CS 610: Loop Transformations

Swarnendu Biswas

Semester 2020-2021-I
CSE, IIT Kanpur

Copyright Information

- "The instructor of this course owns the copyright of all the course materials. This lecture material was distributed only to the students attending the course CS 610: Programming for Performance of IIT Kanpur, and should not be distributed in print or through electronic media without the consent of the instructor. Students can make their own copies of the course materials for their use."

Enhancing Program Performance

Fundamental issues

- Adequate fine-grained parallelism
- Exploit vector instruction sets (SSE, AVX, AVX-512)
- Multiple pipelined functional units in each core
- Adequate parallelism for SMP-type systems
- Keep multiple asynchronous processors busy with work
- Minimize cost of memory accesses

Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

- Code restructuring optimizations
- Prefetching optimizations
- Data layout optimizations
- Code layout optimizations

Loop Optimizations

- Loops are one of most commonly used constructs in HPC program
- Compiler performs many of loop optimization techniques automatically
- In some cases source code modifications enhance optimizer's ability to transform code

Reordering Transformations

- A reordering transformation does not add or remove statements from a loop nest
- Only reorders the execution of the statements that are already in the loop

Do not add or remove statements

Do not add or remove any new dependences

Reordering Transformations

- A reordering transformation does not add or remove statements from
a loop nest
- Only reorders the execution of the statements that are already in the loop

A reordering transformation is valid if it preserves all existing dependences in the loop

Iteration Reordering and Parallelization

- A transformation that reorders the iterations of a level-k loop, without making any other changes, is valid if the loop carries no dependence
- Each iteration of a loop may be executed in parallel if it carries no dependences

Data Dependence Graph and Parallelization

- If the Data Dependence Graph (DDG) is acyclic, then vectorization of the program is possible and is straightforward
- Otherwise, try to reduce the DDG to an acyclic graph

Enhancing Fine-Grained Parallelism

Focus on Parallelization of Inner Loops

System Setup

- Setup
- Vector or superscalar architectures
- Focus is mostly on parallelizing the inner loops
- We will see optimizations for coarse-grained parallelism later

Loop Interchange (Loop Permutation)

- Switch the nesting order of loops in a perfect loop nest
- Can increase parallelism, can improve spatial locality

$$
\begin{aligned}
& \begin{array}{l}
\text { DO } I=1, N \\
\quad D O J=1, M \\
A(O, J+1)=A(I, J)+B
\end{array} \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

- Dependence is now carried by the outer loop
- Inner-loop can be vectorized

Interchange of Non-rectangular Loops

Interchange of Non-rectangular Loops

```
for (i=0; i<n; i++)
    for (j=0; j<i; j++)
    y[i] = y[i] + A[i][j]*x[j];
```

for $(j=0 ; j<n ; j++)$
\quad for $\quad(i=j+1 ; i<n ; i++)$
$y[i]=y[i]+A[i][j] * x[j] ;$

Validity of Loop Interchange

- Construct direction vectors for all possible dependences in the loop
- Also called a direction matrix
- Compute direction vectors after permutation
- Permutation of the loops in a perfect nest is legal iff there are no "-" direction as the leftmost non-" 0 " direction in any direction vector

Legality of Loop Interchange

(0, 0)

- Dependence is loop-independent
(0, +)
- Dependence is carried by the $\mathrm{j}^{\text {th }}$ loop, which remains the same after interchange
(+ , 0)
- Dependence is carried by the $i^{\text {th }}$ loop, relations do not change after interchange
$(+,+)$
- Dependence relations remain positive in both dimensions

Legality of Loop Interchange

(+ , -)

- Dependence is carried by $\mathrm{i}^{\text {th }}$ loop, interchange results in an illegal direction vector
$(0,+)$
- Dependence is carried by the $\mathrm{j}^{\text {th }}$ loop, which remains the same after interchange
(0, -) (-, *)
- Such direction vectors are illegal, should not appear in the original loop

Invalid Loop Interchange

Validity of Loop Interchange

- Loop interchange is valid for a 2D loop nest if none of the dependence vectors has any negative components
- Interchange is legal: $(1,1),(2,1),(0,1),(3,0)$
- Interchange is not legal: $(1,-1),(3,-2)$

Valid or Invalid Loop Interchange?

```
DO J = 1, M
    DO I = 1, N
        A(I,J+1) = A(I+1,J) + B
    ENDDO
ENDDO
```


Validity of Loop Permutation

- Generalization to higher-dimensional loops
- Permute all dependence vectors exactly the same way as the intended loop permutation
- If any permuted vector is lexicographically negative, permutation is illegal
- Example: d1 = (1,-1,1) and d2 = (0,2,-1)
- ijk $->$ jik? $(1,-1,1)->(-1,1,1)$: illegal
- ijk \rightarrow kij? $(0,2,-1)->(-1,0,2)$: illegal
- ijk -> ikj? $(0,2,-1)->(0,-1,2)$: illegal
- No valid permutation:
- j cannot be outermost loop (-1 component in d1)
- k cannot be outermost loop (-1 component in d2)

Valid or Invalid Loop Interchange?
DO $\mathrm{I}=1, \mathrm{~N}$
DO J = 1, M
DO K = 1, L
$A(I+1, J+1, K)=A(I, J, K)+A(I, J+1, K+1)$
ENDDO
ENDDO

ENDDO
(1) iky

Benefits from Loop Permutation

```
for (i=0; i<n; i++)
    for (j=0; j<n; j++)
        for (k=0; k<n; k++)
        C[i][j] += A[i][k]*B[k][j];
```

| | ikj | $\mathbf{k i j}$ | $\mathbf{j i k}$ | $\mathbf{i j k}$ | $\mathbf{j k i}$ | $\mathbf{k j i}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $C[i][j]$ | 1 | 1 | 0 | 0 | n | n |
| $A[i][k]$ | 0 | 0 | 1 | 1 | n | n |
| $B[k][j]$ | 1 | 1 | n | n | 0 | 0 |

Does Loop Interchange Always Help?

Understanding Loop Interchange

Pros

- Goal is to improve locality of reference or allow vectorization

Cons

- Need to careful about the iteration order, order of array accesses, and data involved

Loop Shifting

- In a perfect loop nest, if loops at level $i, i+1, \ldots, i+n$ carry no dependence-that is, all dependences are carried by loops at level less than i or greater than $i+n$-it is always legal to shift these loops inside of loop $i+n+1$.
- These loops will not carry any dependences in their new position.

Loops i to i+n

	+	0	+	0	0	0	
Dependence carried by outer loops	0	+	-	+	+	0	
	0	0	0	0	+	+	Dependence carried

Loop Shift for Matrix Multiply

```
DO I = 1, N
    DO J = 1, N
        DO K = 1, N
\[
A(I, J)=A(I, J)+B(I, K) * C(K, J)
\]
ENDDO
ENDDO
ENDDO
```


S

Could we perform
loop shift?

Loop Shift for Matrix Multiply

```
DO I = 1, N
    DO J = 1, N
        DO K = 1, N
        A(I,J) = A(I,J) + B(I,K)*C(K,J) S
        ENDDO
    ENDDO
ENDDO
```

S

```
DO K = 1, N
    DO I = 1, N
        DO J = 1, N
        A(I,J) = A(I,J) + B(I,K)*C(K,J)
        ENDDO
    ENDDO
    ENDDO
```


Scalar Expansion

	DO $I=1, N$
S1	$T=A(I)$
S2	$A(I)=B(I)$
S3	$B(I)=T$
	ENDDO

Scalar Expansion

	DO $I=1, N$
S1	$\$ T(I)=A(I)$
S2	$A(I)=B(I)$
S3	$B(I)=\$ T(I)$
	ENDDO
	$T=\$ T(N)$

Scalar Expansion

$$
\begin{aligned}
& \text { DO } I=1, N \\
& T=T+A(I)+A(I-1) \\
& A(I)=T \\
& \text { ENDDO } \\
& \text { Can we parallelize } \\
& \text { the I loop? }
\end{aligned}
$$

$$
\begin{aligned}
& \$ T(0)=T \\
& D 0 I=1, N \\
& \$ T(I)=\$ T(I-1)+A(I)+A(I-1) \\
& A(I)=\$ T(I)
\end{aligned}
$$

ENDDO

$$
T=\$ T(N)
$$

Understanding Scalar Expansion

Pros

Cons

- Eliminates dependences due to reuse of memory locations
- Helps with uncovering parallelism
- Increases memory overhead
- Complicates addressing

Draw the Dependence Graph

$$
\begin{array}{lc}
& \text { DO } I=1,100 \\
\text { S1 } & T=A(I)+B(I) \\
\text { S2 } & C(I)=T+T \\
\text { S3 } & T=D(I)-B(I) \\
\text { S4 } & A(I+1)=T * T \\
& \text { ENDDO }
\end{array}
$$

Scalar Expansion Does Not Help!

Scalar Renaming

Loop Peeling

- Splits any problematic first or last few iterations from the loop body
- Change from a loop-carried dependence to loop-independent dependence

$$
\begin{aligned}
& \text { DO } \mathrm{I}=1, \mathrm{~N} \\
& \begin{array}{l}
A(1)=A(1)+A(1) \\
D O I=2, N
\end{array} \\
& A(I)=A(I)+A(1) \\
& \text { EDO } \\
& A(1)=A(1)+A(1) \\
& A(2)=A(2)+A(1) \\
& A(3)=A(3)+A(1) \\
& \text { DO } I=2, N \\
& A(I)=A(I)+A(1) \\
& \text { EDO } \\
& \text { I/ } \\
& A(1)=A(1)+A(1) \\
& A[2 N]=A[2 N]+A(1)
\end{aligned}
$$

Loop Peeling

- Splits any problematic first or last few iterations from the loop body
- Change from a loop-carried dependence to loop-independent dependence
int $\mathrm{p}=10$;

$$
y[i]=x[i]+x[p] ;
$$

$$
\mathrm{p}=\mathrm{i} ;
$$

$$
y[0]=x[0]+x[10] ;
$$

$$
\text { for (int } i=1 ; i<10 ;++i)\{
$$

Loop Splitting
$A(1)=A(5)+B C(1)$
assume N is divisible by 2
$A(h)\}^{\prime} M=$

$$
\begin{aligned}
& M=N / 2=S \\
& D O I=1, M-1 \\
& A(I)=A(N / 2)+B(I) \\
& \text { ENDDO } \\
& D o p \operatorname{Lnc}(p \\
& A(M)=A(N / 2)+B(I)
\end{aligned}
$$

$$
\text { DO } I=M+1, N 10
$$

$$
A(I)=A(N / 2)+B(I)
$$

EDDO

Understanding Loop Peeling and Splitting

Pros
Cons

- Transformed loop carries no dependence, can be parallelized

Draw the Dependence Graph

Loop Skewing

Loop Skewing

DO $\mathrm{I}=1$, N
DO J = 1, N
$S \quad A(I, J)=A(I-1, J)+A(I, J-1) \quad S$
ENDDO
ENDDO

DO $I=1, N$

$$
\text { DO } j=I+1, I+N
$$

$$
A(I, j-I)=A(I-1, j-I)+A(I, j-I-1)
$$

ENDDO

ENDDO

Loop Skewing

$$
\begin{gathered}
j_{0}-I_{0}=j_{0}-I_{0}-1+\lambda_{j} \\
\lambda_{i}=1(0,1)
\end{gathered}
$$

$$
\begin{aligned}
\text { DO } I & =1, N \\
\text { DO } j & =I+1, I+N
\end{aligned}
$$

S

$$
A(I, j-I)=A(I-1, j-I)+A(I, j-I-1)
$$

ENDDO
ENDDO flocu

$$
\begin{aligned}
& I_{0}=I_{0}-1+\Delta I \\
& (0, \lambda) \\
& \mathrm{I}=3 \\
& \mathrm{I}=2 \\
& \delta_{\phi}-I_{\beta}=\phi \beta-\left(I \phi+\Delta \sigma_{0}\right)+B J_{0}
\end{aligned}
$$

$$
\Delta y_{0}=\Delta \Sigma_{0}=1
$$

Perform Loop Interchange

$$
\begin{aligned}
& \text { DO } I=1, N \\
& \text { DO } j=I+1, I+N \\
& S \quad A(I, j-I)=A(I-1, j-I)+A(I, j-I-1) \\
& \\
& \text { UNDO }
\end{aligned}
$$

interchange
???
Which loop carries
the dependence?

Perform Loop Interchange

Understanding Loop Skewing

Pros

Cons

- Reshapes the iteration space to find possible parallelism
- Allows for loop interchange in future
- Resulting iteration space can be trapezoidal
- Irregular loops are not very amenable for vectorization
- Need to be careful about load imbalance

Loop Unrolling (Loop Unwinding)

```
for (i = 0; i < n; i++) {
    a[i] = a[i-1] + a[i] + a[i+1];
}
```

```
for (i = 0; i < n; i+ = 4) {
        a[i] = a[i-1] + a[i] + a[i+1];
        a[i+1] = a[i] + a[i+1] + a[i+2];
        a[i+2] = a[i+1] + a[i+2] + a[i+3];
        a[i+3] = a[i+2] + a[i+3] + a[i+4];
}
int f = n % 4;
for (i = n - f ; i < n; i ++) {
    a[i] = a[i-1] + a[i] + a[i+1];
}
```


Loop Unrolling (Loop Unwinding)

- Reduce number of iterations of loops
- Add statement(s) to do work of missing iterations
- JIT compilers try to perform unrolling at run-time

```
for (i = 0; i < n; i++) {
    for (j = 0; j < 2*m; j++) {
        loop-body(i, j);
    }
}
```

```
for (i = 0; i < n; i++) {
    for (j = 0; j < 2*m; j+=2) {
    loop-body(i, j);
        loop-body(i, j+1);
    }
2-way unrolled
```


Inner Loop Unrolling

```
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        y[i] = y[i] + a[i][j]*x[j];
    }
}
```

```
for (i=0; i<n; i++) {
    for (j=0; j<n; j+=4) {
        y[i] = y[i] + a[i][j]*x[j];
        y[i] = y[i] + a[i][j+1]*x[j+1];
        y[i] = y[i] + a[i][j+2]*x[j+2];
        y[i] = y[i] + a[i][j+3]*x[j+3];
        }
}
```


Inner Loop Unrolling

```
for (i=0; i<n; i++) {
    for (j=0; j<n; j+=4) {
        y[i] = y[i] + a[i][j]*x[j];
        y[i] = y[i] + a[i][j+1]*x[j+1];
        y[i] = y[i] + a[i][j+2]*x[j+2];
        y[i] = y[i] + a[i][j+3]*x[j+3];
    }
}
```

```
for (i=0; i<n; i++) {
    for (j=0; j<n; j+=4) {
        y[i] = y[i] + a[i][j]*x[j]
            + a[i][j+1]*x[j+1]
            + a[i][j+2]*x[j+2]
            + a[i][j+3]*x[j+3];
```

 \}
 \}

Outer Loop Unrolling

```
for (i=0; i<2*n; i++)
    for(j=0; j<m; j++)
    loop-body(i,j);
```

```
for (i=0; i<2*n; i+=2) {
    for(j=0; j<m; j++) {
        loop-body(i,j)
    }
    for(j=0; j<m; j++) {
        loop-body(i+1,j)
    }
}
```


Outer Loop Unrolling

```
for (i=0; i<2*n; i++)
    for(j=0; j<m; j++)
    loop-body(i,j);
```


for ($i=0 ; i<2 * n ; i+=2)\{$ for $(j=0 ; j<m ; j++)$ \{ loop-body(i,j)
\}
for $(j=0 ; j<m ; j++)$ \{ loop-body(i+1,j) \}
\}

Outer Loop Unrolling + Inner Loop Jamming

```
for (i=0; i<2*n; i++)
    for(j=0; j<m; j++)
    loop-body(i,j);
```

```
for (i=0; i<2*n; i+=2) {
    for(j=0; j<m; j++) {
        loop-body(i,j)
        loop-body(i+1,j)
    }
}
```

Legality of Unroll and Jam

$$
\begin{aligned}
& \text { DO } \mathrm{I}=1, \mathrm{~N} * 2 \\
& \text { DO } \mathrm{J}=1, \mathrm{M} \\
& \quad \mathrm{~A}(\mathrm{I}+1, \mathrm{~J}-1)=\mathrm{A}(\mathrm{I}, \mathrm{~J})+\mathrm{B}(\mathrm{I}, \mathrm{~J}) \\
& \text { UNDO } S(1,2) \rightarrow S(2,1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ENDDO } \\
& \text { flow } \mid M \rightarrow R
\end{aligned}
$$

$$
I_{0}+=I_{0}+A I_{G}
$$

$$
\Delta I=1
$$

$$
1 \Delta J=1 \quad \cup \mathbb{R}_{2}^{2}
$$

$$
(1,-1)
$$

$$
\begin{aligned}
& \text { DO } I=1, N * 2,2 \\
& \text { DO } J=1, M \\
& A(I+1, J-1)=A(I, J)+B(I, J) \\
& A(I+2, J-1)=A(I+1, J)+B(I+1, J)
\end{aligned}
$$

EDDO

Validity Condition for Loop Unroll/Jam

- Sufficient condition can be obtained by observing that complete unroll/jam of a loop is equivalent to a loop permutation that moves that loop innermost, without changing order of other loops
- If such a loop permutation is valid, unroll/jam of the loop is valid
- Example: 4D loop ijkl; d1 = (1,-1,0,2), d2 = (1,1,-2,-1)
- i: d1-> $(-1,0,2,1)=>$ invalid to unroll/jam
- j: d1-> ($1,0,2,-1$); d2 -> ($1,-2,-1,1$) => valid to unroll/jam
- k: d1 -> (1,-1,2,0); d2 -> (1,1,-1,-2) $=>$ valid to unroll/jam
- I: d1 and d2 are unchanged; innermost loop always unrollable

Understanding Loop Unrolling

Pros

- Small loop bodies are problematic, reduces control overhead of loops
- Increases operation-level parallelism in loop body
- Allows other optimizations like reuse of temporaries across iterations
- Increases the executable size
- Increases register usage
- May prevent function inlining

Loop Tiling

- Improve data reuse by chunking the data in to smaller blocks (tiles)
- The block is supposed to fit in the cache
- Tries to exploit spatial and temporal locality of data

```
for (i = 0; i < N; i++) {
}
```

```
for (j= 0; j<N; j +=B) {
    }
}
```


MVM with 2×2 Blocking

```
int i, j, a[100][100], b[100], c[100]; int i, j, x, y, a[100][100], b[100], c[100];
int n = 100;
for (i = 0; i < n; i++) {
    c[i] = 0;
    for (j = 0; j < n; j++) {
        c[i] = c[i] + a[i][j] * b[j];
    }
}
```

```
int n = 100;
```

int n = 100;
for (i = 0; i < n; i += 2) {
for (i = 0; i < n; i += 2) {
c[i] = 0;
c[i] = 0;
c[i + 1] = 0;
c[i + 1] = 0;
for (j = 0; j < n; j += 2) {
for (j = 0; j < n; j += 2) {
for (x = i; x < min(i + 2, n); x++) {
for (x = i; x < min(i + 2, n); x++) {
for (y = j; y < min(j + 2, n); y++) {
for (y = j; y < min(j + 2, n); y++) {
c[x] = c[x] + a[x][y] * b[y];
c[x] = c[x] + a[x][y] * b[y];
}
}
}
}
}
}
}

```
}
```


Loop Tiling

- Determining the tile size
- Difficult theoretical problem, usually heuristics are applied
- Tile size depends on many factors

Validity Condition for Loop Tiling

- A contiguous band of loops can be tiled if they are fully permutable
- A band of loops is fully permutable of all permutations of the loops in that band are legal
- Example: $\mathrm{d}=(1,2,-3)$
- Tiling all three loops ijk is not valid, since the permutation kij is invalid
- 2D tiling of band ij is valid
- 2D tiling of band jk is valid

$$
\begin{aligned}
& \text { for }(i=0 ; i<n ; i++) \\
& \text { for }(j=0 ; j<n ; j++) \\
& \quad \text { for }(k=0 ; k<n ; k++) \\
& \qquad \text { loop_body }(i, j, k) \\
& \text { for }(i t=0 ; i t<n ; i t+=T) \\
& \text { for }(j t=0 ; t j<n ; j+=T) \\
& \text { for (i }=i t ; i<i t+T ; i++) \\
& \text { for (} j=j t ; j<j t+T ; j++) \\
& \quad \text { for }(k=0 ; k<n ; k++) \\
& \quad \text { loop_body }(i, j, k)
\end{aligned}
$$

Creating Coarse-Grained Parallelism

Find Work For Threads

- Setup
- Symmetric multiprocessors with shared-memory
- Threads are running on each core, and coordinating execution with occasional synchronization
- A basic synchronization element is a barrier
- A barrier in a program forces all processes to reach a certain point before execution continues.
- Challenge: Balance the granularity of parallelism with communication overheads

Challenges in Coarse-Grained Parallelism

Minimize communication and synchronization overhead while evenly load balancing across the processors

- Running everything on one processor achieves minimal communication and synchronization overhead
- Very fine-grained parallelism achieves good load balance, but benefits possibly are outweighed by frequent communication and synchronization

Challenges in Coarse-Grained Parallelism

Minimize communication ar '

while evenly

load balancir

$$
\begin{aligned}
& \text { One expectation from an } \\
& \text { optimizing compiler is to find } \\
& \text { the sweet spot }
\end{aligned}
$$

- Runniric
proces
communicatu
. y are outweighed
synchronization Overneau

Few Ideas to Try

- Single loop
- Carries a dependence $\boldsymbol{\rightarrow}$ Try transformations to eliminate the loop carried dependence
- For example, loop distribution and scalar expansion
- Decide on the granularity of the new parallel loop
- Perfect loop nests
- Try loop interchange to see if the dependence level can be changed

Privatization

- Privatization is similar in flavor to scalar expansion
- Temporaries can be given separate namespaces for each iteration

	DO $I=1, N$
S1	$T=A(I)$
S2	$A(I)=B(I)$
S3	$B(I)=T$
	ENDDO

	PARALLEL DO $I=1, N$
	PRIVATE t
S1	$t=A(I)$
S2	$A(I)=B(I)$
S3	$B(I)=t$
	ENDDO

Privatization

- A scalar variable x in a loop L is said to be privatizable if every path from the loop entry to a use of x inside the loop passes through a definition of x
- No use of the variable is upward exposed, i.e., the use never reads a value that was assigned outside the loop
- No use of the variable is from an assignment in an earlier iteration

Privatization

- If all dependences carried by a loop involve a privatizable variable, then loop can be parallelized by making the variables private
- Preferred compared to scalar expansion

> Why?

Privatization

- If all dependences carried by a loop involve a privatizable variable, then loop can be parallelized by making the variables private
- Preferred compared to scalar expansion
- Less memory requirement
- Scalar expansion may suffer from false sharing
- However, there can be situations where scalar expansion works but privatization does not

Privatization and Scalar Expansion

DO $\mathrm{I}=1, \mathrm{~N}$
$T=A(I)+B(I)$

$$
\mathrm{A}(\mathrm{I}-1) \geq \mathrm{T}
$$

ENDDO

ENDDO


```
DO \(\mathrm{I}=1, \mathrm{~N}\)
PRIVATE T
\[
\begin{aligned}
& T=A(I)+B(I) \\
& A(I-1)=T
\end{aligned}
\]
```


Privatization and Scalar Expansion

```
DO I = 1, N
    T = A(I) + B(I)
    A(I-1) = T
ENDDO
DO I = 1, N
    PRIVATE T
    T = A(I) + B(I)
    A(I-1) = T
```

```
PARALLEL DO I = 1, N
    L{$(I) =A(I) + B(I)
    A(I-1)= =$$(I)
    ENDDO
```

ENDDO

Privatization and Scalar Expansion

```
DO I = 1, N
    T = A(I) + B(I)
    A(I-1) = T
ENDDO
DO I = 1, N
    PRIVATE T
    T = A(I) + B(I)
    A(I-1) = T
```

ENDDO

ENDDO

DO I = 1, N PRIVATE T
$T=A(I)+B(I)$ $A(I-1)=T$

ENDDO

Loop Distribution (Loop Fission)

- How to eliminate loop-carried dependences?

Loop Distribution (Loop Fission)

- Goal is to eliminate loop-carried dependences

Validity Condition for Loop Distribution

- Sufficient (but not necessary) condition: A loop with two statements can be distributed if there are no dependences from any instance of the later statement to any instance of the earlier one
- Generalizes to more statements

Validity Condition for Loop Distribution

- Example: Loop distribution is not valid (executing all S1 first and then all S2)

$$
\begin{aligned}
& \text { For } I=1, N \\
& \begin{aligned}
A(I) & =B(I)+C(I) \\
E(I) & =A(I+1) * D(I)
\end{aligned} \\
& \text { EndFor }
\end{aligned}
$$

- Example: Loop distribution is valid

For $I=1, N$

\therefore| $S 1 \quad$$A(I)=B(I)+C(I)$
 $S 2$
 $E(I)$
 EndFor$\quad A(I-1) * D(I)$ |
| :--- |

EndFor

Understanding Loop Distribution

Pros

Cons

- Execute source of a dependence before the sink
- Reduces the memory footprint of the original loop
- For both data and code

How to deal with the loop?

L1 DO $I=1, N$

$$
A(I)=B(I)+1
$$

ENDDO
L2 DO I = 1, N

$$
C(I)=A(I)+C(I-1)
$$

ENDDO

$$
\begin{aligned}
\text { L3 } \quad \mathrm{DO} I & =1, N \\
D(I) & =A(I)+X
\end{aligned}
$$

ENDDO

Loop Fusion (Loop Jamming)

L1 PARALLEL DO $I=1$, N $A(I)=B(I)+1$
L3 $\quad D(I)=A(I)+X \quad$ ENDDO
L2 DO I = 1, N

$$
C(I)=A(I)+C(I-1)
$$

ENDDO

ENDDO

Loop Fusion Allowed?

No

Loop Fusion Allowed?

$\left.\begin{array}{cc} & D O I=1, N \\ S 1 & A(I)=B(I)+C \\ & E N D D O \\ & D O I=1, N \\ S 2 \\ & D(I)=A(I-1)+E\end{array}\right\}$

Yes

Validity Condition for Loop Fusion

- Loop-independent dependence between statements in two different loops (i.e., from S1 to S2)
- Dependence is fusion-preventing if fusing the two loops causes the dependence to be carried by the combined loop in the reverse direction (from S2 to S1)

Understanding Loop Fusion

Pros

Cons

- Reduce overhead of loops
- May improve temporal locality
- May decrease data locality in the fused loop

Loop Interchange

```
DO I = 1, N
    DO J = 1, M
        A(I+1,J) = A(I,J) + B(I,J)
    ENDDO
ENDDO
```


Loop Interchange

```
DO I = 1, N
    DO J = 1, M
        A(I+1,J) = A(I,J) + B(I,J)
    ENDDO
ENDDO
```


Loop Interchange

$$
\begin{aligned}
& \text { DO } \mathrm{I}=1, \mathrm{~N} \\
& \text { DO J }=1, \mathrm{M} \\
& \quad \mathrm{~A}(\mathrm{I}+1, \mathrm{~J})=\mathrm{A}(\mathrm{I}, \mathrm{~J})+\mathrm{B}(\mathrm{I}, \mathrm{~J}) \\
& \quad \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

Dependence-free loops should move to the outermost level

```
DO J = 1, M
    DO I = 1, N
        A(I+1,J) = A(I,J) + B(I,J)
    ENDDO
ENDDO
PARALLEL DO J = 1, M
    DO I = 1, N
        A(I+1,J) = A(I,J) + B(I,J)
    ENDDO
END PARALLEL DO
```


Loop Interchange

Vectorization

- Move dependence-free loops to innermost level

Coarse-grained Parallelism

- Move dependence-free loops to outermost level

Loop Interchange

```
DO I = 1, N
    DO J = 1, M
        A(I+1,J+1) = A(I,J) + B(I,J)
    ENDDO
ENDDO
```

How about this?

Condition for Loop Interchange

- In a perfect loop nest, a loop can be parallelized at the outermost level if and only if the column of the direction matrix for that nest contains only " 0 " entries

Code Generation Strategy

1) Continue till there are no more columns to move
2) Choose a loop from the direction matrix that has all " 0 " entries in the column
3) Move it to the outermost position
4) Eliminate the column from the direction matrix
5) Pick loop with most " + " entries, move to the next outermost position
6) Generate a sequential loop
7) Eliminate the column
8) Eliminate any rows that represent dependences carried by this loop
9) Repeat from Step 1

Loop Interchange

```
DO I = 1, N
    DO J = 1, M
        DO K = 1, L
            A(I+1,J,K) = A(I,J,K) + X1
            B(I,J,K+1) = B(I,J,K) + X2
            C(I+1,J+1,K+1) = C(I,J,K) + X3
        ENDDO
    ENDDO
ENDDO
```


Loop Interchange

```
DO I = 1, N
    DO J = 1, M
        DO K = 1, L
            A(I+1,J,K) = A(I,J,K) + X1
        B(I,J,K+1) = B(I,J,K) + X2
        C(I+1,J+1,K+1) = C(I,J,K) + X3
        ENDDO
    ENDDO
ENDDO
```


Generated Code

```
DO I = 1, N
    PARALLEL DO J = 1, M
    DO K = 1, L
        A(I+1,J,K) = A(I,J,K) + X1
        B(I,J,K+1) = B(I,J,K) + X2
        C(I+1,J+1,K+1) = C(I,J,K) + X3
        ENDDO
    END PARALLEL DO
ENDDO
```

```
\[
\begin{aligned}
& \text { DO I = 1, N } \\
& \text { PARALLEL DO J = 1, M } \\
& \text { DO } K=1 \text {, L } \\
& A(I+1, J, K)=A(I, J, K)+X 1 \\
& B(I, J, K+1)=B(I, J, K)+X 2 \\
& C(I+1, J+1, K+1)=C(I, J, K)+X 3
\end{aligned}
\]
EDDO
END PARALLEL DO
ENDDO
```


How can we parallelize this loop?

```
DO I = 2, N+1
    DO J = 2, \(M+1\)
        DO \(K=1, L\)

            \(A(I, J, K)=A(I, J-1, K+1)+A(I-1, J, K+1)\)
        ENDDO
        ENDDO
    ENDDO
    ENDDO
ENDDO
ENDDO

\section*{How can we parallelize this loop?}

D0 \(\mathrm{I}=2, \mathrm{~N}+1\)
DO J = 2, M+1
DO \(K=1, L\)
\(A(I, J, K)=A(I, J-1, K+1)+A(I-1, J, K+1)\)

ENDDO
ENDDO
ENDDO


DO
ENDDO
ENDD0
ENDDO
ENDDO

\section*{Loop Reversal}

DO I = 2, N+1
DO J = 2, M+1
DO K = 1, L \(A(I, J, K)=A(I, J-1, K+1)+A(I-\) \(1, \mathrm{~J}, \mathrm{~K}+1\) )

ENDDO
ENDDO
ENDDO
\[
\begin{aligned}
& \text { DO } I=2, N+1 \\
& \text { DO } J=2, M+1 \\
& \quad \begin{array}{l}
\text { DO } K=L, 1,-1 \\
A(I, J, K)
\end{array}=A(I, J-1, K+1)+A(I-
\end{aligned}
\]

ENDDO
ENDDO
ENDDO

\section*{Loop Reversal}
- When the iteration space of a loop is reversed, the direction of dependences within that reversed iteration space are also reversed. Thus, a " + " dependence becomes a "-" dependence, and vice versa
```

DO I = 2, N+1
DO J = 2, M+1
DO K = L, 1, -1
A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)
ENDDO
ENDDO
ENDDO

```

\section*{Perform Loop Interchange}


\section*{Understanding Loop Reversal}

\section*{Pros \\ Cons}
- Increases options for performing other optimizations

\section*{Which Transformations are Most Important?}
- Flow dependences by nature are difficult to remove
- Try to reorder statements as in loop peeling, loop distribution
- Techniques like scalar expansion, privatization can be very useful
- Loops often use scalars for temporary values

\section*{Challenges for Real-World Compilers}
- Conditional execution
- Symbolic loop bounds
- Indirect memory accesses
- ...

\section*{References}
- R. Allen and K. Kennedy - Optimizing Compilers for Multicore Architectures.
- S. Midkiff - Automatic Parallelization: An Overview of Fundamental Compiler Techniques.
- P. Sadayappan and A. Sukumaran Rajam - CS 5441: Parallel Computing, Ohio State University.```

