]
Let us try loop interchange followed by loop reversal. The transformation matrix T is[

−1 0
0 1

] [
0 1
1 0

]
=

[
0 −1
1 0

]
Applying T to the loop nest is legal because[

0 −1
1 0

] [
1
−1

]
=

[
1
1

]
DO J = N, 1, -1

DO I = 1, N
A[I,J] = A[I-1,J+1] + C

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 110 / 112

Challenges for Real-World Compilers

• Conditional execution
• Symbolic loop bounds
• Indirect memory accesses
• . . .

Swarnendu Biswas (IIT Kanpur) CS 610: Loop Transformations for Parallelism Sem 2025-26-I 111 / 112

References

R. Allen and K. Kennedy. Optimizing Compilers for Multicore Architectures. Sections 5.2–5.4,
5.7.2, 5.9, 6.2.1–6.2.2, 6.2.5, 6.3.1–6.3.4, Morgan Kaufmann.

S. Midkiff. Automatic Parallelization: An Overview of Fundamental Compiler Techniques.
Sections 4.1–4.2, 4.5, 5.1–5.6, Springer Cham.

J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach. Sections
4.1–4.2, 4.5, 6th edition, Morgan Kaufmann.

M. Garzarán et al. Program Optimization Through Loop Vectorization.

M. Voss. Topics in Loop Vectorization.

K. Rogozhin. Vectorization.

https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/vectorization-tutorial.pdf
https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/vectorization-voss.pdf
https://cse.iitk.ac.in/users/swarnendu/courses/autumn2025-cs610/vectorization-kirill.pdf

	Vectorization
	Enhancing Fine-Grained Parallelism
	Ways to Vectorize Code
	Challenges in Vectorization
	Vectorization with Intrinsics
	Enhancing Coarse-Grained Parallelism
	Unimodular Transformations

