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Parallel Programming Overview
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Create parallel units of execution
• Manage efficient execution of the parallel units

Find parallelization opportunities in the problem
• Decompose the problem into parallel units

Problem may require inter-unit communication
• Communication between threads, cores, …



How to “Think Parallel”?

• Decomposition
• Decompose the problem into 

concurrent logical tasks

• Scaling
• Identify concurrent tasks to keep 

processors busy

• Choose and utilize appropriate 
algorithms

• Threads
• Map tasks to threads

• Correctness
• Ensure correct synchronization to 

shared resources

• How much parallelism is there in 
an application?
• Depends on the size of the problem 
• Depends on whether the algorithm is 

easily parallelizable
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How to Decompose?

Data parallelism Task parallelism
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Data Parallelism vs Task Parallelism

Data Parallelism

• Same operations performed on 
different subsets of same data

• Synchronous computation 

• Expected speedup is more as there is 
only one execution thread operating 
on all sets of data

• Amount of parallelization is 
proportional to the input data size

• Designed for optimum load balance

Task parallelism

• Different operations are performed on 
the same or different data

• Asynchronous computation 

• Expected speedup is less as each 
processor will execute a different 
thread or process

• Amount of parallelization is 
proportional to the number of 
independent tasks

• Load balancing depends on the 
availability of the hardware and 
scheduling algorithms like static and 
dynamic scheduling
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Data Parallelism vs Task Parallelism 

• Distinguishing just between data and task parallelism may not be 
perfect
• Imagine TAs grading questions of varied difficulty

• Might need hybrid parallelism or pipelining or work stealing
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Parallelism vs Concurrency
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Parallelism vs Concurrency

Parallel programming

• Use additional resources to speed up computation

• Performance perspective

Concurrent programming

• Correct and efficient control of access to shared resources

• Correctness perspective

Distinction is not absolute
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Approaches to Parallelism

• Multithreading – “assembly language of parallel programming”

• New inherently-parallel languages (e.g., Cilk Plus, X10, and Chapel)
• New concepts, difficult to get widespread acceptance

• Language extensions (e.g., OpenMP)
• Easy to extend, but requires compiler or preprocessor support

• Library (e.g., C++ STL and Intel TBB)
• Works with existing environments, usually no new compiler is needed
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Challenges with a multithreaded 
implementation
• Oversubscription or undersubscription, scheduling policy, load 

imbalance, portability
• For example, mapping of logical to physical threads is crucial

• Mapping also depends on whether computation waits on external devices

• Non-trivial impact of time slicing with context switches, cache cooling 
effects, and lock preemption
• Time slicing allows more logical threads than physical threads
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Task-Based Programming 

• Programming at the abstraction of tasks is an appealing alternative

• A task is a sequence of instructions (logical unit of work) that can be 
processed concurrently with other tasks in the same program
• Interleaving of tasks is constrained by control and data dependences

• Tasks are lighter-weight compared to logical threads
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Intel Threading Building Blocks
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What is Intel TBB?

• A library to help leverage multicore performance using standard C++ 
• Does not require programmers to be an expert

• Writing a correct and scalable parallel loop is not straightforward

• Does not require support for new languages and compilers

• Does not directly support vectorization

• TBB was first available in 2006
• Current release is 2020 Update 3

• Open source and licensed versions available
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What is Intel TBB?

• TBB works at the abstraction of tasks instead of low-level threads
• Specify tasks that can run concurrently instead of threads

• Specify work (i.e., tasks), instead of focusing on workers (i.e., threads)
• Raw threads are like assembly language of parallel programming

• Maps tasks onto physical threads, efficiently using cache and balancing load

• Full support for nested parallelism
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Advantages with Intel TBB

• Promotes scalable data-parallel programming
• Data parallelism is more scalable than functional parallelism

• Functional blocks are usually limited while data parallelism scales with more 
processors

• Not tailored for I/O-bound or real-time processing

• Compatible with other threading packages and is portable
• Can be used in concert with native threads and OpenMP

• Relies on generic programming (e.g., C++ STL)
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Key Features of Intel TBB

Synchronization primitives
atomic operations, condition_variable
various flavors of mutexes

Generic Parallel algorithms
parallel_for, parallel_for_each,
parallel_reduce, parallel_scan,
parallel_do, pipeline, 
parallel_pipeline, parallel_sort, 
parallel_invoke

Concurrent containers
concurrent_hash_map
concurrent_unordered_map
concurrent_queue
concurrent_bounded_queue
concurrent_vectorTask scheduler

task_group, structured_task_group,
task, task_scheduler_init

Memory allocators
tbb_allocator, cache_aligned_allocator, scalable_allocator, 
zero_allocator

Utilities
tick_count
tbb_thread
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Task-Based Programming with Intel TBB

• Intel TBB parallel algorithms map tasks onto threads automatically
• Task scheduler manages the thread pool 

• Oversubscription and undersubscription of core resources is 
prevented by task-stealing technique of TBB scheduler
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An Example: Parallel loop

#include <chrono>

#include <iostream>

#include <tbb/parallel_for.h>

#include <tbb/tbb.h>

using namespace std;

using namespace std::chrono;

using HRTimer = high_resolution_clock::time_point;

#define N (1 << 26)

void seq_incr(float* a) {

for (int i = 0; i < N; i++) {

a[i] += 10;

}

}

void parallel_incr(float* a) {

tbb::parallel_for(static_cast<size_t>(0),
static_cast<size_t>(N),

[&](size_t i) {

a[i] += 10;

});

}
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An Example: Parallel loop

int main() {

float* a = new float[N];

for (int i = 0; i < N; i++) {

a[i] = static_cast<float>(i);

}

HRTimer start = high_resolution_clock:
:now();

seq_incr(a);

HRTimer end = high_resolution_clock::n
ow();

auto duration = duration_cast<microsec
onds>(end - start).count();

cout << "Sequential increment in " <<
duration << " us\n";

start = high_resolution_clock::now();

parallel_incr(a);

end = high_resolution_clock::now();

duration = duration_cast<microseconds>
(end - start).count();

cout << "Intel TBB Parallel increment
in " << duration << " us\n";

return EXIT_SUCCESS;

}
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Initializing the TBB Library

#include <tbb/task_scheduler_init.h>

using namespace tbb;

int main( ) {

task_scheduler_init init;

...

return 0;

}

• Control when the task 
scheduler is constructed and 
destroyed

• Specify the number of threads 
used by the task scheduler

• Specify the stack size for 
worker threads
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Not required in recent versions, 
>= TBB 2.2



Pthreads vs Intel TBB

Pthreads

• Low-level wrapper over OS 
support for threads

Intel TBB

• Provides high-level constructs 
and parallel patterns
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OpenMP vs Intel TBB

OpenMP

• Language extension consisting of 
pragmas, routines, and 
environment variables

• Supports C, C++, and Fortran

• User can control scheduling 
policies

• OpenMP limited to specified 
types (for e.g., reduction)

Intel TBB

• Library for task-based 
programming

• Supports C++ with generics

• Automated divide-and-conquer 
approach to scheduling, with 
work stealing

• Generic programming is flexible 
with types
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Generic Parallel Algorithms
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Generic Programming

• Enables distribution of useful high-quality algorithms and data 
structures

• Write best possible algorithm with fewest constraints (for e.g., 
std::sort)

• Instantiate algorithm to specific situation
• C++ template instantiation, partial specialization, and inlining make resulting 

code efficient
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Generic Programming Example

• The compiler creates the needed versions

template <typename T> T max (T x, T y) {
if (x < y) return y;
return x;

}

int main() {
int i = max(20,5);
double f = max(2.5, 5.2);
MyClass m = max(MyClass(“foo”), MyClass(“bar”));
return 0;

}

T must define a copy constructor and a 
destructor

T must define operator <
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Intel Threading Building Blocks Patterns

• High-level parallel and scalable patterns
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parallel_for load-balanced parallel execution of independent loop 
iterations

parallel_reduce load-balanced parallel execution of independent loop 
iterations that perform reduction 

parallel_scan template function that computes prefix scan in parallel 
(y[i] = y[i-1] op x[i])

parallel_while load-balanced parallel execution of independent loop 
iterations with unknown or dynamically changing bounds

pipeline data-flow pipeline pattern

parallel_sort parallel sort



parallel_for

void SerialApplyFoo(float a[], size_t n) {

for (size_t i=0; i<n; ++i)

foo(a[i]);

}
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Class Definition for parallel_for

#include “tbb/blocked_range.h”

#include …

class ApplyFoo {

float *const m_a;

public:

void operator()(const blocked_range<size_t>& r) const {

float *a = m_a;

for (size_t i=r.begin(); i!=r.end( ); ++i)

foo(a[i]);

}

ApplyFoo(float a[]) : m_a(a) {}

};
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parallel_for

#include “tbb/parallel_for.h”

void ParallelApplyFoo(float a[], size_t n) {

parallel_for(blocked_range<size_t>(0,n,grainSize), ApplyFoo(a));

}

• parallel_for schedules tasks to operate in parallel on subranges of 
the original iteration space using available threads
• Work is load balanced across the available processors

• Available cache is used efficiently (similar to tiling)

• Adding more processors improves performance of existing code
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Requirements for parallel_for Body

• The object has to have a copy constructor and destructor if memory is 
dynamically allocated
• Body::Body(const Body&)
• Body::~Body()

• operator() should not modify the body
• parallel_for requires that the body object’s operator() be declared as 
const

• Apply the body to a subrange
• void Body::operator() (Range& subrange) const
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Example 1
class ParallelAverage {

const float* m_input;

float* m_output;

public:

ParallelAverage(float* a, float* b) : m_input(a), m_output(b) {}

void operator()(const blocked_range<int>& range) const {

for (int i = range.begin(); i != range.end(); ++i)

m_output[i] = (m_input[i - 1] + m_input[i] + m_input[i + 1]) * (1 / 3.0f);

}

};

…

ParallelAverage avg(a, par_out);

parallel_for(blocked_range<int>(1, N - 1), avg);
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Example 1’
parallel_for(static_cast<int>(1), static_cast<int>(N - 1),

[&](int i) {

lamda_out[i] = (a[i - 1] + a[i] + a[i + 1]) * (1 / 3.0f);

});

// Compile:

g++ -std=c++11 parallel_average.cpp -o parallel_average -ltbb
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Example 1’
parallel_for(static_cast<int>(1), static_cast<int>(N - 1),

[&](int i) {

lamda_out[i] = (a[i - 1] + a[i] + a[i + 1]) * (1 / 3.0f);

});

Compile:

g++ -std=c++11 parallel_average.cpp -o parallel_average -ltbb
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Splittable Concept

• A type is splittable if it has a splitting constructor that allows an 
instance to be split into two pieces

• X::X(X& x, tbb::split)
• Split x into x and a newly constructed object

• Attempt to split x roughly into two non-empty halves

• Set x to be the first half, and the constructed object is the second half

• Dummy argument distinguishes from a copy constructor

• Used in two contexts
• Partition a range into two subranges that can be processed concurrently

• Fork a body (function object) into two bodies that can run concurrently
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Range is Generic

• R::R(const R&)

• R::~R()

• bool R::is_divisible() const 

• bool R::empty() const

• R::R(R& r, split)

• Copy constructor

• Destructor

• True if splitting constructor can be called, 
false otherwise

• True if range is empty, false otherwise

• Splitting constructor. It splits range r into two 
subranges. One of the subranges is the newly 
constructed range. The other subrange is  
overwritten onto r.
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More about Ranges

• tbb::blocked_range<int>(0,8) represents the index range 
{0,1,2,3,4,5,6,7}

// Construct half-open interval [0,30) with grainsize of 20

blocked_range<int> r(0,30,20);

assert(r.is_divisible());

// Call splitting constructor

blocked_range<int> s(r);

// Now r=[0,15) and s=[15,30) and both have a grainsize 20, inherited from 
the original value of r

assert(!r.is_divisible());

assert(!s.is_divisible());
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More about Ranges

• A two-dimensional variant is tbb::blocked_range2d

• Permits using a single parallel_for to iterate over two dimensions 
at once

• Can yield better cache behavior than nesting two one-dimensional 
instances of parallel_for
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Splitting over 2D Range 
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Split range...

.. recursively...

...until  grainsize.
tasks available to be scheduled to 
other threads (thieves)



Grain Size

• Specifies the number of iterations for a chunk to give to a processor

• Impacts parallel scheduling overhead
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Set the Right Grain Size

• Set the grainsize parameter 
higher than necessary

• Run your algorithm on one 
processor core

• Start halving the grainsize 
parameter 

• See how much the algorithm 
slows down as the value 
decreases
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Partitioner

• Range form of parallel_for takes an optional partitioner argument

parallel_for(range,bodyobject,simple_partitioner());

• auto_partitioner: Runtime will try to subdivide the range to balance load, this 
is the default

• simple_partitioner: Runtime will subdivide the range into subranges as finely 
as possible; method is_divisible will be false for the final subranges

• affinity_partitioner: Request that the assignment of subranges to underlying 
threads be similar to a previous invocation of parallel_for or 
parallel_reduce with the same affinity_partitioner object
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Affinity Partitioner

• When can the affinity partitioner be useful?
• The computation does a few operations per data access
• The data acted upon by the loop fits in cache
• The loop, or a similar loop, is re-executed over the same data

void ParallelApplyFoo(float a[], size_t n) {
static affinity_partitioner ap; // Lives across loop iterations
parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a), ap);

}
void TimeStepFoo(float a[], size_t n, int steps) {

for (int t=0; t<steps; ++t)
ParallelApplyFoo(a, n);

}
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Partitioners

Partitioner Description Iteration Space

simple_partitioner Chunk size bounded by grain size ൗ
𝑔
2 ≤ 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒 ≤ 𝑔

auto_partitioner (default) Automatic chunk size ൗ
𝑔
2 ≤ 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒

affinity_partitioner Automatic chunk size and cache affinity
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parallel_reduce

• #include <tbb/parallel_reduce.h>

• Apply func to subranges in range and reduce the results using the binary 
operator reduction

• Parameters func and reduction can be lambda expressions

• void parallel_reduce(range, body, [, partitioner…]
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Value tbb::parallel_reduce(range, identity, func, 
reduction [, partitioner…])



Serial Reduction

float SerialSumFoo(float a[], size_t n) {

float sum = 0;

for (size_t i=0; i!=n; ++i)

sum += Foo(a[i]);

return sum;

}
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Parallel Reduction

float ParallelSumFoo(const float *a, size_t n) {

SumFoo sf(a);

parallel_reduce(blocked_range<size_t>(0,n), sf);

return sf.my_sum;

}
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Parallel Reduction

class SumFoo {

float* my_a;

public:

float my_sum;

void operator()(const

blocked_range<size_t>& r) {

float *a = my_a;

float sum = my_sum;

for (size_t i=r.begin(); i!=r.end(); ++i)

sum += Foo(a[i]);

my_sum = sum;

}

SumFoo(SumFoo& x, split) : my_a(x.my_a), 

my_sum(0.0f) 

{}

void join(const SumFoo& y) {

my_sum += y.my_sum;

}

SumFoo(float a[]) : my_a(a), 

my_sum(0.0f) 

{}

};
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Differences between Parallel For and Reduce

parallel_for

• operator() is constant

• Requires only a copy ctor

parallel_reduce

• operator() is not constant

• Requires a splitting ctor for 
creating subtasks

• Requires a join() function to 
accumulate the results of the 
subtasks
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Graph of the Split-Join Sequence
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One Possible Execution of parallel_reduce
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blocked_range<int>(0, 20, 5);

𝑏0[0,20)

𝑏0[0,10)

𝑏0[0,5) 𝑏1[5,10)

𝑏2[10,20)

𝑏2[10,15) 𝑏3[15,20)



Another Possible Execution of 
parallel_reduce
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blocked_range<int>(0, 20, 5);

𝑏0[0,20)

𝑏0[0,10)

𝑏0[0,5) 𝑏1[5,10)

𝑏2[10,20)

𝑏2[10,15) 𝑏2[15,20)



Graph of the Split-Join Sequence
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Incorrect Definition of Parallel Reduction

class SumFoo {

float* my_a;

public:

float my_sum;

void operator()(const
blocked_range<size_t>& r) {

float *a = my_a;

float sum = 0; // WRONG

size_t end = r.end();

for (size_t i=r.begin(); i!=end; ++i)

sum += Foo(a[i]);

my_sum = sum;

}

SumFoo(SumFoo& x, split) : my_a(x.my_a), 

my_sum(0) {}

void join(const SumFoo& y) {

my_sum+=y.my_sum;

}

SumFoo(float a[]) : my_a(a), my_sum(0) {}

};
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Tasks and Task Scheduler
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TBB Task Scheduler

• Parallel algorithms make use of the task scheduler
• TBB parallel algorithms map tasks onto threads automatically

• Task scheduler manages the thread pool 
• Scheduler is unfair to favor tasks that have been most recent in the cache
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Problem TBB Approach

Oversubscription One scheduler thread per hardware thread

Fair scheduling Non-preemptive unfair scheduling

High overhead Programmer specifies tasks, not threads

Load imbalance Work stealing balances load



Task-Based Programming

Serial Code

long SerialFib(long n) {

if (n < 2)

return n;

else

return SerialFib(n-1) + 
SerialFib(n-2);

}
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Task Graph for Fibonacci Calculation
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Task-Based Fibonacci

Serial Code

long SerialFib(long n) {

if (n < 2)

return n;

else

return SerialFib(n-1) + 
SerialFib(n-2);

}

TBB Code

long ParallelFib(long n) {

long sum;

FibTask& a = 
*new(task::allocate_root()) 
FibTask(n,&sum);

task::spawn_root_and_wait(a);

return sum;

}
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Description of FibTask Class
class FibTask: public task {

public:

const long n;

long* const sum;

FibTask(long n_, long* sum_) :

n(n_), sum(sum_) {}

task* execute() { 

if (n<CutOff) {

*sum = SerialFib(n);

}

else {

long x, y;

FibTask& a = *new(allocate_child()) 
FibTask(n-1,&x);

FibTask& b = *new(allocate_child()) 
FibTask(n-2,&y);

// 2 children + 1 for the wait

set_ref_count(3);

spawn(b); // Return immediately

spawn_and_wait_for_all(a);

*sum = x+y;

}

return NULL;

}};
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Task Scheduler
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• Engine that drives the parallel algorithms and task groups

• Each task has a method execute()
• Definition should do the work of the task

• Return either NULL or a pointer to the next task to run

• Once a thread starts running execute(), the task is bound to that 
thread until execute() returns
• During that period, the thread serves other tasks only when it has to wait for 

some event 



How Task Scheduling Works

• Scheduler evaluates a 
task graph

• Each task has a refcount
• Number of tasks that 

have it as a successor
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# of children 
in flight+ 1

running, but 
no children yet

spawned, but not 
yet started executing



Task Scheduling

• Depth-first execution
• Deeper tasks are more recently created, and will probably have better locality

• Sequential execution of the task graph is more memory efficient 

• Breadth-first execution 
• Can have more parallelism if more physical threads are available

• TBB scheduler implements a hybrid of depth-first and breadth-first 
execution
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Scheduling Algorithm

• Each thread has a “ready pool” of 
tasks it can run
• The pool is basically a deque of task 

objects

• When a thread spawns a task, it 
pushes it to the end of its own 
deque

• A thread participates in task graph 
evaluation
• Get the task returned by execute()

for the previous task if any
• Pops a task from the bottom of its 

deque
• Steals a task from the top of another 

randomly deque
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Scheduling Algorithm

• There is a shared queue of tasks 
that were created

• Each thread has a “ready pool” of 
tasks it can run
• The pool is basically a deque of task 

objects

• When a thread spawns a task, it 
pushes it to the end of its own 
deque

• Thread participates in task graph 
evaluation
• Pops a task from the bottom of its 

deque
• Steals a task from the top of another 

randomly deque
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Work done is depth-first and stealing is breadth-first



Parallelism in TBB

• Parallelism is generated by split/join pattern
• Continuation-passing style and blocking style
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Blocking Style
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https://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler.html

running tasks 
are shaded



Disadvantages with Blocking Style

• Worker thread that encounters wait_for_all() in parent task is 
doing no work

• The local variables of a blocked parent task live on the stack
• Task is not destroyed until all its child are done, problematic for large 

workloads
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Continuation Passing Style

• Concept used in functional programming

• Parent task creates child tasks and specifies a continuation task to be 
executed when the children complete 
• Continuation inherits the parent's ancestor 

• The parent task then exits; it does not block on its children 

• The children subsequently run 

• After the children (or their continuations) finish, the continuation task 
starts running
• Any idle thread can run the continuation task
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Continuation Passing Style
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https://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler.html



FibTask with Continuation Passing Style 

struct FibC: public task {

long* const sum;

long x, y;

F

FibC(long* sum_) {

sum = sum_;

}

task* execute() {

*sum = x+y;

return NULL;

}

}

struct FibTask: public task { 

task* execute() { 

if (n < cutOff) { …     

} else {

FibC& c = *new(allocate_continuation) 
FibC(sum);

FibTask& a = *new(c.allocate_child()) 
FibTask(n-1,&c.x);

FibTask& b = *new(c.allocate_child()) 
FibTask(n-2,&c.y);

c.set_ref_count(2);

spawn(b); // Return immediately

spawn(a);

}

return NULL;

}};
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Scheduler Bypass

struct FibTask: public task { 

task* execute() { 

if (n < cutOff) { …     

} else {

FibC& c = *new(allocate_continuation) 
FibC(sum);

FibTask& a = *new(c.allocate_child()) 
FibTask(n-1,&c.x);

FibTask& b = *new(c.allocate_child()) 
FibTask(n-2,&c.y);

c.set_ref_count(2);

spawn(b); // Return immediately

spawn(a);

}

return NULL;

}};

struct FibTask: public task { 

task* execute() { 

if (n < cutOff) { …     

} else {

FibC& c = *new(allocate_continuation) 
FibC(sum);

FibTask& a = *new(c.allocate_child()) 
FibTask(n-1,&c.x);

FibTask& b = *new(c.allocate_child()) 
FibTask(n-2,&c.y);

c.set_ref_count(2);

spawn(b); // Return immediately

return &a;

}

}};
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Did Tasks Help?
class FibTask: public task {

public:

const long n;

long* const sum;

FibTask(long n_, long* sum_) :

n(n_), sum(sum_) {}

task* execute() { 

if (n<CutOff) {

*sum = SerialFib(n);

}

else {

long x, y;

FibTask& a = *new( 
allocate_child()) FibTask(n-1,&x);

FibTask& b = *new( 
allocate_child()) FibTask(n-2,&y);

// two children plus one for the 
wait

set_ref_count(3);

spawn(b);

spawn_and_wait_for_all(a);

*sum = x+y;

}

return NULL;

}};
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Concurrent Containers
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Concurrent Containers

• TBB Library provides highly concurrent containers 
• STL containers are not concurrency-friendly: attempt to modify them 

concurrently can corrupt container

• Standard practice is to wrap a lock around STL containers
• Turns container into serial bottleneck 

• Library provides fine-grained locking or lockless implementations
• Can be used with the library, OpenMP, or native threads

• Worse single-thread performance, but better scalability
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Concurrent TBB Containers

• TBB containers offer a high level of concurrency
• Fine-grained locking

• Multiple threads operate by locking only portions they really need to lock 

• As long as different threads access different portions, they can proceed concurrently

• Lock-free techniques
• Different threads account and correct for the effects of other interfering threads
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Concurrency-Friendly Interfaces

• Some STL interfaces are inherently not concurrency-friendly

• For example, suppose two threads each execute the following

• Solution: concurrent_queue has try_pop()

extern std::queue q;

if(!q.empty()) {

item=q.front(); 

q.pop();

}

At this instant, another thread 
might pop last element.
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Serial vs Concurrent Queue

std::queue

extern std::queue<T> serialQ;

T item;

if (!serialQ.empty()) {

item = serialQ.front();

serialQ.pop_front();

// process item

}

tbb::concurrent_queue

extern concurrent_queue<T> myQ;

T item;

if (myQ.try_pop(item)) {

// process item

}
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Concurrent Queue Container

• concurrent_queue<T>
• FIFO data structure that permits multiple threads to concurrently push and 

pop items

• Method push(const T&) places copy of item on back of queue. The method 
waits until it can succeed without exceeding the queue's capacity.

• try_push(item) pushes item only if it would not exceed the queue's 
capacity

• pop(item) waits until it can succeed

• Method try_pop(T&) pops value if available, otherwise it does nothing

• If a thread pushes values A and B in order, another thread will see values A 
and B in order
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Concurrent Queue Container

• concurrent_queue<T>
• Method size() returns signed integer

• Number of push operations started minus the number of pop operations started

• If size() returns –n, it means n pops await corresponding pushes on an empty queue

• Method empty() returns size() == 0
• May return true if queue is empty, but there are pending pop()
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Concurrent Queue Container Example

#include “tbb/concurrent_queue.h”

using namespace tbb;

int main () {

concurrent_queue<int> queue;

int j;

for (int i = 0; i < 10; i++)

queue.push(i);

while (!queue.empty()) {

queue.pop(&j);

printf(“from queue: %d\n”, j);

}

return 0;

}

• Simple example to enqueue and print 
integers

CS 610 Swarnendu Biswas



ABA Problem

• A thread checks a location to be 
sure the value is A and proceeds 
with an update only if the value 
was A

• Thread T1 reads value A from 
shared memory location

• Other threads update A to B, 
and then back to A

• T1 performs compare_and_swap()
and succeeds
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Example of ABA Problem
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tailhead

ba c

• Thread 1 will execute deq(a)

d



Example of ABA Problem
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tailhead

ba c

• Thread 1 is executing deq(a), gets delayed

d



Example of ABA Problem
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tailhead

ba c

• Other threads execute deq(a, b, c, d), then 
execute enq(a)

d



Example of ABA Problem
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tailhead

a b

• Other threads execute deq(a, b, c, d), then 
execute enq(a)



Example of ABA Problem
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• Thread 1 is executes CAS for deq(a), CAS 
succeeds

tailhead

a b

head.compareAndSet(first, next)



Concurrent Vector Container

• concurrent_vector<T>
• Dynamically growable array of T

• Method grow_by(size_type delta) appends delta elements to end of vector

• Method grow_to_at_least(size_type n) adds elements until vector has at least n
elements

• Method push_back(x) safely appends x to the array

• Method size() returns the number of elements in the vector

• Method empty() returns size() == 0

• Never moves elements until cleared
• Can concurrently access and grow

• Method clear() is not thread-safe with respect to access/resizing
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Concurrent Vector Container Example

• Append a string to the array of characters held in 
concurrent_vector
• Grow the vector to accommodate new string

• grow_by() returns old size of vector (first index of new element)

• Copy string into vector

void Append(concurrent_vector<char>& V, const char* string) {

size_type n = strlen(string)+1;

memcpy(&V[V.grow_by(n)], string, n+1);

}
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Concurrent HashMap Container

• concurrent_hash_map<Key,T,HashCompare>
• Maps Key to element of type T

• Define class HashCompare with two methods
• hash() maps Key to hashcode of type size_t

• equal() returns true if two Keys are equal

• Enables concurrent find(), insert(), and erase() operations
• An accessor grants read-write access

• A const_accessor grants read-only access

• Lock released when smart pointer is destroyed, or with explicit release()
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Concurrent HashMap Container Example

// Structure that defines hashing and comparison operations for user's type

struct MyHashCompare {

static size_t hash( const string& x ) {

size_t h = 0;

for (const char* s = x.c_str(); *s; ++s )

h = (h*17)^*s;

return h;

}

static bool equal( const string& x, const string& y ) {

return x==y;

}

};
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Concurrent HashMap Container Example
// A concurrent hash table that maps strings to ints

typedef concurrent_hash_map<string,int,MyHashCompare> StringTable;

// Function object for counting occurrences of strings

struct Tally {

StringTable& table;

Tally(StringTable& table_) : table(table_) {}

void operator()( const blocked_range<string*> range ) const {

for (string* p=range.begin(); p!=range.end(); ++p) {

StringTable::accessor a;

table.insert(a, *p);

a->second += 1;

}

}

};
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Concurrent HashMap Container Example
const size_t N = 1000000;

string Data[N];

void CountOccurrences() {

StringTable table;

parallel_for(blocked_range<string*>(Data, Data+N, 1000), Tally(table));

for (StringTable::iterator i=table.begin(); i!=table.end(); ++i)

printf("%s %d\n",i->first.c_str(),i->second);

}
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Scalable Memory Allocation
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Scalable Memory Allocators

• Serial memory allocation can easily become a bottleneck in 
multithreaded applications
• Threads require mutual exclusion into shared global heap

• In the old days, a single-process lock was used for malloc() and free() in 
libc

• Many malloc() alternatives are now available (jemalloc(), tcmalloc())

• New C++ standards are trying to deal with this

• Smart pointers, std::aligned_alloc (C++17)

• False sharing - threads accessing the same cache line
• Even accessing distinct locations, cache line can ping-pong
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Scalable Memory Allocators

• TBB offers two choices for scalable memory allocation
• Similar to the STL template class std::allocator
• scalable_allocator

• Offers scalability, but not protection from false sharing

• Memory is returned to each thread from a separate pool

• cache_aligned_allocator
• Two objects allocated by this allocator are guaranteed to not have false sharing

• Always allocates on a cache line, increases space usage

std::vector<int, cache_aligned_allocator<int>> 
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Methods for scalable_allocator 

• #include <tbb/scalable_allocator.h>

• Scalable versions of malloc, free, realloc, calloc
• void *scalable_malloc(size_t size);
• void scalable_free(void *ptr);
• void *scalable_realloc(void *ptr, size_t size);
• void *scalable_calloc(size_t nobj, size_t size);
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Synchronization Primitives
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Synchronization Primitives

• Mutual exclusion is implemented with mutex objects and locks
• Mutex is the object on which a thread can acquire a lock

• Several mutex variants are available

• Critical regions of code are protected by scoped locks
• The range of the lock is determined by its lifetime (scope)

• Does not require the programmer to remember to release the lock

• Leaving lock scope calls the destructor, making it exception safe
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Mutex Example

spin_mutex mtx; // Construct unlocked mutex

{

// Create scoped lock and acquire lock on mtx

spin_mutex::scoped_lock lk(mtx); 

// Critical section

} // Lock goes out of scope, destructor releases the lock

spin_mutex::scoped_lock lk;

lk.acquire(mtx);

// Critical section

lk.release();
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Atomic Execution

• atomic<T>
• T should be integral type or pointer type

• Full type-safe support for 8, 16, 32, and 64-bit integers

atomic<int> i;
. . .
int z = i.fetch_and_add(2);
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Operations Semantics

“= x” and “x = “ read/write value of x

x.fetch_and_store(y) z = x, x = y, return z

x.fetch_and_add(y) z = x, x += y, return z

x.compare_and_swap(y, z) w = x, if (x == z) { x = y, return w; }



Summary

• Intel Threading Building Blocks is a data parallel programming model 
for C++ applications
• Used for computationally intense code

• Uses generic programming

• Intel Threading Building Blocks provides
• Generic parallel algorithms

• Highly concurrent containers

• Low-level synchronization primitives

• A task scheduler that can be used directly

• Learn when to use or mix Intel TBB, OpenMP or explicit threading
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