
CS 610: Intel Threading
Building Blocks

Swarnendu Biswas

Semester 2020-2021-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Copyright Information

• “The instructor of this course owns the copyright of all the course
materials. This lecture material was distributed only to the students
attending the course CS 610: Programming for Performance of IIT
Kanpur, and should not be distributed in print or through electronic
media without the consent of the instructor. Students can make their
own copies of the course materials for their use.”

CS 610 Swarnendu Biswas

https://www.iitk.ac.in/doaa/data/FAQ-2020-21-I.pdf

Parallel Programming Overview

CS 610 Swarnendu Biswas

Create parallel units of execution
• Manage efficient execution of the parallel units

Find parallelization opportunities in the problem
• Decompose the problem into parallel units

Problem may require inter-unit communication
• Communication between threads, cores, …

How to “Think Parallel”?

• Decomposition
• Decompose the problem into

concurrent logical tasks

• Scaling
• Identify concurrent tasks to keep

processors busy

• Choose and utilize appropriate
algorithms

• Threads
• Map tasks to threads

• Correctness
• Ensure correct synchronization to

shared resources

• How much parallelism is there in
an application?
• Depends on the size of the problem
• Depends on whether the algorithm is

easily parallelizable

CS 610 Swarnendu Biswas

How to Decompose?

Data parallelism Task parallelism

CS 610 Swarnendu Biswas

Data Parallelism vs Task Parallelism

Data Parallelism

• Same operations performed on
different subsets of same data

• Synchronous computation

• Expected speedup is more as there is
only one execution thread operating
on all sets of data

• Amount of parallelization is
proportional to the input data size

• Designed for optimum load balance

Task parallelism

• Different operations are performed on
the same or different data

• Asynchronous computation

• Expected speedup is less as each
processor will execute a different
thread or process

• Amount of parallelization is
proportional to the number of
independent tasks

• Load balancing depends on the
availability of the hardware and
scheduling algorithms like static and
dynamic scheduling

CS 610 Swarnendu Biswas

Data Parallelism vs Task Parallelism

• Distinguishing just between data and task parallelism may not be
perfect
• Imagine TAs grading questions of varied difficulty

• Might need hybrid parallelism or pipelining or work stealing

CS 610 Swarnendu Biswas

Parallelism vs Concurrency

CS 610 Swarnendu Biswas

Parallelism vs Concurrency

Parallel programming

• Use additional resources to speed up computation

• Performance perspective

Concurrent programming

• Correct and efficient control of access to shared resources

• Correctness perspective

Distinction is not absolute

CS 610 Swarnendu Biswas

Approaches to Parallelism

• Multithreading – “assembly language of parallel programming”

• New inherently-parallel languages (e.g., Cilk Plus, X10, and Chapel)
• New concepts, difficult to get widespread acceptance

• Language extensions (e.g., OpenMP)
• Easy to extend, but requires compiler or preprocessor support

• Library (e.g., C++ STL and Intel TBB)
• Works with existing environments, usually no new compiler is needed

CS 610 Swarnendu Biswas

Challenges with a multithreaded
implementation
• Oversubscription or undersubscription, scheduling policy, load

imbalance, portability
• For example, mapping of logical to physical threads is crucial

• Mapping also depends on whether computation waits on external devices

• Non-trivial impact of time slicing with context switches, cache cooling
effects, and lock preemption
• Time slicing allows more logical threads than physical threads

CS 610 Swarnendu Biswas

Task-Based Programming

• Programming at the abstraction of tasks is an appealing alternative

• A task is a sequence of instructions (logical unit of work) that can be
processed concurrently with other tasks in the same program
• Interleaving of tasks is constrained by control and data dependences

• Tasks are lighter-weight compared to logical threads

CS 610 Swarnendu Biswas

Intel Threading Building Blocks

CS 610 Swarnendu Biswas

What is Intel TBB?

• A library to help leverage multicore performance using standard C++
• Does not require programmers to be an expert

• Writing a correct and scalable parallel loop is not straightforward

• Does not require support for new languages and compilers

• Does not directly support vectorization

• TBB was first available in 2006
• Current release is 2020 Update 3

• Open source and licensed versions available

CS 610 Swarnendu Biswas

What is Intel TBB?

• TBB works at the abstraction of tasks instead of low-level threads
• Specify tasks that can run concurrently instead of threads

• Specify work (i.e., tasks), instead of focusing on workers (i.e., threads)
• Raw threads are like assembly language of parallel programming

• Maps tasks onto physical threads, efficiently using cache and balancing load

• Full support for nested parallelism

CS 610 Swarnendu Biswas

Advantages with Intel TBB

• Promotes scalable data-parallel programming
• Data parallelism is more scalable than functional parallelism

• Functional blocks are usually limited while data parallelism scales with more
processors

• Not tailored for I/O-bound or real-time processing

• Compatible with other threading packages and is portable
• Can be used in concert with native threads and OpenMP

• Relies on generic programming (e.g., C++ STL)

CS 610 Swarnendu Biswas

Key Features of Intel TBB

Synchronization primitives
atomic operations, condition_variable
various flavors of mutexes

Generic Parallel algorithms
parallel_for, parallel_for_each,
parallel_reduce, parallel_scan,
parallel_do, pipeline,
parallel_pipeline, parallel_sort,
parallel_invoke

Concurrent containers
concurrent_hash_map
concurrent_unordered_map
concurrent_queue
concurrent_bounded_queue
concurrent_vectorTask scheduler

task_group, structured_task_group,
task, task_scheduler_init

Memory allocators
tbb_allocator, cache_aligned_allocator, scalable_allocator,
zero_allocator

Utilities
tick_count
tbb_thread

CS 610 Swarnendu Biswas

Task-Based Programming with Intel TBB

• Intel TBB parallel algorithms map tasks onto threads automatically
• Task scheduler manages the thread pool

• Oversubscription and undersubscription of core resources is
prevented by task-stealing technique of TBB scheduler

CS 610 Swarnendu Biswas

An Example: Parallel loop

#include <chrono>

#include <iostream>

#include <tbb/parallel_for.h>

#include <tbb/tbb.h>

using namespace std;

using namespace std::chrono;

using HRTimer = high_resolution_clock::time_point;

#define N (1 << 26)

void seq_incr(float* a) {

for (int i = 0; i < N; i++) {

a[i] += 10;

}

}

void parallel_incr(float* a) {

tbb::parallel_for(static_cast<size_t>(0),
static_cast<size_t>(N),

[&](size_t i) {

a[i] += 10;

});

}

CS 610 Swarnendu Biswas

An Example: Parallel loop

int main() {

float* a = new float[N];

for (int i = 0; i < N; i++) {

a[i] = static_cast<float>(i);

}

HRTimer start = high_resolution_clock:
:now();

seq_incr(a);

HRTimer end = high_resolution_clock::n
ow();

auto duration = duration_cast<microsec
onds>(end - start).count();

cout << "Sequential increment in " <<
duration << " us\n";

start = high_resolution_clock::now();

parallel_incr(a);

end = high_resolution_clock::now();

duration = duration_cast<microseconds>
(end - start).count();

cout << "Intel TBB Parallel increment
in " << duration << " us\n";

return EXIT_SUCCESS;

}

CS 610 Swarnendu Biswas

An Example: Parallel loop

int main() {

float* a = new float[N];

for (int i = 0; i < N; i++) {

a[i] = static_cast<float>(i);

}

HRTimer start = high_resolution_clock:
:now();

seq_incr(a);

HRTimer end = high_resolution_clock::n
ow();

auto duration = duration_cast<microsec
onds>(end - start).count();

cout << "Sequential increment in " <<
duration << " us\n";

start = high_resolution_clock::now();

parallel_incr(a);

end = high_resolution_clock::now();

duration = duration_cast<microseconds>
(end - start).count();

cout << "Intel TBB Parallel increment
in " << duration << " us\n";

return EXIT_SUCCESS;

}

CS 610 Swarnendu Biswas

Initializing the TBB Library

#include <tbb/task_scheduler_init.h>

using namespace tbb;

int main() {

task_scheduler_init init;

...

return 0;

}

• Control when the task
scheduler is constructed and
destroyed

• Specify the number of threads
used by the task scheduler

• Specify the stack size for
worker threads

CS 610 Swarnendu Biswas

Not required in recent versions,
>= TBB 2.2

Pthreads vs Intel TBB

Pthreads

• Low-level wrapper over OS
support for threads

Intel TBB

• Provides high-level constructs
and parallel patterns

CS 610 Swarnendu Biswas

OpenMP vs Intel TBB

OpenMP

• Language extension consisting of
pragmas, routines, and
environment variables

• Supports C, C++, and Fortran

• User can control scheduling
policies

• OpenMP limited to specified
types (for e.g., reduction)

Intel TBB

• Library for task-based
programming

• Supports C++ with generics

• Automated divide-and-conquer
approach to scheduling, with
work stealing

• Generic programming is flexible
with types

CS 610 Swarnendu Biswas

Generic Parallel Algorithms

CS 610 Swarnendu Biswas

Generic Programming

• Enables distribution of useful high-quality algorithms and data
structures

• Write best possible algorithm with fewest constraints (for e.g.,
std::sort)

• Instantiate algorithm to specific situation
• C++ template instantiation, partial specialization, and inlining make resulting

code efficient

CS 610 Swarnendu Biswas

Generic Programming Example

• The compiler creates the needed versions

template <typename T> T max (T x, T y) {
if (x < y) return y;
return x;

}

int main() {
int i = max(20,5);
double f = max(2.5, 5.2);
MyClass m = max(MyClass(“foo”), MyClass(“bar”));
return 0;

}

T must define a copy constructor and a
destructor

T must define operator <

CS 610 Swarnendu Biswas

Intel Threading Building Blocks Patterns

• High-level parallel and scalable patterns

CS 610 Swarnendu Biswas

parallel_for load-balanced parallel execution of independent loop
iterations

parallel_reduce load-balanced parallel execution of independent loop
iterations that perform reduction

parallel_scan template function that computes prefix scan in parallel
(y[i] = y[i-1] op x[i])

parallel_while load-balanced parallel execution of independent loop
iterations with unknown or dynamically changing bounds

pipeline data-flow pipeline pattern

parallel_sort parallel sort

parallel_for

void SerialApplyFoo(float a[], size_t n) {

for (size_t i=0; i<n; ++i)

foo(a[i]);

}

CS 610 Swarnendu Biswas

Class Definition for parallel_for

#include “tbb/blocked_range.h”

#include …

class ApplyFoo {

float *const m_a;

public:

void operator()(const blocked_range<size_t>& r) const {

float *a = m_a;

for (size_t i=r.begin(); i!=r.end(); ++i)

foo(a[i]);

}

ApplyFoo(float a[]) : m_a(a) {}

};

CS 610 Swarnendu Biswas

Task

B
o

d
y

o
b

je
ct

parallel_for

#include “tbb/parallel_for.h”

void ParallelApplyFoo(float a[], size_t n) {

parallel_for(blocked_range<size_t>(0,n,grainSize), ApplyFoo(a));

}

• parallel_for schedules tasks to operate in parallel on subranges of
the original iteration space using available threads
• Work is load balanced across the available processors

• Available cache is used efficiently (similar to tiling)

• Adding more processors improves performance of existing code

CS 610 Swarnendu Biswas

Requirements for parallel_for Body

• The object has to have a copy constructor and destructor if memory is
dynamically allocated
• Body::Body(const Body&)
• Body::~Body()

• operator() should not modify the body
• parallel_for requires that the body object’s operator() be declared as
const

• Apply the body to a subrange
• void Body::operator() (Range& subrange) const

CS 610 Swarnendu Biswas

Example 1
class ParallelAverage {

const float* m_input;

float* m_output;

public:

ParallelAverage(float* a, float* b) : m_input(a), m_output(b) {}

void operator()(const blocked_range<int>& range) const {

for (int i = range.begin(); i != range.end(); ++i)

m_output[i] = (m_input[i - 1] + m_input[i] + m_input[i + 1]) * (1 / 3.0f);

}

};

…

ParallelAverage avg(a, par_out);

parallel_for(blocked_range<int>(1, N - 1), avg);

CS 610 Swarnendu Biswas

Example 1’
parallel_for(static_cast<int>(1), static_cast<int>(N - 1),

[&](int i) {

lamda_out[i] = (a[i - 1] + a[i] + a[i + 1]) * (1 / 3.0f);

});

// Compile:

g++ -std=c++11 parallel_average.cpp -o parallel_average -ltbb

CS 610 Swarnendu Biswas

Example 1’
parallel_for(static_cast<int>(1), static_cast<int>(N - 1),

[&](int i) {

lamda_out[i] = (a[i - 1] + a[i] + a[i + 1]) * (1 / 3.0f);

});

Compile:

g++ -std=c++11 parallel_average.cpp -o parallel_average -ltbb

CS 610 Swarnendu Biswas

Splittable Concept

• A type is splittable if it has a splitting constructor that allows an
instance to be split into two pieces

• X::X(X& x, tbb::split)
• Split x into x and a newly constructed object

• Attempt to split x roughly into two non-empty halves

• Set x to be the first half, and the constructed object is the second half

• Dummy argument distinguishes from a copy constructor

• Used in two contexts
• Partition a range into two subranges that can be processed concurrently

• Fork a body (function object) into two bodies that can run concurrently

CS 610 Swarnendu Biswas

Range is Generic

• R::R(const R&)

• R::~R()

• bool R::is_divisible() const

• bool R::empty() const

• R::R(R& r, split)

• Copy constructor

• Destructor

• True if splitting constructor can be called,
false otherwise

• True if range is empty, false otherwise

• Splitting constructor. It splits range r into two
subranges. One of the subranges is the newly
constructed range. The other subrange is
overwritten onto r.

CS 610 Swarnendu Biswas

More about Ranges

• tbb::blocked_range<int>(0,8) represents the index range
{0,1,2,3,4,5,6,7}

// Construct half-open interval [0,30) with grainsize of 20

blocked_range<int> r(0,30,20);

assert(r.is_divisible());

// Call splitting constructor

blocked_range<int> s(r);

// Now r=[0,15) and s=[15,30) and both have a grainsize 20, inherited from
the original value of r

assert(!r.is_divisible());

assert(!s.is_divisible());

CS 610 Swarnendu Biswas

More about Ranges

• A two-dimensional variant is tbb::blocked_range2d

• Permits using a single parallel_for to iterate over two dimensions
at once

• Can yield better cache behavior than nesting two one-dimensional
instances of parallel_for

CS 610 Swarnendu Biswas

Splitting over 2D Range

CS 610 Swarnendu Biswas

Split range...

.. recursively...

...until grainsize.
tasks available to be scheduled to
other threads (thieves)

Grain Size

• Specifies the number of iterations for a chunk to give to a processor

• Impacts parallel scheduling overhead

CS 610 Swarnendu Biswas

Set the Right Grain Size

• Set the grainsize parameter
higher than necessary

• Run your algorithm on one
processor core

• Start halving the grainsize
parameter

• See how much the algorithm
slows down as the value
decreases

CS 610 Swarnendu Biswas

Partitioner

• Range form of parallel_for takes an optional partitioner argument

parallel_for(range,bodyobject,simple_partitioner());

• auto_partitioner: Runtime will try to subdivide the range to balance load, this
is the default

• simple_partitioner: Runtime will subdivide the range into subranges as finely
as possible; method is_divisible will be false for the final subranges

• affinity_partitioner: Request that the assignment of subranges to underlying
threads be similar to a previous invocation of parallel_for or
parallel_reduce with the same affinity_partitioner object

CS 610 Swarnendu Biswas

Affinity Partitioner

• When can the affinity partitioner be useful?
• The computation does a few operations per data access
• The data acted upon by the loop fits in cache
• The loop, or a similar loop, is re-executed over the same data

void ParallelApplyFoo(float a[], size_t n) {
static affinity_partitioner ap; // Lives across loop iterations
parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a), ap);

}
void TimeStepFoo(float a[], size_t n, int steps) {

for (int t=0; t<steps; ++t)
ParallelApplyFoo(a, n);

}

CS 610 Swarnendu Biswas

Partitioners

Partitioner Description Iteration Space

simple_partitioner Chunk size bounded by grain size ൗ
𝑔
2 ≤ 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒 ≤ 𝑔

auto_partitioner (default) Automatic chunk size ൗ
𝑔
2 ≤ 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒

affinity_partitioner Automatic chunk size and cache affinity

CS 610 Swarnendu Biswas

parallel_reduce

• #include <tbb/parallel_reduce.h>

• Apply func to subranges in range and reduce the results using the binary
operator reduction

• Parameters func and reduction can be lambda expressions

• void parallel_reduce(range, body, [, partitioner…]

CS 610 Swarnendu Biswas

Value tbb::parallel_reduce(range, identity, func,
reduction [, partitioner…])

Serial Reduction

float SerialSumFoo(float a[], size_t n) {

float sum = 0;

for (size_t i=0; i!=n; ++i)

sum += Foo(a[i]);

return sum;

}

CS 610 Swarnendu Biswas

Parallel Reduction

float ParallelSumFoo(const float *a, size_t n) {

SumFoo sf(a);

parallel_reduce(blocked_range<size_t>(0,n), sf);

return sf.my_sum;

}

CS 610 Swarnendu Biswas

Assume iterations are independent

Parallel Reduction

class SumFoo {

float* my_a;

public:

float my_sum;

void operator()(const

blocked_range<size_t>& r) {

float *a = my_a;

float sum = my_sum;

for (size_t i=r.begin(); i!=r.end(); ++i)

sum += Foo(a[i]);

my_sum = sum;

}

SumFoo(SumFoo& x, split) : my_a(x.my_a),

my_sum(0.0f)

{}

void join(const SumFoo& y) {

my_sum += y.my_sum;

}

SumFoo(float a[]) : my_a(a),

my_sum(0.0f)

{}

};

CS 610 Swarnendu Biswas

Differences between Parallel For and Reduce

parallel_for

• operator() is constant

• Requires only a copy ctor

parallel_reduce

• operator() is not constant

• Requires a splitting ctor for
creating subtasks

• Requires a join() function to
accumulate the results of the
subtasks

CS 610 Swarnendu Biswas

Graph of the Split-Join Sequence

CS 610 Swarnendu Biswas

One Possible Execution of parallel_reduce

CS 610 Swarnendu Biswas

blocked_range<int>(0, 20, 5);

𝑏0[0,20)

𝑏0[0,10)

𝑏0[0,5) 𝑏1[5,10)

𝑏2[10,20)

𝑏2[10,15) 𝑏3[15,20)

Another Possible Execution of
parallel_reduce

CS 610 Swarnendu Biswas

blocked_range<int>(0, 20, 5);

𝑏0[0,20)

𝑏0[0,10)

𝑏0[0,5) 𝑏1[5,10)

𝑏2[10,20)

𝑏2[10,15) 𝑏2[15,20)

Graph of the Split-Join Sequence

CS 610 Swarnendu Biswas

Incorrect Definition of Parallel Reduction

class SumFoo {

float* my_a;

public:

float my_sum;

void operator()(const
blocked_range<size_t>& r) {

float *a = my_a;

float sum = 0; // WRONG

size_t end = r.end();

for (size_t i=r.begin(); i!=end; ++i)

sum += Foo(a[i]);

my_sum = sum;

}

SumFoo(SumFoo& x, split) : my_a(x.my_a),

my_sum(0) {}

void join(const SumFoo& y) {

my_sum+=y.my_sum;

}

SumFoo(float a[]) : my_a(a), my_sum(0) {}

};

CS 610 Swarnendu Biswas

Tasks and Task Scheduler

CS 610 Swarnendu Biswas

TBB Task Scheduler

• Parallel algorithms make use of the task scheduler
• TBB parallel algorithms map tasks onto threads automatically

• Task scheduler manages the thread pool
• Scheduler is unfair to favor tasks that have been most recent in the cache

CS 610 Swarnendu Biswas

Problem TBB Approach

Oversubscription One scheduler thread per hardware thread

Fair scheduling Non-preemptive unfair scheduling

High overhead Programmer specifies tasks, not threads

Load imbalance Work stealing balances load

Task-Based Programming

Serial Code

long SerialFib(long n) {

if (n < 2)

return n;

else

return SerialFib(n-1) +
SerialFib(n-2);

}

CS 610 Swarnendu Biswas

Task Graph for Fibonacci Calculation

CS 610 Swarnendu Biswas

SerialFib(4)

SerialFib(3) SerialFib(2)

SerialFib(1)

SerialFib(2)

SerialFib(1) SerialFib(0)

SerialFib(2)

SerialFib(1) SerialFib(0)

SerialFib(3)

SerialFib(2) SerialFib(1)

SerialFib(1)

SerialFib(0)SerialFib(1)

SerialFib(0)

Task-Based Fibonacci

Serial Code

long SerialFib(long n) {

if (n < 2)

return n;

else

return SerialFib(n-1) +
SerialFib(n-2);

}

TBB Code

long ParallelFib(long n) {

long sum;

FibTask& a =
*new(task::allocate_root())
FibTask(n,&sum);

task::spawn_root_and_wait(a);

return sum;

}

CS 610 Swarnendu Biswas

Description of FibTask Class
class FibTask: public task {

public:

const long n;

long* const sum;

FibTask(long n_, long* sum_) :

n(n_), sum(sum_) {}

task* execute() {

if (n<CutOff) {

*sum = SerialFib(n);

}

else {

long x, y;

FibTask& a = *new(allocate_child())
FibTask(n-1,&x);

FibTask& b = *new(allocate_child())
FibTask(n-2,&y);

// 2 children + 1 for the wait

set_ref_count(3);

spawn(b); // Return immediately

spawn_and_wait_for_all(a);

*sum = x+y;

}

return NULL;

}};

CS 610 Swarnendu Biswas

Task Scheduler

CS 610 Swarnendu Biswas

• Engine that drives the parallel algorithms and task groups

• Each task has a method execute()
• Definition should do the work of the task

• Return either NULL or a pointer to the next task to run

• Once a thread starts running execute(), the task is bound to that
thread until execute() returns
• During that period, the thread serves other tasks only when it has to wait for

some event

How Task Scheduling Works

• Scheduler evaluates a
task graph

• Each task has a refcount
• Number of tasks that

have it as a successor

CS 610 Swarnendu Biswas

of children
in flight+ 1

running, but
no children yet

spawned, but not
yet started executing

Task Scheduling

• Depth-first execution
• Deeper tasks are more recently created, and will probably have better locality

• Sequential execution of the task graph is more memory efficient

• Breadth-first execution
• Can have more parallelism if more physical threads are available

• TBB scheduler implements a hybrid of depth-first and breadth-first
execution

CS 610 Swarnendu Biswas

Scheduling Algorithm

• Each thread has a “ready pool” of
tasks it can run
• The pool is basically a deque of task

objects

• When a thread spawns a task, it
pushes it to the end of its own
deque

• A thread participates in task graph
evaluation
• Get the task returned by execute()

for the previous task if any
• Pops a task from the bottom of its

deque
• Steals a task from the top of another

randomly deque

CS 610 Swarnendu Biswas

Scheduling Algorithm

• There is a shared queue of tasks
that were created

• Each thread has a “ready pool” of
tasks it can run
• The pool is basically a deque of task

objects

• When a thread spawns a task, it
pushes it to the end of its own
deque

• Thread participates in task graph
evaluation
• Pops a task from the bottom of its

deque
• Steals a task from the top of another

randomly deque

CS 610 Swarnendu Biswas

Work done is depth-first and stealing is breadth-first

Parallelism in TBB

• Parallelism is generated by split/join pattern
• Continuation-passing style and blocking style

CS 610 Swarnendu Biswas

Blocking Style

CS 610 Swarnendu Biswas

https://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler.html

running tasks
are shaded

Disadvantages with Blocking Style

• Worker thread that encounters wait_for_all() in parent task is
doing no work

• The local variables of a blocked parent task live on the stack
• Task is not destroyed until all its child are done, problematic for large

workloads

CS 610 Swarnendu Biswas

Continuation Passing Style

• Concept used in functional programming

• Parent task creates child tasks and specifies a continuation task to be
executed when the children complete
• Continuation inherits the parent's ancestor

• The parent task then exits; it does not block on its children

• The children subsequently run

• After the children (or their continuations) finish, the continuation task
starts running
• Any idle thread can run the continuation task

CS 610 Swarnendu Biswas

Continuation Passing Style

CS 610 Swarnendu Biswas

https://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler.html

FibTask with Continuation Passing Style

struct FibC: public task {

long* const sum;

long x, y;

F

FibC(long* sum_) {

sum = sum_;

}

task* execute() {

*sum = x+y;

return NULL;

}

}

struct FibTask: public task {

task* execute() {

if (n < cutOff) { …

} else {

FibC& c = *new(allocate_continuation)
FibC(sum);

FibTask& a = *new(c.allocate_child())
FibTask(n-1,&c.x);

FibTask& b = *new(c.allocate_child())
FibTask(n-2,&c.y);

c.set_ref_count(2);

spawn(b); // Return immediately

spawn(a);

}

return NULL;

}};

CS 610 Swarnendu Biswas

Scheduler Bypass

struct FibTask: public task {

task* execute() {

if (n < cutOff) { …

} else {

FibC& c = *new(allocate_continuation)
FibC(sum);

FibTask& a = *new(c.allocate_child())
FibTask(n-1,&c.x);

FibTask& b = *new(c.allocate_child())
FibTask(n-2,&c.y);

c.set_ref_count(2);

spawn(b); // Return immediately

spawn(a);

}

return NULL;

}};

struct FibTask: public task {

task* execute() {

if (n < cutOff) { …

} else {

FibC& c = *new(allocate_continuation)
FibC(sum);

FibTask& a = *new(c.allocate_child())
FibTask(n-1,&c.x);

FibTask& b = *new(c.allocate_child())
FibTask(n-2,&c.y);

c.set_ref_count(2);

spawn(b); // Return immediately

return &a;

}

}};

CS 610 Swarnendu Biswas

Did Tasks Help?
class FibTask: public task {

public:

const long n;

long* const sum;

FibTask(long n_, long* sum_) :

n(n_), sum(sum_) {}

task* execute() {

if (n<CutOff) {

*sum = SerialFib(n);

}

else {

long x, y;

FibTask& a = *new(
allocate_child()) FibTask(n-1,&x);

FibTask& b = *new(
allocate_child()) FibTask(n-2,&y);

// two children plus one for the
wait

set_ref_count(3);

spawn(b);

spawn_and_wait_for_all(a);

*sum = x+y;

}

return NULL;

}};

CS 610 Swarnendu Biswas

Concurrent Containers

CS 610 Swarnendu Biswas

Concurrent Containers

• TBB Library provides highly concurrent containers
• STL containers are not concurrency-friendly: attempt to modify them

concurrently can corrupt container

• Standard practice is to wrap a lock around STL containers
• Turns container into serial bottleneck

• Library provides fine-grained locking or lockless implementations
• Can be used with the library, OpenMP, or native threads

• Worse single-thread performance, but better scalability

CS 610 Swarnendu Biswas

Concurrent TBB Containers

• TBB containers offer a high level of concurrency
• Fine-grained locking

• Multiple threads operate by locking only portions they really need to lock

• As long as different threads access different portions, they can proceed concurrently

• Lock-free techniques
• Different threads account and correct for the effects of other interfering threads

CS 610 Swarnendu Biswas

Concurrency-Friendly Interfaces

• Some STL interfaces are inherently not concurrency-friendly

• For example, suppose two threads each execute the following

• Solution: concurrent_queue has try_pop()

extern std::queue q;

if(!q.empty()) {

item=q.front();

q.pop();

}

At this instant, another thread
might pop last element.

CS 610 Swarnendu Biswas

Serial vs Concurrent Queue

std::queue

extern std::queue<T> serialQ;

T item;

if (!serialQ.empty()) {

item = serialQ.front();

serialQ.pop_front();

// process item

}

tbb::concurrent_queue

extern concurrent_queue<T> myQ;

T item;

if (myQ.try_pop(item)) {

// process item

}

CS 610 Swarnendu Biswas

Concurrent Queue Container

• concurrent_queue<T>
• FIFO data structure that permits multiple threads to concurrently push and

pop items

• Method push(const T&) places copy of item on back of queue. The method
waits until it can succeed without exceeding the queue's capacity.

• try_push(item) pushes item only if it would not exceed the queue's
capacity

• pop(item) waits until it can succeed

• Method try_pop(T&) pops value if available, otherwise it does nothing

• If a thread pushes values A and B in order, another thread will see values A
and B in order

CS 610 Swarnendu Biswas

Concurrent Queue Container

• concurrent_queue<T>
• Method size() returns signed integer

• Number of push operations started minus the number of pop operations started

• If size() returns –n, it means n pops await corresponding pushes on an empty queue

• Method empty() returns size() == 0
• May return true if queue is empty, but there are pending pop()

CS 610 Swarnendu Biswas

Concurrent Queue Container Example

#include “tbb/concurrent_queue.h”

using namespace tbb;

int main () {

concurrent_queue<int> queue;

int j;

for (int i = 0; i < 10; i++)

queue.push(i);

while (!queue.empty()) {

queue.pop(&j);

printf(“from queue: %d\n”, j);

}

return 0;

}

• Simple example to enqueue and print
integers

CS 610 Swarnendu Biswas

ABA Problem

• A thread checks a location to be
sure the value is A and proceeds
with an update only if the value
was A

• Thread T1 reads value A from
shared memory location

• Other threads update A to B,
and then back to A

• T1 performs compare_and_swap()
and succeeds

CS 610 Swarnendu Biswas

Example of ABA Problem

CS 610 Swarnendu Biswas

tailhead

ba c

• Thread 1 will execute deq(a)

d

Example of ABA Problem

CS 610 Swarnendu Biswas

tailhead

ba c

• Thread 1 is executing deq(a), gets delayed

d

Example of ABA Problem

CS 610 Swarnendu Biswas

tailhead

ba c

• Other threads execute deq(a, b, c, d), then
execute enq(a)

d

Example of ABA Problem

CS 610 Swarnendu Biswas

tailhead

a b

• Other threads execute deq(a, b, c, d), then
execute enq(a)

Example of ABA Problem

CS 610 Swarnendu Biswas

• Thread 1 is executes CAS for deq(a), CAS
succeeds

tailhead

a b

head.compareAndSet(first, next)

Concurrent Vector Container

• concurrent_vector<T>
• Dynamically growable array of T

• Method grow_by(size_type delta) appends delta elements to end of vector

• Method grow_to_at_least(size_type n) adds elements until vector has at least n
elements

• Method push_back(x) safely appends x to the array

• Method size() returns the number of elements in the vector

• Method empty() returns size() == 0

• Never moves elements until cleared
• Can concurrently access and grow

• Method clear() is not thread-safe with respect to access/resizing

CS 610 Swarnendu Biswas

Concurrent Vector Container Example

• Append a string to the array of characters held in
concurrent_vector
• Grow the vector to accommodate new string

• grow_by() returns old size of vector (first index of new element)

• Copy string into vector

void Append(concurrent_vector<char>& V, const char* string) {

size_type n = strlen(string)+1;

memcpy(&V[V.grow_by(n)], string, n+1);

}

CS 610 Swarnendu Biswas

Concurrent HashMap Container

• concurrent_hash_map<Key,T,HashCompare>
• Maps Key to element of type T

• Define class HashCompare with two methods
• hash() maps Key to hashcode of type size_t

• equal() returns true if two Keys are equal

• Enables concurrent find(), insert(), and erase() operations
• An accessor grants read-write access

• A const_accessor grants read-only access

• Lock released when smart pointer is destroyed, or with explicit release()

CS 610 Swarnendu Biswas

Concurrent HashMap Container Example

// Structure that defines hashing and comparison operations for user's type

struct MyHashCompare {

static size_t hash(const string& x) {

size_t h = 0;

for (const char* s = x.c_str(); *s; ++s)

h = (h*17)^*s;

return h;

}

static bool equal(const string& x, const string& y) {

return x==y;

}

};

CS 610 Swarnendu Biswas

Concurrent HashMap Container Example
// A concurrent hash table that maps strings to ints

typedef concurrent_hash_map<string,int,MyHashCompare> StringTable;

// Function object for counting occurrences of strings

struct Tally {

StringTable& table;

Tally(StringTable& table_) : table(table_) {}

void operator()(const blocked_range<string*> range) const {

for (string* p=range.begin(); p!=range.end(); ++p) {

StringTable::accessor a;

table.insert(a, *p);

a->second += 1;

}

}

};

CS 610 Swarnendu Biswas

Concurrent HashMap Container Example
const size_t N = 1000000;

string Data[N];

void CountOccurrences() {

StringTable table;

parallel_for(blocked_range<string*>(Data, Data+N, 1000), Tally(table));

for (StringTable::iterator i=table.begin(); i!=table.end(); ++i)

printf("%s %d\n",i->first.c_str(),i->second);

}

CS 610 Swarnendu Biswas

Scalable Memory Allocation

CS 610 Swarnendu Biswas

Scalable Memory Allocators

• Serial memory allocation can easily become a bottleneck in
multithreaded applications
• Threads require mutual exclusion into shared global heap

• In the old days, a single-process lock was used for malloc() and free() in
libc

• Many malloc() alternatives are now available (jemalloc(), tcmalloc())

• New C++ standards are trying to deal with this

• Smart pointers, std::aligned_alloc (C++17)

• False sharing - threads accessing the same cache line
• Even accessing distinct locations, cache line can ping-pong

CS 610 Swarnendu Biswas

Scalable Memory Allocators

• TBB offers two choices for scalable memory allocation
• Similar to the STL template class std::allocator
• scalable_allocator

• Offers scalability, but not protection from false sharing

• Memory is returned to each thread from a separate pool

• cache_aligned_allocator
• Two objects allocated by this allocator are guaranteed to not have false sharing

• Always allocates on a cache line, increases space usage

std::vector<int, cache_aligned_allocator<int>>

CS 610 Swarnendu Biswas

Methods for scalable_allocator

• #include <tbb/scalable_allocator.h>

• Scalable versions of malloc, free, realloc, calloc
• void *scalable_malloc(size_t size);
• void scalable_free(void *ptr);
• void *scalable_realloc(void *ptr, size_t size);
• void *scalable_calloc(size_t nobj, size_t size);

CS 610 Swarnendu Biswas

Synchronization Primitives

CS 610 Swarnendu Biswas

Synchronization Primitives

• Mutual exclusion is implemented with mutex objects and locks
• Mutex is the object on which a thread can acquire a lock

• Several mutex variants are available

• Critical regions of code are protected by scoped locks
• The range of the lock is determined by its lifetime (scope)

• Does not require the programmer to remember to release the lock

• Leaving lock scope calls the destructor, making it exception safe

CS 610 Swarnendu Biswas

Mutex Example

spin_mutex mtx; // Construct unlocked mutex

{

// Create scoped lock and acquire lock on mtx

spin_mutex::scoped_lock lk(mtx);

// Critical section

} // Lock goes out of scope, destructor releases the lock

spin_mutex::scoped_lock lk;

lk.acquire(mtx);

// Critical section

lk.release();

CS 610 Swarnendu Biswas

Atomic Execution

• atomic<T>
• T should be integral type or pointer type

• Full type-safe support for 8, 16, 32, and 64-bit integers

atomic<int> i;
. . .
int z = i.fetch_and_add(2);

CS 610 Swarnendu Biswas

Operations Semantics

“= x” and “x = “ read/write value of x

x.fetch_and_store(y) z = x, x = y, return z

x.fetch_and_add(y) z = x, x += y, return z

x.compare_and_swap(y, z) w = x, if (x == z) { x = y, return w; }

Summary

• Intel Threading Building Blocks is a data parallel programming model
for C++ applications
• Used for computationally intense code

• Uses generic programming

• Intel Threading Building Blocks provides
• Generic parallel algorithms

• Highly concurrent containers

• Low-level synchronization primitives

• A task scheduler that can be used directly

• Learn when to use or mix Intel TBB, OpenMP or explicit threading

CS 610 Swarnendu Biswas

References

• J. Reindeers. Intel Threading Building Blocks Outfitting C++ for Multi-Core Processor Parallelism.

• https://www.threadingbuildingblocks.org/docs/help/index.htm

• Intel. Threading for Performance with Intel Threading Building Blocks

• M. Voss. What’s New in Threading Building Blocks. OSCON 2008.

• Vivek Sarkar. Intel Thread Building Blocks. COMP 422, Rice University.

• M. McCool et al. Structured Parallel Programming: Patterns for Efficient Computation.

CS 610 Swarnendu Biswas

