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Advanced OpenMP

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Dr. Nitya Hariharan (Intel)
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Preliminaries: Part 1

• Disclosure

–The material in the lecture slides are adapted from 

lectures/tutorials by different sources 

– Tim Mattson (Intel)

– Michael Klemm (Intel)

– Edward Smyth (NAG)

– Blaise Barney, LLNL

– Hernandez et al., OpenMP 5.0/5.1 tutorial at ECP 2020 annual meeting

– OpenMP 5.0.1 specification and examples 

https://www.openmp.org/resources/

– Examples from “Using OpenMP” by Chapman et al.

https://www.openmp.org/resources/
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Preliminaries: Part 2

• The lectures are split into different parts going from basics to
advanced topics.

• Large number of OpenMP constructs/clauses, refer to the standard
for completeness

• Each section will have some exercises for you to try out.

• As far as possible, attempt the exercises on your own and try out
different solutions. And please ask queries during the discussion
hour.

• Grey boxes indicate some questions you can try and answer,
solutions are given for some of them.

• You will find links to relevant talks or discussion boards in the
notes, do have a look
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Recap

▪ OpenMP evolution and adoption

▪ Shared memory programming 

▪ Creating a parallel region and distributing work 
among threads

▪ Basic OpenMP clauses
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Outline

• OpenMP memory model

• Synchronization – advanced

• TASKS and SECTIONS

• Vectorization constructs

• Thread affinity

– First touch policy

• OpenMP run time routines

• OpenMP environment variables
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OpenMP Memory model

• “Relaxed-consistency” and shared-memory model

• Threads share memory and have their own threadprivate data

• Temporary view of memory - multiple cache levels and registers

Shared memory

T0 T1 T2 T3

private private privateprivate

caches registers local storage

Threads need to 

see a coherent and 

consistent view 

across all three 

levels

Temporary-

view

Threadprivate

memory



OpenMP relaxed-consistency model

• The temporary-view of memory allows threads to cache variables and
not refer to memory all the time

• Faster access but makes things complicated – recall false sharing

• The temporary-view can be made consistent with memory or across
threads at specific points through flush operations

– Strong flush

– Release flush

– Acquire flush

7



flush operations

• Strong flush –

– enforce consistency of a thread’s temporary-view with memory

– flush applied to set of variables called flush-set

– restricts reordering of memory operations (compiler flags sometimes do this)

• Release or acquire flushes – enforce consistency of the memory views of
two synchronizing threads

– Both work in tandem

– A release flush will propagate values of shared variables to memory that other
threads can then use an acquire flush to read from

– An acquire flush will discard values of shared variables in temporary-view, use
value propagated by the release flush

– Implicit acquire and release flush on entry and exit, respectively, from a
CRITICAL construct
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flush operations
• Implied by synchronization during

– entry/exit of parallel regions or critical regions

– implicit and explicit barriers

• Explicitly flush through the OpenMP FLUSH construct

where memory-order-clause can be

– acq_rel – both acquire and release flush

– release – release flush

– acquire - acquire flush

• FLUSH construct without a memory-order-clause results in –

– A strong flush - temporary-view of only the thread executing FLUSH is made
consistent

– FLUSH without a list flushes all shared variables within the structured block

– FLUSH with a list acts on only the listed variables

• Revisit this while discussing synchronization 9

#pragma omp flush [memory-order-clause] [(list)] 
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Outline

• OpenMP memory model

• Synchronization

• TASKS and SECTIONS

• Vectorization constructs

• Thread affinity

– First touch policy

• OpenMP run time routines

• OpenMP environment variables
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Synchronization

• Use synchronization clauses

– CRITICAL

– BARRIER

– More advanced ATOMIC or FLUSH constructs 

• Used to impose order constraints and to protect access to 

shared data

• Control what data each thread can access and when

Q

• What happens when two threads try and 

update the pointers at the same time?

• How do you parallelize such loops?

for(i=0; i<n;i++)

{

new_elem = ..;

ptr = head->next;

prev = head;

//insert new_elem

}
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OpenMP CRITICAL clause

• Mutual exclusion: Only one thread at a time can enter a 
critical region.

Threads wait their turn, 

and update the list one 

at a time

#pragma omp parallel 

for(i=0; i<n;i++)

{

new_elem = ..;

#pragma omp critical

{

ptr = head->next;

prev = head;

//insert new_elem

}

}

• This is almost like a serial code with the whole parallel region inside a 

critical region. This can be improved with locks (later slides).
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OpenMP BARRIER clause

• Threads wait till other threads have reached the barrier.

• Conditional clauses not allowed 

Threads wait for others

#pragma omp parallel 

for(i=0; i<n;i++)

{

//do calculation

#pragma omp barrier

//compare results

}

}
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Synchronization – ATOMIC construct

• ATOMIC construct

– ensures that a memory locations is accessed “atomically”

– Only one thread carries out the operation

– where atomic-clause can be read, write, update, capture

– memory-order-clause can be seq_cst, acq_rel, release, acquire, relaxed

– default atomic-clause is update

#pragma omp atomic atomic-clause memory-order-clause expression-statement

#pragma omp atomic read

new_val = x;
#pragma omp atomic write

x = new_val;

x cannot be updated until operation finishes x cannot be read until operation finishes
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ATOMIC construct

#pragma omp atomic update

x++;
#pragma omp atomic capture

v = x++;

read and write to x is atomic Operation on x is atomic, updated 

value written to v

• Strong flush implied at the entry and exit from the atomic operation

• Can use ATOMIC for memory consistency between threads

– Recall the release and acquire flush (see slide)

– release flush - write/update/capture clause with release, acq_rel, seq_cst

– acquire flush – read/capture clause with acquire, acq_rel, seq_cst
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Synchronization – FLUSH construct

• We looked at strong flushes, release and acquire flush

• OpenMP has an implicit flush in shared constructs, an explicit flush is
not really needed

• Using the FLUSH construct can be error prone if not used correctly, see
code below

a = b = 0

Thread 1 

atomic(b=1)

flush(b)

flush(a)

atomic(tmp=a)

if(tmp==0) then

protected section

endif

a = b = 0

Thread 2 

atomic(a=1)

flush(a)

flush(b)

atomic(tmp=b)

if(tmp==0) then

protected section

endif

Q

What happens if the compiler reorders the 
flush statements to after the protected 
section?

Note – the compiler can move flush(b) on thread 1 
and flush(a) on thread 2 to after the protected 
section, if neither a or b is used within it. 
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Synchronization – FLUSH construct

• There is nothing preventing both threads from running the code in the
protected section.

• The corrected code below ensures only one thread runs the code in the
protected section at any given time

a = b = 0

Thread 1 

atomic(b=1)

flush(a,b)

atomic(tmp=a)

if(tmp==0) then

protected section

endif

a = b = 0

Thread 2 

atomic(a=1)

flush(a,b)

atomic(tmp=b)

if(tmp==0) then

protected section

endif

• Compiler cannot reorder the flush 
statements for a or b

• Data assignment is complete and is 
flushed before if statement.

• OpenMP does a good job with implicit flushes, use an explicit FLUSH 
only if you need it
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Synchronization – ORDERED construct

• Specifies that structured block will be executed in order of loop iterations

• Can be a stand-alone directive with specified cross-iteration dependencies

• Makes the loop sequential with code outside the loop running in parallel

clause can be threads, simd#pragma omp ordered [clause [[,] clause] ] 

structured block

#pragma omp ordered clause [[[,] clause]…] clause can be depend(source)

depend(sink: vec)

#pragma omp parallel for ordered shared(pos)

for(int i=1; i< n; i++)

{

#pragma omp ordered

print_neighbor(pos[i]);

}

iteration order maintained across  
threads and within a thread
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ORDERED construct

• Can use the depend clause to specify cross-iteration dependencies

depend(sink) requires iteration i-1
to complete before i

#pragma omp parallel for ordered shared(pos)

for(int i=1; i< n; i++)

{

#pragma omp ordered depend(sink: i-1)

neighbor[i] = get_neighbor(atom[i], atom[i-1]);

#pragma omp ordered depend(source)

}

This is incorrect as 
dependency is on 
lexicographically later 
iteration i+1, this might 
not happen before i

depend(source) indicates 
completion of iteration i to satisfy 
cross-iteration dependencies

#pragma omp parallel for ordered shared(pos)

for(int i=1; i< n; i++)

{

#pragma omp ordered depend(sink: i-1, i+1)

neighbor[i] = get_neighbor(atom[i], atom[i-1], atom[i+1]);

pragma omp ordered depend(source)

}
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Synchronization - LOCK routines 

• OpenMP provides a set of lock routines for synchronization

• Operate on OpenMP locks represented by lock variables

• Lock can be different states

– uninitialized, unlocked and locked

– if lock is in unlocked state, a task can set the lock, and change it to locked

• simple and nestable locks supported

– simple locks can be only set once by the task that owns it

– nestable locks can be set multiple times by owning task, nesting count
maintained

– simple and nestable lock routines available, respectively, for both

• OpenMP takes care of ensuring routines read and update the most current
value of lock variable, no FLUSH operations needed
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Lock routines

• omp_init_[nest]_lock - initializes a simple lock, no task owns it at this stage

• omp_destroy_[nest]_lock - uninitializes a simple lock

• omp_set_[nest]_lock - waits until a simple lock is available and then sets it

– The task is suspended until the lock is available

• omp_unset_[nest]_lock - unsets a simple lock

• omp_test_[nest]_lock - tests a simple lock and sets it if it is available

– The task is not suspended in this case

• The routines with “nest” are for nestable locks
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Ownership of locks

• Till OpenMP 2.5 locks were owned by threads

– Lock unset by omp_unset_lock must be executed by thread that owns the lock

• OpenMP 3.0 onwards, locks are owned by task regions

– Lock unset by omp_unset_lock in a task region must be owned by same task 
region

omp_init_lock(&lock);

omp_set_lock(&lock);

#pragma omp parallel for

for(int i=0;i<n;i++)

{

#pragma omp master

{

omp_unset_lock(&lock);

}

omp_destroy_lock(&lock);

Q

• The code is conforming as per OpenMP 
2.5 and not per OpenMP 3.0. Why?
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Simple locks - example

int find_total_mass()

{

omp_lock_t lock;

omp_init_lock(&lock);

#pragma omp parallel for

for(int i=0;i<n;i++)

{

omp_set_lock(&lock);

total_mass += mass[i];

omp_unset_lock(&lock);

while (!omp_test_lock(&lock)) {

find_active_neighbors(list);

} 

total_mass = sum_neighbour_mass(list);

omp_unset_lock(&lock);

}

omp_destroy_lock(&lock);

return total_mass;

}

initialize lock, not owned by any task here

only one thread can add to total_mass

do something else till we have the lock

we have the lock, so do some work

release the lock
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locks vs CRITICAL

#pragma omp parallel

for(int i=0;i<n;i++)

{

//get random number between 1 and 10 

ind = get_random_number(1,10);

arr[ind] = do_something(arr[ind]);

if(check_condition(arr[ind]))

{ 

check = false;

} }

The user needs to ensure two threads don’t 
access the same index ind

You could put a critical region around it, but it 
will be an overkill, threads won’t generate 

same ind value all the time

omp_init_lock(&lock[i]); //n locks

#pragma omp parallel for

for(int i=0;i<n;i++)

{

//get random number between 1 and 10 

ind = get_random_number(1,10);

omp_set_lock(&lock[ind]);

arr[ind] = do_something(arr[ind]);

if(check_condition(arr[ind]))

{ 

check = false;

}

omp_unset_lock(&lock[ind]);

}

Put the lock around an individual array 
item, based on index ind, the rest of the 

threads need not wait if ind is not the 
same
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In general

• Too many locks or atomic regions or critical sections are bad for
scalability

• Too many locks or atomic regions also make the code error prone
and difficult to debug

• Let OpenMP handle things for you as far as possible, without using
such explicit constructs

• If you are using too many locks or atomic operations or critical
regions, it doesn’t mean you are an expert in OpenMP. It means

you need to redesign your code ☺
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Outline

• OpenMP memory model

• Synchronization

• TASKS and SECTIONS

• Vectorization constructs

• Thread affinity

– First touch policy

• OpenMP run time routines

• OpenMP environment variables
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OpenMP TASK construct

• Tasking constructs provide units of work to threads

• This is done by work-sharing constructs too, but they look at “data
parallel”, while tasks look at “task parallel”

– Typically in “data-parallelism” we want to have spatial and temporal
locality

– In “task-parallelism” each thread has an individual unit of work which
can involve non-locality and irregular memory access

• Can use this to split up work, for example, traversing nodes in a list
or walking through a graph

– Generate nested tasks if the graph has child nodes and process each
node within a separate task
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OpenMP TASK

void walk(node *p) 

{

if(p->left)   //does node have left child

#pragma omp task

walk(p->left);

if(p->right)       //does node have right child

#pragma omp task

walk(p->right);

sum_weight(p);   //sum weight of current node

}

void main()

{

..

node *p = head;

#pragma omp parallel

walk(p);

}

• p is FIRSTPRIVATE by default

• The tasks are not executed in a
particular order, there’s no guarantee
sum_weight will not be called before the
left and right nodes have been
traversed fully and their weights added.

• Note that the calls to the walk routine
are recursive.
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OpenMP TASKWAIT construct

void walk(node *p) 

{

if(p->left)   //does node have left child

#pragma omp task

walk(p->left);

if(p->right)       //does node have right child

#pragma omp task

walk(p->right);

#pragma omp taskwait

sum_weight(p);   //sum weight of current node

}

void main()

{

..

node *p = head;

#pragma omp parallel

walk(p);

}

• The TASKWAIT construct specifies a
wait on the completion of the child tasks
of the current task

• Adding a TASKWAIT to the code shown
gives the right post ordering traversal of
the graph

• The tasks that are created for left and
right traversal of the graph will have
completed before sum_weight on current
node is called
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Generating large number of tasks

void generate () 

{

const int num_elem=9999999; 

int arr[num_elem];

#pragma omp parallel

#pragma omp single

{

for(int i=0;i<num_elem;i++)

#pragma omp task

check(arr[i]);

}     

}

• If the number of tasks reaches a limit then the thread
generating the tasks, say the “parent” thread, can be
stopped from creating further tasks and starts executing
unassigned tasks.

• Once the number of unassigned tasks is low, the “parent”
thread can start generating tasks again.

• While executing unassigned tasks, if the “parent” thread
takes a long time to finish its work, the other threads idle
till the “parent” thread is done –the tasks are “tied” to the
“parent”.

#pragma omp parallel

#pragma omp single

{

for(int i=0;i<num_elem;i++)

#pragma omp task untied

check(arr[i]);

}     

}

The untied clause allows any thread to resume the
task generating loop
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TASKWAIT vs TASKGROUP
void generate () 

{

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

printf(“task 1\n”);

#pragma omp task

{

printf(“task 2\n”);

}     

}

#pragma omp taskwait

#pragma omp task

{

printf(“task 3\n”);

}     

}

• TASKWAIT construct suspends a thread till all the child
tasks generated before the TASKWAIT region are
completed.

• With TASKGROUP, the thread waits till all the child tasks
and their descendant tasks complete execution.

• Here the TASKWAIT will wait for task 1 to be completed
before task 3 is scheduled. The TASKWAIT is bound to
the parallel region, of which tasks 1 and 3 are child tasks.

• Task 2 is a child of task 1, the TASKWAIT construct
doesn’t wait for it to finish before task 3 is executed.
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TASKWAIT vs TASKGROUP
#pragma omp parallel

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task

{

printf(“task 1\n”);

#pragma omp task

{

printf(“task 2\n”);

}     

}

} */end taskgroup

#pragma omp task

{

printf(“task 3\n”);

}     

}

The TASKGROUP construct ensures task 2, which is
a child of task 1, is also completed before task 3 is
scheduled.
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Some points about TASKS

• Think of a producer-consumer relation, a thread within a parallel region generates
the tasks and adds them to a queue.

• All the threads in that parallel region, including the one generating the tasks,
consume it.

• The TASK construct makes is easier to parallelize something like a while loop,
where the number of iterations might not be known beforehand. Or even
something recursive like calculating Fibonacci or traversing a graph.

• The runtime can decide if execution of the task is immediate or delayed, but the
user can synchronize completion of tasks – BARRIER/TASKWAIT/TASKGROUP.

• The usual process is to have a single thread generate tasks, and all threads
execute them – notice the use of #pragma omp single

Q
Can the MASTER clause be used here, what extra care do you need 

to take in such a case?
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OpenMP SECTIONS 

• We looked at some work-sharing constructs earlier – recall #pragma
omp parallel for

• SECTIONS is another construct to allows a set of structured blocks
to be shared between threads. Each structured block is executed by
one thread

#pragma omp sections [clause [[,] clause]…] 

{

[#pragma omp section]

structured block

[#pragma omp section]

structured block

}

• Implicit barrier at the end of each SECTIONS, unless NOWAIT clause 
specified. Only one NOWAIT clause allowed within a SECTIONS construct

#pragma omp sections 

{

#pragma omp section

neighbors_xaxis();

#pragma omp section

neighbors_yaxis();

}
clause can be PRIVATE, FIRSTPRIVATE, 

LASTPRIVATE, REDUCTION, NOWAIT
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OpenMP SECTION – FIRSTPRIVATE clause 

Q
• Say number of neighbors in both x and y-axis is 5 each, what value will be 

printed? 

• Will the code give repeatable results? 

int neighbor_count=0;

#pragma omp parallel

#pragma omp sections firstprivate(neighbor_count) 

{

#pragma omp section { 

neighbor_count += neighbors_xaxis();

printf(“neighbors incl x-axis %d\n”, neighbor_count);

}

#pragma omp section {

neighbor_count +=  neighbors_yaxis();

printf(“neighbors incl y-axis %d\n”, neighbor_count);

}

}
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OpenMP TASKS vs SECTIONS

• We saw both TASKS and SECTIONS, and both of them seem to be used for task
based parallelism

• In both cases, a thread is executing an independent piece of work, so how are
they different?

• Exercise – find out how TASKS and SECTIONS are different. Can you use that
information to say which would be better for performance?
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Outline

• OpenMP memory model

• Synchronization

• TASKS and SECTIONS

• Vectorization constructs

• Thread affinity

– First touch policy

• OpenMP run time routines

• OpenMP environment variables
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OpenMP SIMD support

• SIMD execution – Single Instruction Multiple Data

– makes use of vector processing units or SIMD units

– processors nowadays have 512 bit or 256 bit vector units

• OpenMP SIMD construct allows execution in SIMD units for loops
with no loop-carried backward dependency

– Assure the compiler that loop can be vectorized

– Supported since 4.0

• declare SIMD construct can be used for function calls

– replace scalar function call with vector version

– vectorize loops with function calls

– supported since OpenMP 4.5

• Work-sharing SIMD constructs allows to vectorize parallel loops

– omp for simd

– simultaneous thread execution in multiple SIMD units
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OpenMP SIMD construct

where clause can be

– safelen(N) – cross-iteration dependencies only for vectors above size N

– simdlen(N) – N number of iterations that can be processed concurrently

– aligned(x:N) – variable x in the list is aligned to N number of bytes

– collapse – number of loops to be collapsed into one SIMD construct

– private, lastprivate, reduction and more

#pragma omp simd [clause[[,]clause]..]

for loops

#pragma omp for simd [clause[[,]clause]..]

for loops

where clause can be any of the clauses accepted by the for or simd
construct

Work-sharing SIMD construct
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OpenMP SIMD construct

#pragma omp simd

for (i=0;i<n;i++)

a[i] = b[i] + c[i] * d

#pragma omp simd private(temp) reduction(+:sum)

for (i=0;i<n;i++)

temp = a[i] * b[i];

sum = sum  + temp;

#pragma omp simd safelen(8)

for (i=m;i<n;i++)

a[i] = a[i-m] * b[i];

If you know that a[i] will only depend on values 8
elements, or less, away in the array a, use safelen.
This helps the compiler to vectorize the loop
accordingly.

#pragma omp simd collapse(2)

for (i=0;i<n;i++)

for (j=0;j<m;j++)

c[i,j] = a[i,j] + b[i,j];

Collapse i and j loops and vectorize over n*m
iterations

#pragma omp simd simdlen(16)

for (i=0;i<n;i++)

c[i] = a[i] * b[i];

Vectorize the loop and process 16 single-precision
elements concurrently (512 bit vector processing)
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OpenMP work-sharing SIMD construct

#pragma omp for simd simdlen(16)

for (i=0;i<n;i++)

c[i] = a[i] * b[i];
Distribute loop across threads and process 16
single-precision elements concurrently, per thread

#pragma omp for simd collapse(2)

for (i=0;i<n;i++)

for (j=0;j<m;j++)

c[i,j] = a[i,j] + b[i,j];

Collapse i and j loops and distribute across
threads, vectorize over n*m/num_threads iterations
per thread

#pragma omp for simd align(a,b,c:64)

for (i=0;i<n;i++)

c[i] = a[i] * b[i];

Distribute loop across threads and vectorize
iterations per thread. Align a,b,c at 64 byte
boundary, this makes the vectorization more
efficient. Refer to peel, main and remainder
loops during vectorization.
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OpenMP declare SIMD construct

where clause can be

– simdlen(N) – N number of iterations that can be processed concurrently

– aligned(x:N) – variable x in the list is aligned to N number of bytes

– linear – value of variable in list changes linearly with iteration

– uniform – variable has invariant/constant value across all invocations of the
function/subroutine

• apply to a function (C/C++/Fortran) or subroutine (Fortran)

• process multiple arguments from one invocation in a SIMD loop

• Compiler can create faster, vector code for loop by guaranteeing SIMD
properties of the called function/subroutine

#pragma omp declare simd [clause[[,]clause]..]
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OpenMP declare SIMD construct

#pragma omp simd private(temp) reduction(+:sum)

for (i=0;i<n;i++)

sum = sum  + add_values(a[i], b[i]);

#pragma omp declare simd

int add_values(x,y)

{

return x+y;

}

Compiler can inline function add_values and
vectorize it across the loop over n

#pragma omp simd uniform(increment)

int add_increment(x,y)

return x+y+increment;

Value of increment remains same
across SIMD lanes

#pragma omp declare simd linear(i:1)

int add_arrays(int *x, int *y)

return x[i]+y[i]+increment;
Guarantee to the compiler that x and y are
accessed in unit-strides, compiler generates loads
accordingly
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Outline

• OpenMP memory model

• Synchronization

• TASKS and SECTIONS

• Vectorization constructs

• Thread affinity

– First touch policy

• OpenMP run time routines

• OpenMP environment variables



Thread Affinity and Data Locality

• Affinity

– Process Affinity: bind processes to CPUs

– Thread Affinity: bind threads to CPUs that are allocated to their 

parent process

• Data Locality

– Memory Locality: allocate memory as close as possible to the core 

on which the task requesting the memory is running.

– Cache Locality: use data in cache as much as possible 

• Correct process, thread and memory affinity is the basis for getting 

optimal performance. 
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Memory Locality

• Most systems today are Non-Uniform Memory Access (NUMA)

– The physical memory attached to the processor is a NUMA “domain”

• When you access memory attached to the other processor, the data must

cross the interconnect

– “remote access” with longer access times

• The access is “non-uniform“ – this has an impact on how you program

46
*https://software.intel.com/content/www/us/en/develop/articles/use-intel-quickassist-technology-efficiently-with-numa-awareness.html



How to check “NUMA-ness” of a node

• An Intel Cascade Lake (CLX*) node has 24 physical cores (48 logical 

cores) per socket.

• Two NUMA domains per node, 24 cores per NUMA domain, two hardware 

threads (CPUs) per core.

• Memory bandwidth is non-homogeneous among NUMA domains.

– CPUs 0-23, 48-71 are closer to memory in NUMA domain 0

– CPUs 24-47, 72-95 are closer to memory in NUMA domain 1

47*CLX: 24-core Intel® Xeon® Platinum 8268 @ 2.9 GHz

• numactl: controls NUMA policy for processes or shared memory
• numactl -H: provides NUMA info of the CPUs  



How to check “NUMA-ness” of a node

• Portable Hardware Locality (hwloc)

– hwloc-ls: you can also use this tool to get information about the system 

topology, NUMA nodes, cache info, and the mapping of procs.

% hwloc-ls

48



With first-touch: || data initialization

#pragma omp parallel for 

for (j=0; j<VectorSize; j++) { 

a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

Step 2 Compute

#pragma omp parallel for

for (j=0; j<VectorSize; j++) {

a[j]=b[j]+d*c[j];}

How does all this NUMA-ness affect performance?

Without first-touch: serial data 
initialization

for (j=0; j<N; j++) { 

a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;} • When you allocate memory, the NUMA 

domain it is affinitized to is not decided. 

• It is decided when you initialize the 

memory.
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• Memory will be local to the thread which 

initializes it. This is called the “first touch

policy”. 

• Try to initialize memory in the same 

pattern as you intend to computation 

across threads



How does all this NUMA-ness affect performance?
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STREAM benchmark 

• Run on Intel Xeon E7-4870 CPU4 

• 30 MB of L3 cache and 10 cores with 

hyper-threading technology @ 2.40 

GHz

*https://colfaxresearch.com/terabyte-ram-servers-memory-bandwidth-benchmark-and-how-to-boost-ram-bandwidth-by-20-with-a-single-command/

• Red bars are histograms for 

bandwidth measurements with 

KMP_AFFINITY=scatter 

• Notice how the bandwidth usage has 

improved with thread affinity set

• We will discuss KMP_AFFINITY in 

coming slides



Perfecting “first-touch” policy is hard
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• Hard to do “perfect touch” for real applications.  

• What if you have some dynamic load balancing in the code, data 
gets reshuffled among threads

• Keep threads less than the number of CPUs in NUMA domain

• As far as possible keep the data initialization and compute on the same 
thread. And experiment with the different thread placement policies (we 
will see next). 

• There is no one size fits all approach here, applications have different 
data access patterns. Example – structured grid codes have unit-strided
access. Codes based on Monte-Carlo method thrive on randomness.



Runtime Environment Variable: OMP_PLACES

• OpenMP 4.0 added OMP_PLACES environment variable

– To control thread allocation

– defines a series of places to which the threads are assigned

• Allowed values

– threads: each place corresponds to a single hardware thread on the 

target machine. 

– cores: each place corresponds to a single core (having one or more 

hardware threads) on the target machine. 

– sockets: each place corresponds to a single socket (consisting of one 

or more cores) on the target machine. 

– A list with explicit CPU ids along with intervals for placement

• Examples:

– export OMP_PLACES=threads

– export OMP_PLACES=cores
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Runtime Environment Variable: OMP_PLACES

• OMP_PLACES can also be

– A list with explicit place values of CPU ids, such as: 

– "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}” 

– “{0:4},{4:4},{8:4},{12:4}” (default stride is 1)

– Format: {lower-bound:length:stride}. Thus, specifying {0:3:2} is the 

same as specifying {0,2,4}

• Examples: 2 socket machine with 2 processors, 4 cores each

– export OMP_PLACES=“ {0:4:2},{1:4:2}”  (which is equivalent to 

“{0,2,4,6},{1,3,5,7}”)

– export OMP_PLACES=“{0:8:1}”  (which is equivalent to 

“{0,1,2,3,4,5,6,7}”

53*Image - https://www.openmp.org/wp-content/uploads/openmp-examples-5-0-1.pdf

Socket with 4 cores



Runtime Environment Variable: OMP_PROC_BIND

• Controls thread affinity within and between OpenMP places

• OpenMP 3.1 only has OMP_PROC_BIND, either TRUE or 

FALSE.

– If true, the runtime will not move threads around

• OpenMP 4.0 still allows the above. Added options:

– close: bind threads close to the master thread

– spread: bind threads as evenly distributed (spread) as possible

– master: bind threads to the same place as the master thread

• Examples:

– OMP_PROC_BIND=spread

– OMP_PROC_BIND=spread,close (for nested levels)
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Runtime Environment Variable:OMP_PROC_BIND

• Use 4 cores total, 2 hyper-threads per core, and 

OMP_NUM_THREADS=4 as an example

• close: Bind threads as close to master thread as possible

• spread: Bind threads as far apart as possible.   

• master: bind threads to the same place as the master thread

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2

Thread 0 (M) 1 2 3

Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2

Thread 0 (M) 1 2 3
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Node Core 0 Core 1 Core 2 Core 3

HT1 HT2 HT1 HT2 HT1 HT2 HT1 HT2

Thread 0 (M), 1, 2, 3



Affinity Clauses for OpenMP Parallel Construct

• The “num_threads” and “proc_bind” clauses can be used

– The values set with these clauses take precedence over values set 

by runtime environment variables

• OMP_PLACES="{0,1},{2,3},{4,5},{6,7},{8,9},{10,11},{12,13},{14,15}"   OR 

OMP_PLACES=“0:8:2“

– C/C++:

#pragma omp parallel num_threads(4) proc_bind(spread)

– Fortran:

!$omp parallel num_threads (4) proc_bind (spread)

...

!$omp end parallel 
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Socket with 4 cores



Runtime APIs for Thread Affinity Support

• OpenMP 4.5 added runtime functions to determine the effect 

of thread affinity clauses

• Query functions for OpenMP thread affinity were added 

– omp_get_num_places: returns the number of places

– omp_get_place_num_procs: returns number of processors in the given 

place

– omp_get_place_proc_ids: returns the ids of the processors in the given 

place

– omp_get_place_num: returns the place number of the place to which 

the current thread is bound

57



Runtime APIs - examples

Assume the following 
– OMP_PROC_BIND="TRUE" 

– OMP_NUM_THREADS=4 

– OMP_PLACES="{0,2,4,6}”

– omp_get_num_places() – returns 1 place

– omp_get_place_num_procs(0)  - returns 4

– omp_get_place_proc_ids(0, ids) - returns the ids of the processors in the 

place 0, in our example it‘s 0, 2, 4 and 6

– omp_get_place_num(2) - returns 0, since thread 2 is bound to place 0 
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KMP_AFFINITY

• Specific to the Intel® runtime library

• Binds OpenMP threads to physical processes

• Supported on Windows* and Linux* that have support for 

thread affinity

• Intel OpenMP thread affinity interface 

– Three types of interface available to control thread affinity

– High-level – with environment variable KMP_AFFINITY

– Mid-level - environment variable to specify which processors are 

bound to OpenMP threads. Compatible to GNU GOMP_AFFINITY

– Low-level – APIs to enable OpenMP threads to make call to runtime 

for setting processor set. For advanced users
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KMP_AFFINITY

• KMP_AFFINITY=[<modifier,…>] <type> [,<permute>][,<offset>]

• modifier can be 

– noverbose or verbose – to get thread placement information

– proclist={proc-list} 

– granularity=<specifier> where specifier can be fine, thread or core

• type can be 

– none, disabled, explicit, balanced, scatter, compact

– This specifies the placement of threads on the core
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KMP_AFFINITY

• type = balanced

– threads are placed on separate cores till all cores atleast have one 

thread each 

– if multiple threads are to be placed on same core, balanced ensures the 

openmp threads numbers are close to each other

– Different to scatter that does not do so

– KMP_AFFINITY=balanced is same as OMP_PROC_BIND=spread

• type = scatter

– Distributes threads as evenly as possible in the entire system

– Opposite of compact

• type = compact

– Places thread T as close to T-1 as possible

– permute and offset allowed for both compact and scatter
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KMP_AFFINITY

KMP_AFFINITY
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• Consider a machine with two processors, with 2 cores each and hyper-

threading enabled

granularity=fine,compact

granularity=fine,scatter

Package 0 Package 1

Core 0 Core 1 Core 0 Core 1

0 1 2 3 4 5 6 7

0        1        2       3        4        5        6        7

0        4        2       6        1        5        3        7

Thread context

granularity=fine,compact,0,3

granularity=fine,compact,1,0

3        4        5       6        7        0        1        2

0        4        1       5        2        6        3        7



Summary for Thread Affinity and Data Locality

• Best data locality, and optimal process and thread affinity crucial for 

good performance

• Exploit first touch data policy, optimize code for cache locality.

• Pay special attention to avoid false sharing.

• Threads far apart (spread) may improve aggregated memory bandwidth 

and available cache size for your application but may also increase 

synchronization overhead. And putting threads “close” have the reverse 

impact as “spread”.

• We have not discussed nested OpenMP here, but this is also an 

important feature in OpenMP. Once you are comfortable with process 

affinity and process placement, we urge you to look at the concept. 
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Outline

• OpenMP memory model

• Synchronization

• TASKS and SECTIONS

• Vectorization constructs

• Thread affinity

– First touch policy

• OpenMP run time routines

• OpenMP environment variables
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OpenMP runtime routines

• Recall that the OpenMP ICVs can also be changed with runtime
routines

– omp_set_num_threads

• OpenMP provides runtime routines that a user can call from within
an application to change or query the state of threads, processes or
parallel environment

• Each of these runtime routines set the value of an ICV and return
the value when probed via a function call

• We look at few of them that are commonly used, in addition to the
lock routines
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OpenMP runtime routines

• omp_set_num_threads

– Set the number of threads to be used in a parallel region

• omp_get_num_threads

– Return the number of threads in the currently executing parallel region

– This returns a value of 1 in a sequential region

• omp_get_max_threads

– Upper bound on number of threads that can be used to form a new
team of threads

– Used if the parallel construct doesn’t have the num_threads clause

• omp_get_thread_num

– Get thread number of the calling thread

– In a team of N threads, value ranges from 0 to N – 1

• omp_set/get_schedule

– set/get the runtime schedule – STATIC, DYNAMIC, GUIDED or AUTO
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Outline

• OpenMP memory model

• Synchronization – advanced

• TASKS and SECTIONS

• Vectorization constructs

• Thread affinity

• OpenMP run time routines

• OpenMP environment variables



68

OpenMP environment variables

• OpenMP provides environment variables that can also be used to
set ICVs

• Modifications to environment variables during runtime are ignored
by OpenMP

• Can use runtime routines to change the ICV values, as seen earlier

• Set through the setenv, export or set command

• Variable names are in uppercase, values are case insensitive and
may have leading or trailing white space
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OMP_SCHEDULE Controls the schedule and chunk size of loops specified with 

the schedule(runtime) directive. 

export OMP_SCHEDULE=“guided,4”

OMP_NUM_THREADS Sets number of threads to be used in a parallel region. This 

has some rules of precedence, and can be overridden 

through function call or num_threads clause

export OMP_NUM_THREADS=8

OMP_STACKSIZE Controls the stack size for each thread, size set as

size/sizeB/sizeK/sizeM/sizeG

export OMP_STACKSIZE=100M  (100 Mega bytes)

OMP_WAIT_POLICY Whether the waiting threads should be ACTIVE and consume 

processor cycles while waiting. Or be PASSIVE and go to 

sleep or yield to other threads while waiting

export OMP_WAIT_POLICY=PASSIVE

OMP_TARGET_OFFLOAD Controls the offloading behaviour

MANDATORY – program is terminated if device not found

DEFAULT – run on default device, probably the host

OMP_PLACES Specifies the places a thread is bound to, threads, cores, 

sockets

export OMP_PLACES=threads

export OMP_PLACES={0,1,2,3} (4 hardware threads)

OMP_PROC_BIND Controls if threads can be moved between OpenMP places, 

scattered or compact or bound to master thread

export OMP_PROC_BIND=false/true/master/close/spread


