
1

OpenMP

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Dr. Nitya Hariharan (Intel)

2

Preliminaries: Part 1

• Disclosure

–The material in the lecture slides are adapted from

lectures/tutorials by different sources

– Tim Mattson (Intel)

–Michael Klemm (Intel)

– Edward Smyth (NAG)

– Blaise Barney, LLNL

– Hernandez et al., OpenMP 5.0/5.1 tutorial at ECP 2020 annual meeting

– OpenMP 5.0.1 specification and examples

https://www.openmp.org/resources/

– Examples from “Using OpenMP” by Chapman et al.

https://www.openmp.org/resources/

3

Preliminaries: Part 2

• The lectures are split into different parts going from basics to
advanced topics.

• Each section will have some exercises for you to try out.

• As far as possible, attempt the exercises on your own and try out
different solutions. And please ask queries during the discussion
hour.

• Grey boxes indicate some questions you can try and answer,
solutions are given for some of them.

• You will find links to relevant talks or discussion boards in the
notes, do have a look

4

Outline

• Introduction to OpenMP

• Thread creation

• PARALLEL and work-sharing constructs

• Data scoping

5

What is OpenMP*

OpenMP - Open Multi-Processing

▪ An API for developing multi-threaded (MT) applications

▪ Consists of a set of compiler directives and library routines for
parallel application programmers

▪ Simplifies writing MT programs in Fortran, C and C++

▪ Augments vectorization and standardizes programming of various
platforms

▪ Embedded systems, accelerator devices (GPU), multi-core systems
(CPU)

▪ Name and specification maintained by OpenMP Architecture
Review Board

OpenMP ARB

6

“The OpenMP ARB’s mission is to standardize directive-based multi-language high-

level parallelism that is performant, productive and portable.”

7

Cores per socket – systems share*

*https://www.top500.org/statistics/overtime/

2007 onwards - multi-core processors

dominated the landscape.

OpenMP benefited through increased

greater parallelism.

https://www.top500.org/statistics/overtime/

8

Cores per socket – systems share*

*https://www.top500.org/statistics/overtime/

1999 - OpenMP 1.0

2000 - 01 - OpenMP 2.0

2002 - 03 - OpenMP 2.0

2005 - 06 - OpenMP 2.5

2008 - 09 - OpenMP 3.0

2011 - OpenMP 3.1

2013 - OpenMP 4.0

2015 - OpenMP 4.5

2018 - OpenMP 5.0

Late 2019 - OpenMP 5.1

OpenMP releases have followed the

trend of increasing core counts

https://www.top500.org/statistics/overtime/

9

History of OpenMP

*image source – OpenMP 5.0 tutorial, Hernandez et. al., Exascale Computing Project

Offload support

Merged C/C++ and Fortran spec

Increasing complexity

10

OpenMP solution stack

CPU cores SIMD units GPU cores

Shared address space (NUMA)

*i
m

a
g
e
 c

re
d
it
 –

P
ro

g
ra

m
m

in
g
 w

it
h
 O

p
e
n
M

P
,

Y
o
n
g
h
o
n
g

Y
a
n

pragma, env variable, function, or clause Concepts

#pragma omp parallel Parallel region, teams of threads, structured block, interleaved

execution across threads.

#pragma omp barrier/critical Synchronization and race conditions, interleaved execution.

#pragma omp for/parallel for Worksharing, parallel loops, loop carried dependencies.

#pragma omp single Workshare with a single thread.

#pragma omp task/ taskwait Tasks including the data environment for tasks.

setenv OMP_NUM_THREADS N Setting the internal control variable (ICV) for the default number

of threads with an environment variable

void omp_set_num_threads()

int omp_get_thread_num()

int omp_get_num_threads()

Default number of threads and ICV.

SPMD pattern: Create threads in a parallel region and split up

the work.

double omp_get_wtime() Speedup and Amdahl's law, false sharing and other perf issues.

reduction(op:list) Reductions of values across a team of threads.

schedule (static [,chunk])

schedule(dynamic [,chunk])

Loop schedules, loop overheads, and load balance.

shared(list), private(list), firstprivate(list) Data environment.

default(none) Force explicit definition of each variable’s storage attribute

nowait Disabling implied barriers on workshare constructs, the high

cost of barriers, and the flush concept (but not the flush

directive).

The OpenMP Common Core: Most OpenMP programs only use these 21 items

11

12

Outline

• Introduction to OpenMP

• Thread creation

• PARALLEL and work-sharing constructs

• Data scoping

13

OpenMP Programming Model

Fork-Join Parallelism:

◆Master thread spawns a team of threads as needed.

◆Parallelism added incrementally until performance goals are met.

◆Threads within a parallel region can spawn more threads – nested
parallelism

Parallel Region

master thread

Nested parallel region

Parallel Region Parallel Region

Thread Creation: Parallel Region

• Use PARALLEL construct to
create threads

• Same code executed on each
thread, on different data (SPMD)

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID, A);

}

printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

Barrier at end of parallel region, threads

wait for others to finish.
14

15

What is SPMD?

• SPMD – Single Program Multiple Data

• Part of the MIMD category in Flynn’s taxonomy

• Multiple Processing Elements (PE) that run a copy of the same program

and operate on different data elements

PE[0] PE(1) PE(2) PE(k) PE(n-1).. ..

Data
memory [0]

Data
memory [2]

Data
memory [1]

Data memory
[n-1]

Data
memory[k]

Communication network

What happens behind the scenes

• Behavior of an OpenMP program can be controlled by Internal Control

Variable (ICVs)

• ICVs are set at different stages of a program, initialized by implementation

and values can be overridden through env variables or within the program.

16

• Example - when the program

starts up, query

OMP_NUM_THREADS and

update nthreads-var ICV

• Can override this using
omp_set_num_threads()

function call

• The num_threads clause can be used to request threads for a parallel

region, ICV remains unchanged

– #pragma omp parallel num_threads(8)

17

What happens when you run on multiple cores

• There are side effects to sharing resources among threads

• If independent data elements happen to sit on the same cache line, each

modification will cause the cache line to be invalidated and forces a cache

update to maintain coherency, hurting performance - “false sharing”

*https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html

Q

• How do you then get performance?

https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html

18

False sharing

• Caches get a chunk of data every time you request something from memory – cache

line (64 bytes)

• If you ask for 8-byte element a[1], the core will read 7 other elements along with it,

into the cache.

• This helps with spatial locality, i.e., if you want variable a[1], you might want the

variables next to it in memory.

• When T0 updates a[1], it forces T1 to load the cache line again.

a[1]

a[5]

b[1]
a[1] b[1]

T0
a[1] = 10 b[1] = 10

T1

Cache line

Memory

19

How do you get performance with “false sharing”?

Solution

1. Pad arrays so elements used by separate

threads are on distinct cache lines

2. Be careful while padding, and pad only how

much you need. Assume L1 cache line is 64

bytes.

3. Compilers are now smart enough to recognize

false sharing and can use thread-private

temporary variables. Use optimization flags!

*https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html

https://software.intel.com/content/www/us/en/develop/articles/avoiding-and-identifying-false-sharing-among-threads.html

20

Outline

• Introduction to OpenMP

• Thread creation

• PARALLEL and work-sharing constructs

• Data scoping

21

Some terminology

• OpenMP has three major components

– Compiler directives

– Runtime routines - omp_set_num_threads()

– Environment variables - OMP_NUM_THREADS

• User can decide what to use in their program

• Compiler directives have the format

#pragma omp or !$omp DIRECTIVE-NAME CLAUSE

where

DIRECTIVE-NAME can be PARALLEL, SIMD – define program behavior

CLAUSE can be DEFAULT, PRIVATE, REDUCTION – how data is shared

among threads

• A construct is an OpenMP directive + directive-name + clauses + a
structured block of code that does something – next slide

22

The OpenMP PARALLEL region construct

• Fundamental OpenMP parallel construct

• Thread that encounters the PARALLEL construct creates a
team of threads and becomes the master

• Copy of the code executed by each thread – SPMD

#pragma omp parallel

{

#pragma omp for

for (i=0;i<N;i++){

do_something(i);

}

}

loop control index i is “private” to each thread by

default. More details in data scoping section.

Implicit barrier, threads wait here until all

threads are finished.

23

Rules for the PARALLEL construct

• The number of threads in the PARALLEL region depends on
some factors, we discussed this in an earlier slide

• Illegal to branch into or out of a parallel region – undefined
behavior

• Only one IF clause permitted in the construct

$OMP PARALLEL IF(EXECUTE==true)

10 sum(id) = next(id)

30 result(id) = sum(id) * 9.8

if(converged(result(id)) goto 20

go to 10

$OMP END PARALLEL

if(not_FINISHED) goto 30

20 print *, id

• Not a good way to program, but

then goto statements are not

very acceptable anyway.

• Can use STOP or exit()

24

Work-sharing constructs

• Divide the work among threads, no new threads launched

• Must be within a PARALLEL construct

• Conditional statements for some threads to enter the construct
not allowed

#pragma omp parallel

#pragma omp for

for(i=0;i<N;i++)

{

a[i] = a[i] + b[i];

}

No barrier upon entry into construct

Implicit barrier upon exit from construct

25

Work-sharing constructs: SCHEDULE clause

• Affects how loop iterations are mapped onto threads

– SCHEDULE(STATIC,[chunk])

– Deal-out blocks of iterations of size “chunk” to each thread. Done at
compile time

– SCHEDULE(DYNAMIC[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations have
been handled. Scheduling logic used at run-time

– SCHEDULE(GUIDED[,chunk])

– Iterations dynamically assigned, with reducing chunk size, till all iterations
have been handled.

– More clauses like RUNTIME and AUTO

T1 T2 T3 T0 T1 T3T2T0

T0T1 T1T2 T2 T3T3T0

T1T2 T2 T3T0T0 T3T1

26

Work-sharing constructs: SCHEDULE clause

• New modifiers added monotonic, nonmonotonic (v4.5)

– monotonic
– Thread executes the assigned chunks in logical iteration order, i=1, 4, 7 etc.

– nonmotonic
– Chunks executed in any order

– Application result should not depend on iteration order – else unspecified behavior

– Think of it as an iteration stealing scheduling scheme

– A thread can run a “previous” iteration after the current one, i=1,4,7,5

Q

• Can you think of a scenario where this will help?

• How about loops that have a “triangular” shape of workload, is it

always easy to determine how much work each thread will get?

In
c
re

a
s
in

g
 w

o
rk

27

Combined work-sharing constructs

Shortcut for specifying one construct immediately nested
inside another construct

double res[MAX]; int i;

#pragma omp parallel

{

#pragma omp for

for (i=0;i< MAX; i++) {

res[i] = huge();

}

}
These are equivalent

double res[MAX]; int i;

#pragma omp parallel for

for (i=0;i< MAX; i++) {

res[i] = huge();

}

double :: res(MAX)

integer :: i

!$omp parallel do

do i=0, MAX

res(i) = huge()

end do

If an end parallel do directive is not

given, it is assumed to be at the

end of the do-loops.

28

SINGLE and MASTER construct

• SINGLE/MASTER – restrict execution to one thread

– SINGLE – any one thread can execute the structured block

– MASTER – master thread executes the structured block

• Implicit barrier for SINGLE, none for MASTER

• SINGLE construct useful for I/O,

or check simulation time remaining

and other book-keeping

#pragma omp parallel for(i=0; i<n;i++)

{

..

#pragma omp single/master

{

//calculate time in simulation

}

}

Q

• Can you think of a scenario where the MASTER construct can be used? How about in

MPI + OpenMP applications?

29

Outline

• Introduction to OpenMP

• Thread creation

• PARALLEL and work-sharing constructs

• Data scoping

30

Data scoping

• Important to know data scoping

– how is data shared

– how are updates to data made visible to other threads

• Shared memory programming model (SMP)

–Most variables are shared by default

– A thread can also have its private data

Shared memoryT0

T1 T2

T3

private

private private

private

31

Data scoping

• Global variables are SHARED among threads

– Fortran: COMMON blocks, SAVE variables, MODULE variables

– C: File scope variables, static

– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• Data private to a thread includes

– Loop index variables

– Stack variables in routines called from parallel regions

– Automatic variables within a statement block (Fortran)

double :: res(MAX)

integer :: i, index

!$omp parallel do

do i=0, MAX

index = i + 1

res[i] = huge(index)

end do

function huge(index)

integer :: index

integer, automatic :: temp

….

end function huge

32

double A[10];

int main() {

int sum[10];

#pragma omp parallel

calculate(sum);

printf(“%d\n”, sum[0]);

}

extern double A[10];

void calculate(int *sum) {

double temp[10];

static int count;

...

}

Data scoping: Examples

temp

A, sum, count

temp temp

A, sum, count

A, sum and count are

shared by all threads.

temp is local to each

thread

Q

• Why is count shared?

33

OpenMP data scoping clauses

• OpenMP has additional clauses to explicitly define data
scope

– SHARED

– PRIVATE

– FIRSTPRIVATE

– REDUCTION

– DEFAULT - force programmer to declare attributes for all data

• Used in conjunction with PARALLEL or DO/FOR directives

34

Data Scoping: SHARED Clause

int total = 0;

void sum() {

#pragma omp parallel for SHARED(total)

for (int j = 0; j < 1000; ++j)

total += j;

printf(“%d\n”, total);

}

• SHARED (list)

– Variables in the list are shared among all threads

– One copy which is accessed by all

– User needs to ensure proper access to SHARED data

– The code below can show incorrect results – why?

35

Data scoping: PRIVATE Clause

void sum() {

int tmp = 0;

#pragma omp parallel for private(tmp)

for (int j = 0; j < 1000; ++j)

tmp += j;

printf(“%d\n”, tmp);

}

• PRIVATE(list)

– Local copy of variables maintained by each thread

– Scope of PRIVATE variable only within the parallel region

– Uninitialized for each thread

– Variable value before parallel construct is the original variable

Q

• Is the code correct?

• What is output of the printf

statement? Hint – look at the

variable scope.

36

int temp;

void result() {

temp = 10;

#pragma omp parallel private(temp)

work();

printf(“%d\n”, temp);

}

• The original variable’s value is
unspecified if it is referenced outside
of the PARALLEL construct

extern int temp;

void work() {

temp = 5;

}

which copy of temp?

temp has unspecified value

• Threads also do not see this
value within the construct

• How to ensure consistency
inside and outside the construct?

Data scoping

FIRSTPRIVATE and LASTPRIVATE clause

• FIRSTPRIVATE - private variables initialized from the global

counterpart outside the PARALLEL construct

37

weight = 20;

#pragma omp parallel for firstprivate(weight)

for (i = 0; i <= MAX; i++) {

if ((i%2)==0) weight++;

A[i] = weight;

}

Each thread gets its own

copy of weight with an initial

value of 20

37

• LASTPRIVATE – value of private variable preserved in the

environment outside the PARALLEL construct

weight = 20;

#pragma omp parallel for lastprivate(weight)

for (i = 0; i <= MAX; i++) {

//set weight value

}

finalWeight = weight;

Last iteration value of weight

is visible outside

38

Data scoping - REDUCTION clause

• We need the value of sum from all threads - use the REDUCTION clause

• Private copy of reduction variable for all threads

• At end of parallel construct, reduction operation applied to all private
copies of shared variable and reflected to global shared variable

double sum=0.0, avg=0.0, [MAX]; int i;

for (i=0;i< MAX; i++) {

sum + = A[i];

}

avg = sum/MAX;

What if you want all threads to gather their results?

39

REDUCTION clause

• These operations might not be associative for real numbers

• Cannot declare reduction variable as shared or private

• See OpenMP standard for additional reduction operators

#pragma omp parallel for reduction(+:sum)

for (i=0;i< MAX; i++) {

sum + = A[i]; }

avg = sum/MAX; //sum has sum from all threads

Operation Fortran or C/C++ Initialization

Addition + 0

Multiplication * 1

Subtraction - 0

40

Data scoping : DEFAULT clause

DEFAULT(shared | none)

• Applies the attribute to all variables inside the parallel construct

• Compiler will complain if a variable attribute is not specified

#include <omp.h>

int main()

{

int i, j=5; double x=1.0, y=42.0;

#pragma omp parallel for default(none) reduction(*:x)

for (i=0;i<N;i++){

for(j=0; j<3; j++)

x+= evolve(i, j, y);

}

printf(“ x is %f\n”,(float)x);

}

No attributes specified for j and

y, compiler will complain

41

Quick test

• Consider this example of PRIVATE, FIRSTPRIVATE and DEFAULT

• Is the code snippet correct?

• What is the data sharing attributes for B and C?

• What are the initial values of B and C inside and values after the parallel region?

int A = 1, B = 1, C = 1;

#pragma omp parallel default(none) private(B) firstprivate(C)

42

Recap

• History of OpenMP and why it is so relevant today

• Shared Memory

– Creating a parallel region and distributing work among threads

• Data scoping

– How is data shared and made visible across threads

– PRIVATE, SHARED, DEFAULT, FIRSTPRIVATE

