CS 610: Compiler Challenges
for Parallel Architectures

Swarnendu Biswas

Semester 2022-2023-1
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Improvements in Computing Capabilities

* Last few decades have been exciting for the parallel computing
community

* Sources of improvements in computing capabilities
i. Improvement in underlying technology (aka Moore’s law)

ii. Advances in computer architecture
 Instruction level parallelism (pipelining)

Multiple functional/execution units

Superscalar instruction issue and VLIW

Vector operations
Deeper and sophisticated cache hierarchies

Moore’s Law: The number of transistors on microchips doubles every two years [oMaWHE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count
S0,000,000,000 GC2 ‘P{J\ Q@ AMD Epyc Rome
72-core Xeon Phij Centrig 2400 © ©AWS Graviton2

SPARC M7 0 32-core AMD Epyc
»’\pp\e A12X Bionic

IBM 213 Storage COHUOHHI
10’0007000’000 18-core Xeon Haswell-E5 HiSilicon Kirin 990 5G
\ 8 g g Apple A13 (iPhone 11 Pro)

ner 1
5,000,000,000 éﬂ“iﬁe ‘x;‘n‘::',)?ff% QAMD Ryzen 7 3700X
12-core POWERS »8 < ™ HiSilicon Kirin 710
8-core Xeon Nehalem-EXa 810 core Core i7 Broadwel|-E
‘ Qualcomm Snapdragon 835
& ol)ua\ core + GPU lIris Core i7 Broadwell-U
Quad-core + GPU GT2 Core i7 Skylake K

3 © ' Q ad-core + GPU Core i7 Haswell

Six-core Xeon 7400

Dual-core Itanium 2¢p L4

1,000,000,000 Pentium D Presler WERG
ltanium 2 with /\ppl(A7 (dual-core ARM64 "mobile SoC")
500,000,000 lsn:\'}&'&az;\h‘.eb\ AMC)qugL?auc?[(I\ore sils
Itanium 2 Madison (;M° Core 2 DuoIWo\fdak N
Pentium D Smithfields ~ore 2 Duo Conroe
Itanium 2 McKinley € -2 ell Core 2 Duo Wolfdale 3M
100.000.000 Pentium 4 Prescott-2M € ‘\QC()re 2 Duo Allendale
- Pentium 4 Cedar Mill
’ d AMD K&@ °’erm'um 4 Prescott
S0,000,000 Pentium 4 Nor thwood° ©Barton
Pentium 4 Willamette € @ Q@Atom
Pentium Il Mobile Dixon Featiun Il Tudlate
R e
AMD K7 @ Pentium Il Coppermine OARM Cortex-A9
AMD Ké-IlI
10,000,000
— PTG e RERTBLAE
S,OOO'OOO Pentium Pfo° tum || i T
Klamath
Pen t‘!umo /\M’) K5
SA-110
Intel 80486
1,000,000 ' o %00
Tl Expl 32-bit,
SOO’OOO Llsﬁ)lﬁgfl(hsné tho AR&7OO
In‘te|(803b6° ‘13})900 ©ARM 3
Motorola 68020 RS
o DEC WRL
100,000 Intel 8028 MultiTitan
M el ntel 80286
))(9TOMI
50,000 .. @ lntel 80186 :
Intel 808¢€p €y Intel 8088 PY QARM 2 AR?A 6
2 °ARM 1
; Motorola 65C816 i
10,000 TMS 1000 ZiogZ8Q.... 097 B NCAdie
5,000 RCA 1802 &nle\ goss 92
Intel 80080 Intel 8080
Motorola b8 %S Technology
Intel 4004 °°
1,000
™ 2] X ™ O > <o Q X Q
PSP LA S g g L & q% O P R P TP PP X RS
'\f’\\'\r’\/’\/'\/\'\f\'\/ I 2] D] D VS Vi D N N)

Year in WhICh the microchip was first introduced

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)
Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

OurWorldinData.org — Research and data to make progress against the world’s largest problems.

Challenges to Growth in Performance

Clock speeds are

25 ! |
not increasing any
ED more
]
%} 15
g 10
Q
——:'WJ-%/
T U S S S 1. m
" Intel multicore
| ‘ ' I I l

2001 2003 2005 2007 2009 2011 2013 . . .
Power, and not manufacturing, limits

microarchitectural improvements — F. Pollack

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.

10’
10°
10°
10*
10°
10°
10’
10°

50 Years of Microprocessor Trend Data

1970 1980 1990 2000 2010 2020

Year

Transistors
(thousands)

Single-Thread
Performance

| (SpecINT x 103)

Frequency (MHz)

+| Typical Power
7| (Watts)

Number of

*| Logical Cores

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2021 by K. Rupp

50 Years of Microprocessor Trend Data
! | ' AT
7L oA
10 | g “ %% Transistors
6 A ca 4 (thousands)
10 I Y -4 : S T
f A ‘f‘& A '
05 L Apats - aaalSingle-Thread
/ nce
X 103)
2005 - 2020
: . om0 by (MHz)
* Single core performance increase is ~20%
* Programs do not run any faster by themselves Power
\ 1 s m T vy v.Y Y v *J0”3 ' Numogof
LU s = A *sd +*| Logical Cores
ol £ = v 7 g v VY § snnoe”
10 -;000‘“0““%00 ------------------------------ -
i | i i |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Programs Do Not Run Any Faster by
Themselves!

* Microarchitectural techniques

* Multiple functional units, superscalar architecture, VLIW, more cache
structures (e.g., L4 caches), deeper pipelines

Law of diminishing returns!

There is little or no more hidden parallelism (ILP)
to be found

Programs Do Not Run Any Faster by
Themselves!

* Complex systems are more difficult to program efficiently

» Systems programmers now need to be aware of memory hierarchies and
other architectural features to fully exploit the potential of the hardware

Have you heard of ninja programmers?

Popular libraries like Intel MKL, Intel MKL-DNN and NVIDIA cuDNN
are hand-optimized for performance

What is the software side of
the story?

Develop Parallel Programs

ﬂom my perspective, parallelism is the biggest challenge since high-level \
programming languages. It’s the biggest thing in 50 years because industry is

betting its future that parallel programming will be useful.

Industry is building parallel hardware, assuming people can use it. And | think
there’s a chance they’ll fail since the software is not necessarily in place. So this
is a gigantic challenge facing the computer science community.

&David Patterson, ACM Queue, 2006. /

Develop Parallel Programs

To save the IT industry, researchers must demonstrate
greater end-user value of from an increasing number of

cores —
A View of Parallel Computing Landscape, CACM 2009.

_ v

New Challenges in Software Development

e Adapt to the changing hardware landscape
* Most applications are single-threaded

4)
How can we develop software that makes

. effective use of the extra hardware?)

Compilers to the rescue!

* A compiler is a system software that translates a program in a source
language to an equivalent program in a target language

source Compiler . target
program program

4 .)
Role of a compiler
e Generate correct code

S Improve the code according to some metric y

Relevance of Compiler Technologies

* Compiler technology has become more important as machines have
become more complex

 Success of architecture innovations depends on the ability of
compilers to provide efficient language implementations on that
architecture

* Excellent techniques have been developed for vectorization,
instruction scheduling, and management of multilevel memory
hierarchies

e Automatic parallelization has been successful only for shared-memory
parallel systems with a few processors

Compiling for Scalar Pipelines

* Pipelining subdivides a complex operation into independent
microoperations

* Assume the different microoperations use different resources

* Microoperations can be overlapped by starting an operation as soon as its
predecessor has completed the first microoperation

* A pipelined functional unit is effective only when the pipe is full
* Operands need to be available on each segment clock cycle

Compiling for Scalar Pipelines

Floating-point Adder

Inputs

Fetch

Operands
(FO)

Equate
Exponents (EE)

Add Mantissas
(AM)

Normalize
Result (NR)

Results

A pipelined execution unit computing a,= b, + c,

(FO)
b,
Cy

(EE)
b,
C3

(AM)
b,+c,

(NR)
dq

Compiling for Scalar Pipelines

* Multiple functional units

e Assume n units and m cycles for an
operation to complete

e Canissue n/m operations per cycle

* Also called fine-grained
parallelism

Adder 1
a;+b,

A 4

by

Cs

Adder 2
a,+b,

Adder 3
az + b,

A 4

Results

n
>

Adder 4
a,+b,

\ 4

v

Compiler Challenges with Pipelining

* The key performance barrier is pipeline stalls

* A stall occurs when a new set of inputs cannot be injected into the pipeline
because of a hazard

* Structural hazards — Available machine resources do not support
instruction overlap

* For example, if a machine has only one port to memory, it cannot overlap the
fetch of instructions with the fetch of data

* Such a hazard cannot be avoided through compiler strategies

Compiler Challenges with Pipelining

e Data hazards — Result produced by one instruction is needed by a
later one

Lw R1, 0(R2)
ADD R3, R1, R4
* Compiler can schedule an instruction that does not use R1

e Control hazards — Occurs during processing of branch instructions

Vector Instructions

* Apply same operation to different positions of one or more arrays
* Goal: keep pipelines of execution units full

VLOAD V1, A

VLOAD V2,B .) . |
VADD V3.V1,V2 mm) C(1:64) = A(1:64) + B(1:64)

VSTORE V3,C

* Challenges
* Increases processor state for the vector registers
* Increases the cost of processor context switching
* Expanded the instruct set complicating instruction decode

e Can pollute the cache hierarchy

Compiler Challenges with Vector Instructions

DO I =1, 64

C(I) = A(I) > B(I) C(1:64) = A(1:64) *x B(1:64)
ENDDO Z>
DO I = 1, 64

A(T+1) = A(I) + B(I) Z> A(2:65) = A(1:64) * B(1:64)

ENDDO

Superscalar and VLIW Processors

e Goal is to issue multiple instructions on the same cycle

e Superscalar — looks ahead in the instruction stream and issues
instructions that are ready to execute

* VLIW — executes a wide instruction per cycle
e Usually one instruction slot per functional unit

* Challenges
* Finding enough parallel instructions
* Require more memory bandwidth

Compiling for Multiple-lIssue Processors

 Compiler must recognize when operations are not related by
dependence

e Solution: vectorization

* Compiler must schedule instructions so that it requires as few total
cycles as possible
 Solution: instruction scheduling

Importance of Instruction Scheduling

e Assume a 2 cycle delay for loads from cache and for floating-point
addition

LD R1,A
LD R2,B ¥

oW Mman
FADD R3,R1,R2 | ?y
STD X,R3 cycies:
LD R4, C

FADD R5,R3,R&
STD Y, R5

Importance of Instruction Scheduling

e Assume a 2 cycle delay for loads from cache and for floating-point
addition

LD R1,A LD R1,A
LD R2,B LD R2,B
FADD R3,R1,R2 LD R4, C
STD X,R3 FADD R3,R1,R2
LD R4, C FADD R5,R3,R4
FADD R5,R3,R4 STD X,R3
STD Y,R5 How many STD Y,R5

cycles?

Scheduling in VLIW

LD R1,A {Consider a VLIW system that can issue two loads and two

LD R2,B additions per cycle
FADD R3,R1,R2
STD X,R3 LD R1, A LD R4, C
LD R4, C LD R2, B LD R5, D
LD RS 4 D delay delay
FADD R, R4, R FADD R3, R1, R2 FADD R6, R4, R5
STD Y,R6 » R, o 11y
delay delay
STD X,R3 STDY, R6
LD R1, A LD R2, B
LD R4, C LD R5,D

FADD R3, R1, R2 -

- FADD R6, R4, R5
STD X,R3

- STDY, R6

Processor Parallelism

e Synchronous parallelism
» Replicate processors, with each processor

executing the same program on different data SMP - symmetric multiprocessor system
* Data Parallelism — same task on different data o |

* Asynchronous parallelism

* Replicate processors, but each processor can
execute different programs

* Requires explicit synchronization
e Task Parallelism — independent tasks on same

or different data

https://en.wikipedia.org/wiki/Symmetric_multiprocessing

CS 610 Swarnendu Biswas

Compiling for Asynchronous Parallelism

SMP - symmetric multiprocessor system

mmmmm

CS 610

PARALLEL DO I = 1, N
A(I+1) = A(I) + B(I)
ENDDO

PARALLEL DO I = 1, N
A(I-1) = A(I) + B(I)
ENDDO

PARALLEL DO I = 1, N
S = A(I) + B(I)
ENDDO

Swarnendu Biswas

Bernstein’s Conditions

 When is it safe to run two tasks (e.g., loops) R1 and R2 in parallel?

* |If none of the following holds
1.R1 writes into a memory location that R2 reads
2.R2 writes into a memory location that R1 reads
3.Both R1 and R2 write to the same memory location

Granularity of Parallelism

Vectorization Asynchronous Parallelism
 Parallelism is finer-grained * Parallelism is coarser-grained
* Synchronization overhead is Larger start-up and

smal synchronization overheads

Compilers should parallelize the outer loops and
vectorize the inner ones

References

e R. Allen and K. Kennedy — Optimizing Compilers for Multicore Architectures, Chap 1.

