
Intel Confidential

Introduction to Polyhedral Compilation
Sanket Tavarageri 

Research Scientist at Intel Labs, Bengaluru



Outline

• Polyhedral Compilation and its advantages

• Polyhedral Model Constructs

• Loop Transformations

• Loop interchange

• Code analysis

• Data set computation



Intel Confidential — Do Not Forward

What is the Polyhedral Model?



Polyhedral model for compilation



Iteration spaces as polyhedrons

A loop nest

Its iteration space as 
a 2-D polyhedron

A polyhedron is an n-dimensional geometric object



Intel Confidential — Do Not Forward

What can the Polyhedral model be used 
for?



Applicability

• Polyhedral model provides a powerful mathematical 
framework to reason about loops in programs

• Polyhedral model can be used to reason about Affine loops: 

• Loops where the loop bounds and array references are 
affine functions of loop iterators and program parameters

• Affine function: linear + constant

• Examples: 2*i+10, i+j+k, N*2+3

• Functions that are not affine

• Examples: i*i, N*i



Affine loop examples

Loop bounds: 3*i, N/2
Array access functions: 
2*j, M-1, j+2

j’s lower bound 
3*i*i is not affine



Polyhedral model is broadly applicable

• Over 99% loops in a majority of HPC (High Performance 
Computing) programs are affine [1]

• [1] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. 
Putting polyhedral loop transformations to work. In LCPC, 2003.

• Over 95% of loops in deep learning are affine [2]

• [2] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, 
Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, 
Nan Boden, Al Borchers, et al. 2017. In-datacenter performance 
analysis of a tensor processing unit. In 2017 ACM/IEEE 44th 
Annual International Symposium on Computer Architecture 
(ISCA). IEEE, 1–12.



One model, many uses

• Loop transformations

• Loop tiling

• Loop peeling

• Loop permutations

• Loop reversal

• Loop skewing

• Memory consumption optimization

• Calculate memory consumption

• Array contraction

• Parallelization

• Determine which loops are parallel



Intel Confidential — Do Not Forward

Understanding the polyhedral model 
with an example



Sets



Iteration space as a set in matrix multiplication

Iteration domain as a set: 

[M, N, K] -> 

{ S[i, j, k] : 0 <= i < M and 0 <= j < N and 0 <= k < K; }



Relations



Write access relation

Write access relation: 

writes := { S[i, j, k] -> C[i, j] }



Read access relations

Read access relations: 

reads := {S[i, j, k] -> B[k, j], S[i, j, k] -> A[i, k], S[i, j, k] -> C[i, j] }



Execution schedule as a relation

Schedule

sched := { S[i, j, k] -> [i, j, k] };



Computing data dependences

Data dependences

RAW := last writes before reads under sched;

Flow dependence (RAW – Read After Write dependence)

{ S[i, j, k] -> S[i' = i, j' = j, k' = 1 + k] }



Intel Confidential — Do Not Forward

Loop Transformations



Loop interchange in the Polyhedral model

Loop interchange

sched := { S[i, j, k] -> [i, k, j] };

codegen (sched * I);



Loop transformations

• Loop transformations are performed

• For better data cache locality

• For better vectorization

• Loop transformations have to respect the data dependences

• The resulting program should be functionally equivalent to the 
original program

• The transformed program should produce the same results

• Producer – consumer relations should be respected



Exercise

• How to tell if loop permutation is legal?

• S[i, j, k] -> [i, k, j]

• Hint: examine the data dependences and formulate conditions 
based on them.



Intel Confidential — Do Not Forward

Loop Analysis



Apply operation



Data footprint computation

The number of array A elements accessed in the loop nest

reads_A := [M, N, K] -> { S[i, j, k] -> A[i, k] };

I = { S[i, j, k] : 0 <= i < M and 0 <= j < N and 0 <= k < K; }

reads_A_set := reads_A(I);

Result: { A[i, k] : 0 <= i < M and 0 <= k < K }

Cardinality: M * K



Data footprint analysis

• Can be used to determine the unit of computation to hand over 
to an accelerator

• E.g., the data accessed in the task should not exceed the 
available on-device memory size



Further reading/hands on experience

• The ISL (Integer Set Library) http://barvinok.gforge.inria.fr/

• “iscc” tool is a command line facility for rapid exploration and 
prototyping

• iscc operations on Page 15, Table 1: 
http://barvinok.gforge.inria.fr/barvinok.pdf

• iscc tutorial: http://barvinok.gforge.inria.fr/tutorial.pdf

• The iscc command lines used while preparing for this lecture are 
available in the accompanying material

http://barvinok.gforge.inria.fr/
http://barvinok.gforge.inria.fr/barvinok.pdf

