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Rise of GPU Computing

• Popularity of graphical OS in late 
80s created a market for a new 
compute device
• 2D display accelerators offered 

hardware-assisted bitmap operations

• Silicon Graphics popularized use of 
3D graphics
• Released OpenGL as a programming 

interface to its hardware

• Popularity of first-person games in 
mid-90s was the final push  
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Rise of GPU Computing

• Pixel shaders were used to produce a color for a pixel on screen
• It uses the (x,y) coordinates, input colors, texture coordinates and other 

attributes as inputs

• NVIDIA’s GeForce 3 series in 2001 implemented the DirectX 8.0 
standard from Microsoft
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Need for GPU Computing Support

• Many real-world applications are 
compute-intensive and data-
parallel
• They need to process a lot of data, 

mostly floating-point operations

• For example, real-time high-
definition graphics applications 
such as your favorite video games

• Iterative kernels which update 
elements according to some fixed 
pattern called a stencil
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Rise of GPU Computing

• Researchers tricked GPUs to perform non-rendering computations

• Programming initial GPU devices for other purposes was very 
convoluted

• Programming model was very restrictive
• Limited input colors and texture units, writes to arbitrary locations, floating-

point computations

• This spurred the need for a highly-parallel computational device with 
high computational power and memory bandwidth
• CPUs are more complex devices catering to a wider audience
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Enter NVIDIA and CUDA

• NVIDIA released GeForce 8800 GTX in 2006 with CUDA architecture
• General-purpose ALU and instruction set for general-purpose computation

• IEEE compliance for single-precision floating-point arithmetic

• Allowed arbitrary reads and writes to shared memory

• Introduced CUDA C and the toolchain for ease of development with 
the CUDA architecture
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Rise of GPU Computing

• GPUs are now used in different applications
• Game effects, computational science simulations, image processing and 

machine learning, linear algebra

• Several GPU vendors like NVIDIA, AMD, Intel, QualComm, and ARM
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GPU Architecture
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Key Insights in GPU Architecture

• GPUs are suited for compute-intensive data-parallel applications
• The same program is executed for each data element

• Less complex control flow

• Multi-core chip
• SIMD execution within a single core (many ALUs performing the same 

instruction)

• Multi-threaded execution on a single core (multiple threads executed 
concurrently by a core)
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Key Insights in GPU Architecture

• Much more transistors or real-estate is devoted to computation 
rather than data caching and control flow
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Key Insights in GPU Architecture

• GPUs do not reduce latency, they aim to hide latency

• The focus is on overall computing throughput rather than on the 
speed of an individual core
• High arithmetic intensity to hide latency of memory accesses

• Large number of schedulable units
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Floating-Point Operations per Second for the 
CPU and GPU
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Memory Bandwidth for CPU and GPU
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Xeon 8180M Titan V
Cores 28 5120 (+ 640)
Active threads 2 per core 32 per core
Frequency 2.5 (3.8) GHz 1.2 (1.45) GHz
Peak performance (SP) 4.1 TFlop/s 13.8 TFlop/s
Peak mem. bandwidth 119 GB/s 653 GB/s
Maximum power 205 W 250 W
Launch price $13,000 $3000

Release dates
Xeon: Q3’17
Titan V: Q4’17

High-end CPU-GPU Comparison
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Compare GPU to CPU Architecture

• Aims to reduce memory latency with increasingly large and complex 
memory hierarchy

• Disadvantages
• The Intel I7-920 processor has some 8 MB of internal L3 cache, almost 30% of 

the size of the chip 

• Larger cache structures increases the physical size of the processor

• Implies more expensive manufacturing costs and increases likelihood of 
manufacturing defects

• Effect of larger, progressively more inefficient caches ultimately 
results in higher costs to the end user

CS 610 Swarnendu Biswas



Advantages of a GPU 

• Performance of Xeon 8180M and 
Titan V (based on peak values)
• 3.4x as many operations executed per 

second

• Main memory bandwidth
• 5.5x as many bytes transferred per 

second

• Cost- and energy-efficiency
• 15x as much performance per dollar

• 2.8x as much performance per watt

• GPU’s higher performance and 
energy efficiency are due to 
different allocation of chip area
• High degree of SIMD parallelism, 

simple in-order cores, less 
control/sync. logic, less 
cache/scratchpad capacity
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From FLOPS to FLOPS/Watt

• Exploiting hardware specialization can improve energy efficiency

• Moving to vector hardware, such as that found in GPUs, may yield up 
to 10X gain in efficiency by eliminating overheads of instruction 
processing

• For example, Apple A8 application processor devotes more die area 
to its integrated GPU than to central processor unit (CPU) cores

• Most energy-efficient supercomputers are now based on GPUs 
instead of only-CPUs
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GPU Disadvantages

• Clearly, we should be using GPUs all the time

• GPUs can only execute some types of code fast
• SIMD parallelism is not well suited for all algorithms

• Need lots of data parallelism, data reuse, & regularity

• GPUs are harder to program and tune than CPUs
• Mostly because of their architecture

• Fewer tools and libraries exist
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GPU Architecture
• GPUs consist of Streaming Multiprocessors (SMs)

• NVIDIA calls these streaming multiprocessors and AMD calls them compute 
units

• SMs contain Streaming Processors (SPs) or Processing Elements (PEs)
• Each core contains one or more ALUs and FPUs

• GPU can be thought of as a multi-multicore system
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A Generic Modern GPU Architecture
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Fermi Architecture
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Fermi Architecture
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Volta Architecture
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NVIDIA GPU Microarchitecture Release Year Remarks

Tesla 2006 Unified shader model

Fermi 2010 Improved double precision 
performance, support for FMA

Kepler 2012 Focused on energy efficiency, shuffle 
instructions, dynamic parallelism

Maxwell 2014 Focused on energy efficiency, larger 
L2 cache

Pascal 2016 Unified memory, half-precision 
floating-point

Volta 2017 Features tensor cores for deep 
learning workloads

Turing 2018 Features tensor cores for deep 
learning workloads and real-time ray 
tracing. Gaming version of Volta.

Ampere 2020
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CUDA-Enabled NVIDIA GPUs

Embedded Consumer 
desktop/laptop

Professional 
Workstation

Data Center

Turing (Compute 
capabilities 7.x)

DRIVE/JETSON AGX 
Xavier

GeForce 2000 Series Quadro RTX Series Tesla T Series

Volta (Compute 
capabilities 7.x)

DRIVE/JETSON AGX 
Xavier

Tesla V Series

Pascal (Compute 
capabilities 6.x)

Tegra X2 GeForce 1000 Series Quadro P Series Tesla P Series

Maxwell (Compute 
capabilities 5.x)

Tegra X1 GeForce 900 Series Quadro M Series Tesla M Series

Kepler (Compute 
capabilities 3.x)

Tegra K1 GeForce 600/700 
Series

Quadro K Series Tesla K Series
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Compute Capability

• When programming with CUDA, it is very important to be aware of 
the differences among different versions of hardware

• In CUDA, compute capability refers to architecture features
• For example, number of registers and cores, cache and memory size, 

supported arithmetic instructions

• For example, compute capability 1.x devices have 16KB local memory 
per thread, and 2.x and 3.x devices have 512KB local memory per 
thread

https://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications
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Role of CPUs 

• CPU is responsible for initiating computation on the GPU and 
transferring data to and from the GPU 

• Beginning and end of the computation typically require access to 
input/output (I/O) devices 

• There are ongoing efforts to develop APIs providing I/O services 
directly on the GPU
• GPUs are not standalone yet, assumes the existence of a CPU
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Discrete and Integrated GPUs

Discrete Integrated

CPU 
memory

GPU 
memory

CPU GPU

bus
Memory

CPU GPU

Cache

Memory

Cache
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CPUs vs GPUs

CPUs

• Designed for running a small number 
of potentially complex tasks
• Tasks may be unconnected
• Suitable to run system software like the 

OS and applications

• Small number of registers per core 
private to a task 
• Context switch between tasks is 

expensive in terms of time
• Register set must be saved to memory 

and the next one restored from memory 

GPUs

• Designed for running large 
number of simple tasks
• Suitable for data-parallelism

CS 610 Swarnendu Biswas



CPUs vs GPUs

CPUs

• Small number of registers per 
core private to a task 
• Context switch between tasks is 

expensive in terms of time

• Register set must be saved to RAM 
and the next one restored from 
RAM 

GPUs

• Have a single set of registers but 
with multiple banks 
• A context switch involves setting a 

bank selector to switch in and out 
the current set of registers 

• Orders of magnitude faster than 
having to save to RAM
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An Analytical Model-based Analysis

Simple cache model where threads 
do not share data and there is infinite 
off-chip memory bandwidth
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An Analytical Model-based Analysis

Simple cache model where threads 
do not share data and there is infinite 
off-chip memory bandwidth

Large cache shared 
among few threads

Working set no longer 
fits in the cache

Hides long off-chip 
latency
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CUDA Programming
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What is CUDA?

• It is general purpose parallel computing platform and programming 
model that leverages the parallel compute engine in NVIDIA GPUs
• Introduced in 2007 with NVIDIA Tesla architecture

• CUDA C, C++, Fortran, PyCUDA are language systems built on top of CUDA

• Three key abstractions in CUDA 
• Hierarchy of thread groups 

• Shared memories

• Barrier synchronization
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CUDA Philosophy

SIMT philosophy 

• Single Instruction Multiple Thread

Computationally intensive 

• The time spent on computation significantly exceeds the time spent on 
transferring data to and from GPU memory 

Massively parallel

• The computations can be broken down into hundreds or thousands of 
independent units of work 
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CUDA Programming Model

• Allows fine-grained data parallelism and thread parallelism nested 
within coarse-grained data parallelism and task parallelism

1. Partition the problem into coarse sub-problems that can be solved 
independently

2. Assign each sub-problem to a “block” of threads to be solved in 
parallel

3. Each sub-problem is also decomposed into finer work items that are 
solved in parallel by all threads within the “block”
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Heterogeneous Computing

Host

• CPU and its memory (host 
memory)

Device

• GPU and its memory (device 
memory)
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Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N          1024

#define RADIUS     3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

void fill_ints(int *x, int n) {

fill_n(x, n, 1);

}

int main(void) {

int *in, *out;              // host copies of a, b, c

int *d_in, *d_out;          // device copies of a, b, c

int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values

in  = (int *)malloc(size); fill_ints(in,  N + 2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies

cudaMalloc((void **)&d_in,  size);

cudaMalloc((void **)&d_out, size);

// Copy to device

cudaMemcpy(d_in,  in,  size, cudaMemcpyHostToDevice);

cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, 

d_out + RADIUS);

// Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);

return 0;

}

serial code

parallel code

serial code

parallel fn
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Heterogeneous Computing
#include <iostream>
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serial code

parallel code

serial code

parallel fn
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Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 1>>>();

}

$ nvcc hello-world.cu

$./a.out

$
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Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 1>>>();

cudaDeviceSynchronize();

}

$ nvcc hello-world.cu

$./a.out

Hello world!

$

Program returns immediately after launching the 
kernel. To prevent program to finish before kernel is 
completed, we call cudaDeviceSynchronize().
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Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 32>>>();

cudaThreadSynchronize();

}

$ nvcc hello-world.cu

$./a.out
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
…
…
$
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How NVCC works?

• Nvcc is a driver program based 
on LLVM
• Compiles and links all input files

• Requires a general-purpose C/C++ 
host compiler
• Uses gcc and g++ by default on Linux 

platforms

• nvcc --version

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
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NVCC Details

Important Options Description

-std 
{c++03|c++11|c++14}

Select a particular C++ 
dialect

-m {32|64} Specify the architecture

-arch ARCH Specify the class of the 
virtual GPU 
architecture

-code CODE Specify the name of the 
GPU to assemble and 
optimize for

Input File Type Description

.cu CUDA source file

.c, .cpp, 

.cxx, .cc
C/C++ source files

.ptx PTX intermediate assembly 

.cubin CUDA device binary code for a 
single GPU architecture

.fatbin CUDA fat binary file that may 
contain multiple PTX and CUBIN 
files

.a, .so, .lib …

NVIDIA. CUDA Compiler Driver NVCC. v11.1.
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NVCC Details

Important Options Description

-std 
{c++03|c++11|c++14}

Select a particular C++ 
dialect

-m {32|64} Specify the architecture

-arch ARCH Specify the class of the 
virtual GPU 
architecture

-code CODE Specify the name of the 
GPU to assemble and 
optimize for

Input File Type Description

.cu CUDA source file

.c, .cpp, 

.cxx, .cc
C/C++ source files

.ptx PTX intermediate assembly 

.cubin CUDA device binary code for a 
single GPU architecture

.fatbin CUDA fat binary file that may 
contain multiple PTX and CUBIN 
files

.a, .so, .lib …

NVIDIA. CUDA Compiler Driver NVCC. v10.1.

nvcc –arch=compute_30 –code=sm_52 hello-world.cu  

nvcc –arch=compute_30 –code=sm_30,sm_52 hello-world.cu
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CUDA Compilation Trajectory

• Conceptually, the flow is as follows
• Input program is preprocessed for device compilation

• It is compiled to a CUDA binary and/or PTX (Parallel Thread Execution) 
intermediate code which are encoded in a fatbinary

• Input program is processed for compilation of the host code
• CUDA-specific C++ constructs are transformed to standard C++ code

• Synthesized host code and the embedded fatbinary are linked together to 
generate the executable
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CUDA Compilation 
Trajectory

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

• A compiled CUDA device binary 
includes
• Program text (instructions)

• Information about the resources 
required
• N threads per block

• X bytes of local data per thread

• M bytes of shared space per block



Function Declarations in CUDA

Executed on Callable from

__device__ float deviceFunc() Device Device

__global__ void kernelFunc() Device Host

__host__ float hostFunc() Host Host

• __global__ define a kernel function, must return void
• __device__ functions can have return values
• __host__ is default, and can be omitted
• Prepending __host__ __device__ causes the system to compile separate host and 

device versions of the function
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Dynamic Parallelism

• It is possible to launch kernels from other kernels 

• Calling __global__ functions from the device is referred to as 
dynamic parallelism
• Requires CUDA devices of compute capability 3.5 and CUDA 5.0 or higher
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Execution Model

Host
(serial execution)

Device
(Parallel execution)

Parallel kernel on device

Parallel kernel on device

Serial code on host

Serial code on host
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Simple Processing Flow

PCI Bus
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

PCI Bus
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance

PCI Bus
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Simple Processing Flow

1. Copy input data from CPU memory 

to GPU memory

2. Load GPU program and execute,

caching data on chip for 

performance

3. Copy results from GPU memory to 

CPU memory

PCI Bus
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Vector Addition Example

__global__ void VecAdd(float* A, float* B,

float* C, int N) {

int i = blockDim.x * blockIdx.x + threadI
dx.x;

if (i < N)

C[i] = A[i] + B[i];

}

int main() {

…

float* h_A = (float*)malloc(size);

float* h_B = (float*)malloc(size);

float* h_C = (float*)malloc(size);

float* d_A;

cudaMalloc(&d_A, size);

float* d_B;

cudaMalloc(&d_B, size);

float* d_C;

cudaMalloc(&d_C, size);

// Copy vectors from host memory to

// device memory

cudaMemcpy(d_A, h_A, size,

cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size,

cudaMemcpyHostToDevice);
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Vector Addition Example

// Invoke kernel

int threadsPerBlock = 256;

int blocksPerGrid = N/threadsPerBlock;

VecAdd<<<blocksPerGrid, threadsPerBloc
k>>>(d_A, d_B, d_C, N);

// Copy result from device memory to

// host memory

cudaMemcpy(h_C, d_C, size,

cudaMemcpyDeviceToHost);

…

cudaFree(d_A);

cudaFree(d_B);

cudaFree(d_C);

…

}
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Typical CUDA Program Flow

1. Load data into CPU memory
• fread/rand

2. Copy data from CPU to GPU memory
• cudaMemcpy(..., cudaMemcpyHostToDevice)

3. Call GPU kernel
• yourkernel<<<x, y>>>(...)

4. Copy results from GPU to CPU memory.
• cudaMemcpy(..., cudaMemcpyDeviceToHost)

5. Use results on CPU
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CUDA Extensions for C/C++

• Kernel launch
• Calling functions on GPU

• Memory management
• GPU memory allocation, copying data to/from GPU

• Declaration qualifiers
• __device__, __shared, __local, __global__, __host__

• Special instructions
• Barriers, fences, etc.

• Keywords
• threadIdx, blockIdx, blockDim
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C++11 Support from CUDA 7.5+ 

Supported Features

• auto

• lambdas

• constexpr

• rvalue references

• range-based for loops

Unsupported Features

• Standard library
• You cannot use std::cout in device 

code
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Kernels
• Special functions that a CPU can 

call to execute on the GPU
• Executed N times in parallel by N 

different CUDA threads

• Cannot return a value

• Each thread will execute 
VecAdd()

• Each thread has a unique thread 
ID that is accessible within the 
kernel through the built-in 
threadIdx variable

// Kernel definition

__global__ void VecAdd(float* A, 
float* B, float* C) {

int i = threadIdx.x;

…

}

int main() {

…

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

}

CS 610 Swarnendu Biswas



Kernels

• GPU spawns m blocks with n threads (i.e., m*n threads total) that run 
a copy of the same function

• CPU can continue processing while GPU runs kernel

• Kernel call returns when all threads have terminated

kernel1<<<X,Y>>>(...); // kernel starts execution, CPU continues to next statement
kernel2<<<X,Y>>>(...); // kernel2 placed in queue, will start after kernel1 finishes, CPU 
continues
cudaMemcpy(...); // CPU blocks until memory is copied, memory copy starts after all preceding 
CUDA calls finish

KernelName<<<m, n>>>(arg1, arg2, ...)
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Thread Hierarchy 

• A kernel executes in parallel 
across a set of parallel threads

• All threads that are generated by 
a kernel launch are collectively 
called a grid 

• Threads are organized in thread 
blocks, and blocks are organized 
in to grids
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Thread Hierarchy 

• A thread block is a set of 
concurrently executing threads 
that can cooperate among 
themselves through barrier 
synchronization and shared 
memory

• A grid is an array of thread blocks 
that execute the same kernel
• Read inputs to and write results to 

global memory
• Synchronize between dependent 

kernel calls
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Dimension and Index Variables

Dimension

• gridDim specifies the number 
of blocks in the grid

• blockDim specifies the number 
of threads in each block

Index

• blockIdx gives the index of the 
block in the grid

• threadIdx gives the index of 
the thread within the block

Type is dim3
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Thread Hierarchy

• threadIdx is a 3-component vector 
• Thread index can be 1D, 2D, or 3D

• Thread blocks as a result can be 1D, 2D, or 3D

• How to find out the relation between thread ids and threadIdx?
• 1D: tid = threadIdx.x

• 2D block of size (Dx, Dy): thread ID of a thread of index (x, y) is (x + 
yDx)

• 3D block of size (Dx, Dy, Dz): thread ID of a thread of index (x, y, z) is 
(x + yDx + zDxDy)
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Thread Hierarchy

• Threads in a block reside on the 
same core, max 1024 threads in a 
block

• Thread blocks are organized into 
1D, 2D, or 3D grids 
• Also called cooperative thread array
• Grid dimension is given by gridDim

variable

• Identify block within a grid with the 
blockIdx variable
• Block dimension is given by 
blockDim variable
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Finding Thread IDs i is local to 
each thread
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Determining Block Dimensions

• Assume a block with a maximum of 1024 allowed threads

Variable blockDim Valid/Invalid

(512,1,1) ✓

(8, 16, 4) ✓

(32, 16, 2) ✓

(32, 32, 32) 
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Find Device Information
int count;

cudaError_t err = 

cudaGetDeviceCount(&count);

if (err != cudaSuccess) {

cerr << cudaGetErrorString(err) << endl;

}

cudaDeviceProp Props;

for (int i = 0; i < count; i++) {

err = cudaGetDeviceProperties(&Props, i)
;

}

Device number: 3

Device name: GeForce GTX 1080 Ti

Integrated or discrete GPU? discrete

Clock rate: 1544 MHz

Compute capability: 6.1

Number of SMs: 28

Total number of CUDA cores: 3584

Max threads per SM: 2048

Max threads per block: 1024

Warp size: 32

Max grid size (i.e., max number of blocks): [2147483647,65535,65535]

Max block dimension: [1024,1024,64]

Total global memory: 11172 MB

Shared memory per SM: 96 KB

32-bit registers per SM: 65536

Shared mem per block: 48 KB

Registers per block: 65536

Total const mem: 64 KB

L2 cache size: 2816 KB
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Device Management

• Application can query and select GPUs 
• cudaGetDeviceCount(int *count) 
• cudaSetDevice(int device) 
• cudaGetDevice(int *device) 
• cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple host threads can share a device 

• A single host thread can manage multiple devices 
• cudaSetDevice(i) to select current device 

• cudaMemcpy(…) for peer-to-peer copies 
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Launching Kernels
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int i = threadIdx.y;

int j = threadIdx.x;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;

dim3 threadsPerBlock(N, N);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}
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Execution Configuration

• Assume data is of length N, and say the kernel execution 
configuration is <<<N/TPB, TPB>>>
• Each block has TPB threads 

• There are N/TPB blocks

• Suppose N = 64 and TPB = 32
• Implies there are 2 blocks of 32 threads

• Dimension variables are vectors of integral type
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Launching Kernels
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int j = blockIdx.x * blockDim.x + threadIdx.x;

int i = blockIdx.y * blockDim.y + threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}
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Execution Configuration Uses Integer 
Arithmetic
• Assume data is of length N, and say the kernel execution 

configuration is <<<N/TPB, TPB>>>
• Each block has TPB threads 

• There are N/TPB blocks

• Suppose N = 64 and TPB = 32
• Implies there are 2 blocks of 32 threads

• Dimension variables are vectors of integral type

• Now assume N = 65 So now 
what?
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Execution Configuration Uses Integer 
Arithmetic
• Ensure that the grid covers the array length 

• One strategy is to change the number of blocks from N/TPB to 
(N+TPB-1)/TPB to ensure rounding up
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Execution Configuration Uses Integer 
Arithmetic
• Ensure that the grid covers the array length 

• One strategy is to change the number of blocks from N/TPB to 
(N+TPB-1)/TPB to ensure rounding up

• This means that a thread index can exceed the maximum array index

• Many examples use a control statement in the kernel to check for 
such corner cases
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What should be numBlocks?
const int Nx = 11; // not a multiple of

threadsPerBlock.x

const int Ny = 5; // not a multiple of

threadsPerBlock.y

//////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(x, y, z);

// assume A, B, C are allocated Nx x Ny float arrays

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
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What should be numBlocks?
const int Nx = 11; // not a multiple of

threadsPerBlock.x

const int Ny = 5; // not a multiple of

threadsPerBlock.y

//////////////////////////////////////////////

dim3 threadsPerBlock(4, 3, 1);

dim3 
numBlocks((Nx+threadsPerBlock.x‐1)/threadsPerBlock.x,

(Ny+threadsPerBlock.y‐1)/threadsPerBlock.y,

1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads

// 6 blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
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Example
__global__ void matrixAdd(float* A,

float* B, float* C) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

// Guard against out of bounds array access

if (i < N && j < N)

C[i+N*j] = A[i+N*j] + B[i+N*j];

}
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Matrix Multiplication Example

int main() {

int SIZE = N * N;

cudaError_t status;

float *hostA, *hostB, *hostC;

hostA = (float*)malloc(SIZE * sizeof(f
loat));

hostB = (float*)malloc(SIZE * sizeof(f
loat));

hostC = (float*)malloc(SIZE * sizeof(f
loat));

float *deviceA, *deviceB, *deviceC;

status = cudaMalloc((void**)&deviceA,
SIZE * sizeof(float));

if (status != cudaSuccess) {

cerr << cudaGetErrorString(status) <
< endl;

}

status = cudaMalloc((void**)&deviceB,
SIZE * sizeof(float));

status = cudaMalloc((void**)&deviceC,
SIZE * sizeof(float));
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Matrix Multiplication Example

status = cudaMemcpy(deviceA, hostA, SI
ZE * sizeof(float), cudaMemcpyHostToDevi
ce);

status = cudaMemcpy(deviceB, hostB, SI
ZE * sizeof(float), cudaMemcpyHostToDevi
ce);

dim3 blocksPerGrid(1, 1);

dim3 threadsPerBlock(N, N);

matmulKernel<<<blocksPerGrid, threadsP
erBlock>>>(deviceA, deviceB, deviceC);

cudaMemcpy(hostC, deviceC, SIZE * size
of(float), cudaMemcpyDeviceToHost);

…

cudaFree(deviceA);

cudaFree(deviceB);

cudaFree(deviceC);

free(hostA);

free(hostB);

…

}

CS 610 Swarnendu Biswas



Matrix Multiplication Example

__global__ void matmulKernel(float* A, float* B, float* C) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

float tmp = 0;
if (i < N && j < N) {

// Each thread computes one element of the matrix

for (int k = 0; k < N; k++) {

tmp += A[i * N + k] * B[k * N + j];

}

}

C[i * N + j] = tmp;

}
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Choosing Optimal Execution Configuration

• The number of thread blocks in a grid is usually dictated by the size of 
the data being processed or the number of processors in the system
• It is okay to have a much greater number of threads

• No fixed rule, needs exploration and experimentation

• Choose number of threads in a block to be some multiple of 32
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Timing a CUDA Kernel
float memsettime;

cudaEvent_t start, stop;

// initialize CUDA timer

cudaEventCreate(&start);  cudaEventCreate(&stop);

cudaEventRecord(start,0);

// CUDA Kernel

…

cudaEventRecord(stop,0); // stop CUDA timer

cudaEventSynchronize(stop);

cudaEventElapsedTime(&memsettime,start,stop); // in milliseconds

std::cout << “Kernel execution time: “ << memsettime << “\n”;

cudaEventDestroy(start);

cudaEventDestroy(stop); 
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Reporting Errors

• All CUDA API calls return an error code (cudaError_t) 
• Error in the API call itself  or error in an earlier asynchronous operation (e.g. 

kernel) 

• Get the error code for the last error
cudaError_t cudaGetLastError(void)

• Get a string to describe the error: 
char *cudaGetErrorString(cudaError_t)
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Mapping Blocks and Threads

• A GPU executes one or more kernel grids

• When a CUDA kernel is launched, the thread blocks are enumerated 
and distributed to SMs
• Potentially >1 block per SM

• An SM executes one or more thread blocks
• Each GPU has a limit on the number of blocks that can be assigned to each 

SM 

• For example, a CUDA device may allow up to eight blocks to be assigned to 
each SM

• Multiple thread blocks can execute concurrently on one SM
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Mapping Blocks and Threads

• The threads of a block execute concurrently on one SM
• CUDA cores in the SM execute threads

• A block begins execution only when it has secured all execution 
resources necessary for all the threads

• As thread blocks terminate, new blocks are launched on the vacated 
multiprocessors

• Blocks are mostly not supposed to synchronize with each other
• Allows for simple hardware support for data parallelism
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Mapping Blocks and Threads

• The threads of a block execute concurrently on one SM
• CUDA cores in the SM execute threads

• A block begins execution only when it has secured all execution 
resources necessary for all the threads

• As thread blocks terminate, new blocks are launched on the vacated 
multiprocessors

• Blocks are mostly not supposed to synchronize with each other
• Allows for simple hardware support for data parallelism

CUDA runtime can execute blocks in any order
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Scheduling Blocks

• Number of threads that can be simultaneously tracked and scheduled 
is bounded
• Requires resources for an SM to maintain block and thread indices and their 

execution status

• Up to 2048 threads can be assigned to each SM on recent CUDA 
devices
• For example, 8 blocks of 256 threads, or 4 blocks of 512 threads

• Assume a CUDA device with 28 SMs 
• Each SM can accommodate up to 2048 threads 
• The device can have up to 57344 threads simultaneously residing in the 

device for execution 
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Block Scalability

• Hardware can assign blocks to SMs in any order
• A kernel with enough blocks scales across GPUs

• Not all blocks may be resident at the same time

GPU with 2 SMs

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU with 4 SMs

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

Adapted from NVIDIA
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Scalability of GPU Architecture

A multithreaded program is 
partitioned into blocks of threads 
that execute independently from 
each other.

A GPU with more multiprocessors 
will automatically execute the 
program in less time than a GPU 
with fewer multiprocessors.
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Thread Warps

• Conceptually, threads in a block can execute in any order

• Sharing a control unit among compute units reduce hardware 
complexity, cost, and power consumption

• A set of consecutive threads (currently 32) that execute in SIMD 
fashion is called a warp
• These are called wavefront (with 64 threads) on AMD

• Warps are scheduling units in an SM
• Part of the implementation in NVIDIA, not the programming model

CS 610 Swarnendu Biswas



Thread Warps

• All threads in a warp run in lockstep
• Warps share an instruction stream
• Same instruction is fetched for all threads 

in a warp during the instruction fetch 
cycle
• Prior to Volta, warps used a single shared 

program counter

• In the execution phase, each thread will 
either execute the instruction or will 
execute nothing

• Individual threads in a warp have their 
own instruction address counter and 
register state
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Thread Warps

• Warp threads are fully synchronized 
• There is an implicit barrier after each step/instruction

• If 3 blocks are assigned to an SM and each block has 256 threads, 
how many warps are there in an SM?
• Each Block is divided into 256/32 = 8 warps

• There are 8 * 3 = 24 warps

CS 610 Swarnendu Biswas



Thread Divergence

• If some threads take the if branch and other threads take the else 
branch, they cannot operate in lockstep
• Some threads must wait for the others to execute

• Renders code at that point to be serial rather than parallel

• Divergence occurs only within a warp

• The programming model does not prevent thread divergence
• Performance problem at the warp level
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Parallelism in GPUs

• Two levels of parallelism
• Concurrent thread blocks 

• Coarse-grained data parallelism or task parallelism

• Concurrent warps
• Use several threads per block 

• Fine-grained data parallelism or thread parallelism
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Scheduling Thread Warps

• Each SM launches warps of threads, and excutes threads on a 
timesharing basis
• Timesharing is implemented in hardware, not software

• SM schedules and executes warps that are ready to run
• Warps run for fixed-length time slices like processes

• Warps whose next instruction has its operands ready for consumption are 
eligible for execution

• Selection of ready warps for execution does not introduce any idle time into 
the execution timeline 
• Zero-overhead scheduling in hardware
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Scheduling Thread Warps

• If more than one warp is ready for execution, a priority mechanism is 
used to select one for execution 

• Thread blocks execute on an SM, thread instructions execute on a 
core

• CUDA virtualizes the physical hardware
• Thread is a virtualized scalar processor (registers, PC, state)

• Block is a virtualized multiprocessor (threads, shared memory)
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Scheduling Thread Warps

• Suppose an instruction executed by a warp has to wait for the result 
of a previously initiated long-latency operation 
• The warp is not selected for execution

• Another warp that is not waiting for results is selected for execution

• Hide latency of long operations with work from other threads
• Called latency tolerance or latency hiding
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Scheduling Thread Warps

• Goal is to have enough threads and warps around to utilize hardware 
in spite of long-latency operations
• GPU hardware will likely find a warp to execute at any point in time

• With warp scheduling, the long waiting time of warp instructions is “hidden” 
by executing instructions from other warps

• As warps and thread blocks complete, resources are freed
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Question

• Assume that a CUDA device allows up to 8 blocks and 1024 threads 
per SM, whichever becomes a limitation first
• It allows up to 512 threads in each block 

• Say for the matrix-matrix multiplication kernel, should we use 8x8, 
16x16, or 32x32 thread blocks?
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Explanation

• 8x8 threads/block
• If we use 8x8 blocks, each block would have only 64 threads
• We will need 1,024/64=16 blocks to fully occupy an SM
• Since there is a limitation of up to 8 blocks in each SM, we have 64x8 = 512 threads/SM
• There will be fewer warps to schedule around long-latency operations
• Implies that the SM execution resources will likely be underutilized

• 16x16 threads/block
• 16x16 blocks give 256 threads per block
• Each SM can take 1024/256=4 blocks, which is within the 8-block limitation 
• Reasonable configuration since we have full thread capacity in each SM and a maximal 

number of warps for scheduling around the long-latency operations

• 32x32 threads/block
• 32x32 blocks give 1024 threads in each block, exceeding the limit of 512 threads per block
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SIMT Architecture

• GPUs employ SIMD hardware to exploit the data-level parallelism

• In vectorization, users program SIMD hardware directly

• CUDA features a MIMD-like programming model
• Launch large number of threads

• Each thread can have its own execution path and access arbitrary memory locations

• At runtime, the GPU hardware executes warps in lockstep 

• Exploits regularity and spatial locality on GPU SIMD hardware 

• This execution model is called single-instruction multiple-thread (SIMT)
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SIMT Architecture

• Very similar in flavor to SIMD
• In SIMD, you program with the vector width in mind

• Possibly use auto-vectorization or intrinsics

• SIMT can be thought of as SIMD with multithreading
• Software analog compared to the hardware perspective of SIMD

• For e.g., we rarely need to know the number of cores with CUDA
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SIMD vs SPMD

SIMD

• Processing units are executing 
the same instruction at any 
instant

SPMD

• Parallel processing units execute 
the same program on multiple 
parts of the data 

• All the processing units may not 
execute the same instruction at 
the same time
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Memory Hierarchy 
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Memory Access Efficiency

• Compute to global memory access ratio
• Number of floating-point operations performed for each access to global 

memory 

• Assume a GPU device with 1 TB/s global memory bandwidth and 
peak single-precision performance of 12 TFLOPS
• What is the performance we expect with a ratio of 1?

for (int i = 0; i < N; i++)
tmp += A[i*N+K]*B[k*N+j];
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Memory Hierarchy in CUDA
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Variable Type Qualifiers in CUDA

Memory Scope Lifetime

int localVar Register Thread Kernel

__device__ __local__ int localVar Local Thread Kernel

__device__ __shared__ int sharedVar Shared Block Kernel

__device__ int globalVar Global Grid Application

__device__ __constant__ int constVar Constant Grid Application

• __device__ is optional when used with __local__, __shared__, or  __constant__
• Automatic variables without any qualifier reside in a register

• Except arrays that reside in local memory
• Pointers can only point to memory allocated or declared in global memory
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Memory Organization

• Host and device maintain their own separate memory spaces
• A variable in CPU memory may not be accessed directly in a GPU kernel

• It is programmer's responsibility to keep them in sync
• A programmer needs to maintain copies of variables
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Registers

• 64K 32-bit registers per SM 
• So 256KB register file per SM, a CPU in contrast has a few (1-2 KB) per core

• Up to 255 registers per thread (compute capability 3.5+)

• If a code uses the maximum number of registers per thread (255) and 
an SM has 64K of registers then the SM can support a maximum of 
256 threads

• If we use the maximum allowable number of threads per SM (2048), 
then each thread can use at most 32 registers per thread
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Registers

• 64K 32-bit registers per SM 
• So 256KB register file per SM, a CPU in contrast has a few (1-2 KB) per core

• Up to 255 registers per thread

• If a code uses the maximum number of registers per thread (255) and 
an SM has 64K of registers then the SM can support a maximum of 
256 threads

• If we use the maximum allowable number of threads per SM (2048), 
then each thread can use at most 32 registers per thread

What if each thread uses 33 registers?
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Registers

• If we use the maximum allowable number of threads per SM (2048), 
then each thread can use at most 32 registers per thread

• What if each thread uses 33 registers?
• Fewer threads => fewer warps

• There is a big difference between “fat” threads which use lots of 
registers, and “thin” threads that require very few!
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Shared Memory

• Shared memory aims to bridge the gap in memory speed and access 
• Also called scratchpad memory

• Usually 16-64KB of storage that can be accessed efficiently by all threads in a 
block

• Primary mechanism in CUDA for efficiently supporting thread 
cooperation

• Each SM contains a single shared memory 
• Resides adjacent to an SM, on-chip

• The space is shared among all blocks running on that SM
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Shared Memory

• Variable in shared memory is 
allocated using the __shared__
specifier
• Faster than global memory

• Can be accessed only by threads 
within a block

• Amount of shared memory per 
block limits occupancy

• Say an SM with 4 thread blocks 
has 16 KB of shared memory

__shared__ float min[256];

__shared__ float max[256];

__shared__ float avg[256];

__shared__ float stdev[256];
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Registers vs Shared Memory

Registers

• Faster than shared memory

• Private to a thread

Shared Memory

• On-chip memory space, requires 
load/store operations

• Visible to all threads in a block
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Global Variables

• Variable lock can be accessed 
by both kernels
• Resides in global memory space

• Can be both read and modified by 
all threads

__device__ int lock=0;

__global__ void kernel1(...) {

// Kernel code

}

__global__ void kernel2(...) {

// Kernel code 

}
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Global Memory

• On-device memory accessed via 32, 64, or 128 B transactions

• An warp executes an instruction that accesses global memory
• The addresses are coalesced into transactions 

• Number of transactions depend on the access size and distribution of 
memory addresses

• More transactions mean less throughput
• For example, if 32 B transaction is needed for a thread’s 4 B access, throughput is 

essentially 1/8th
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Constant Memory

• Used for data that will not change during kernel execution
• Constant memory is 64KB

• Constant memory is cached
• Each SM has a read-only constant cache that is shared by all cores in the SM 

• Used to speed up reads from the constant memory space which resides in 
device memory

• Read from constant memory incurs a memory latency on a miss
• Otherwise, it is a read from constant cache, which is almost as fast as registers
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Constant Variables

• Constant variables cannot be modified by kernels
• Reside in constant memory 

• Accessible from all threads within a grid

• They are defined with global scope within the kernel using the prefix 
__constant__ 

• Host code can access via cudaMemcpyToSymbol() and 
cudaMemcpyFromSymbol()

CS 610 Swarnendu Biswas



Local Memory

• Local memory is off-chip memory 
• More like thread-local global memory, so it requires memory transactions and 

consumes bandwidth

• Automatic variables are placed in local memory
• Arrays for which it is not known whether indices are constant quantities

• Large structures or arrays that consume too much register space

• In case of register spilling

• Inspect PTX assembly code (compile with –ptx)
• Check for ld.local and st.local mnemonic
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Device Memory Management

• Global device memory can be allocated with cudaMalloc()

• Freed by cudaFree()

• Data transfer between host and device is with cudaMemcpy()

• Initialize memory with cudaMemset()

• There are asynchronous versions
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GPU Caches

• GPUs have L1 and L2 data caches on devices with CC 2.x and higher
• Texture and constant cache are available on all devices

• L1 cache is per SM
• Shared memory is partitioned out of unified data cache and its size can be 

configured, remaining portion is the L1 cache

• Can be configured as 48 KB of shared memory and 16 KB of L1 cache, or 16 KB 
of shared memory and 48 KB of L1 cache, or 32 KB each

• L1 caches are 16-48 KB

• L2 cache is shared by all SMs

• L1 cache lines are 128 B wide in Fermi onward, while L2 lines are 32 B
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CPU Caches vs GPU caches

CPU

• Data is automatically moved by 
hardware between caches
• Association between threads and 

cache does not have to be 
exposed to programming model

• Caches are generally coherent

GPU

• Data movement must be 
orchestrated by programmer
• Association between threads and 

storage is exposed to 
programming model

• L1 cache is not coherent, L2 
cache is coherent
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Synchronization in CUDA
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Race Conditions and Data Races

• A race condition occurs when program behavior depends upon 
relative timing of two (or more) event sequences

• Execute: *c += sum;
• Read value at address c

• Add sum to value

• Write result to address c
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Be Careful to Avoid Race Conditions!

Thread 0, Block 0

• Read value at address c

• Add sum to value

• Write result to address c

Thread 3, Block 7

• Read value at address c

• Add sum to value

• Write result to address c

ti
m

e
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Synchronization Constructs in CUDA

1. __syncThreads() synchronizes threads within a block

2. cudaDeviceSynchronize() synchronizes all threads in a grid
• There are other variants 

3. Atomic operations prevent conflicts associated with multiple 
threads concurrently accessing a variable

• Atomic operations on both global memory and shared memory variables

• For e.g., float atomicAdd(float* addr, float amount)

CS 610 Swarnendu Biswas



__syncthreads()

• A __syncthreads() statement must be executed by all threads in a 
block

• __syncthreads() is in an if statement
• Either all threads in the block execute the path that includes the 
__syncthreads() or none of them does

• __syncthreads() statement is in each path of an if-then-else
statement
• Either all threads in a block execute the __syncthreads() on the then path 

or all of them execute the else path 

• The two __syncthreads() are different barrier synchronization points
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Synchronization Between Grids

• For threads from different grids, 
system ensures writes from 
kernel happen before reads from 
subsequent grid launches
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Atomic Operations

• Perform read-modify-write (RMW) atomic operations on data residing 
in global or shared memory 
• atomicAdd(), atomicSub(), atomicMin(), atomicMax(), 
atomicInc(), atomicDec(), atomicExch(), atomicCAS()

• Predictable result when simultaneous access to memory required
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Concurrency and CUDA Streams
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Overlap Host and Device Computation

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

kernel1<<<1,N>>>(d_a);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-streams-simplify-concurrency/



Overlap Host and Device Computation

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

kernel1<<<1,N>>>(d_a);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice);

kernel1<<<1,N>>>(d_a);

h_func(h_b);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);



Utilize GPU Hardware

• Overlap kernel execution with memory copy between host and device

• Overlap execution of multiple kernels if there are resources

• Depends on whether the GPU architecture supports overlapped 
execution 
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CUDA Streams

• Sequence of operations that execute on the device in the order in 
which they were issued by the host
• Operations across streams can interleave and run concurrently

• All GPU device operations run in the default “null” stream
• Default stream is synchronizing 

• No operation in the default stream will begin until all previously issued 
operations in any stream have completed

• An operation in the default stream must complete before any other operation 
in any stream will begin 
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Overlap Host and Device Computation

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice)

kernel1<<<1,N>>>(d_a);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice)

kernel1<<<1,N>>>(d_a);

h_func(h_b);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);
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Specifying a Stream

• Specifying a stream during kernel launch is optional

CS 610 Swarnendu Biswas

kernel<<< blocks, threads, bytes >>>();     // default stream
kernel<<< blocks, threads, bytes, 1 >>>();  // stream 1



Non-Default Streams

• Operations in a non-default 
stream are non-blocking with 
host

• Use cudaDeviceSynchronize()
• Blocks host until all previously 

issued operations on the device 
have completed

• Cheaper alternatives
• cudaStreamSynchronize(), 
cudaEventSynchronize(), …

cudaStream_t stream1;

cudaError_t res;

res = cudaStreamCreate(&stream1);

res = cudaMemcpyAsync(d_a, a, N, 
cudaMemcpyHostToDevice, stream1);

increment<<<1,N,0,stream1>>>(d_a);

res = cudaStreamDestroy(&stream1);
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Why Use CUDA Streams?

• Memory copy and kernel execution can be overlapped if they occur in 
different, non-default streams
• Check for GPU device capabilities

• Individual kernels can overlap if there are enough resources on the 
GPU
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Overlapping Kernel Execution and Data 
Transfers
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for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;

cudaMemcpyAsync(&d_a[offset], &h_a[offset], streamBytes, 
cudaMemcpyHostToDevice, stream[i]);

kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);

cudaMemcpyAsync(&h_a[offset], &d_a[offset], streamBytes,
cudaMemcpyDeviceToHost, stream[i]);

}

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/



Overlapping Kernel Execution and Data 
Transfers
for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&d_a[offset], &h_a[offset], streamBytes, 

cudaMemcpyHostToDevice, stream[i]);
}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
kernel<<<streamSize/blockSize, blockSize, 0, stream[i]>>>(d_a, offset);

}

for (int i = 0; i < nStreams; ++i) {
int offset = i * streamSize;
cudaMemcpyAsync(&h_a[offset], &d_a[offset], streamBytes, 

cudaMemcpyDeviceToHost, stream[i]);
}

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/



https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
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Concurrent Host Execution

• Asynchronous functions are nonblocking
• kernel launches

• memory copies from host to device of a memory block of 64 KB or less;

• memory copies performed by functions that are suffixed with Async
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Streams and Concurrency in CUDA 7+

• Prior to CUDA 7, all host threads shared the default stream 
• Implied synchronization

• CUDA 7 provides an option to have a per-host-thread default stream
• Commands issued to the default stream by different host threads can run 

concurrently

• Commands in the default stream may run concurrently with commands in 
non-default streams
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Multi-Stream Example: Legacy Behavior
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for (int i = 0; i < num_streams; i++) {
cudaStreamCreate(&streams[i]);

cudaMalloc(&data[i], N * sizeof(float));

// launch one worker kernel per stream
kernel<<<1, 64, 0, streams[i]>>>(data[i], N);

// launch a dummy kernel on the default stream
kernel<<<1, 1>>>(0, 0);

}



Multi-Stream Example: Per-Thread Default 
Stream
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nvcc --default-stream per-thread <file.cu> 



Performance Bottlenecks with 
CUDA
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Differences between Host and Device

Host

• Limited amount of concurrent 
threads

• Context switches of threads are 
heavyweight

• Designed to minimize latency

Device

• Massive number of concurrently 
active threads

• Context switches are lightweight
• Resources stay allocated to a 

thread till it completes

• Designed to maximize 
throughput
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Desired Application Characteristics for Device 
Execution
• Large data-parallel computation

• Complex computation kernel to justify the data movement costs
• Think of matrix addition versus matrix multiplication

• Keep data on the device to avoid repeated transfers

• Try to use coalesced memory accesses for better memory 
performance 
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Key Ideas for Performance

• Try and reduce resource consumption

• Exploit SIMT
• Reduce thread divergence in a warp

• Strive for good locality
• Use tiling to exploit shared memory
• Copy blocks of data from global memory to shared memory and operate on them 

(for e.g., matrix multiplication kernel)
• Improve throughput by reducing global memory traffic

• Memory access optimization
• Global memory: memory coalescing
• Shared memory: avoid bank conflicts
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What can we say about this code?

__global__ void dkernel(float *vector, int vectorsize) {

int id = blockIdx.x * blockDim.x + threadIdx.x;

switch (id) {

case 0: vector[id] = 0; break;

case 1: vector[id] = vector[id] * 10; break;

case 2: vector[id] = vector[id - 2]; break;

case 3: vector[id] = vector[id + 3]; break;

…

case 31: vector[id] = vector[id] * 9; break;

} 

}
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Deal with Thread Divergence

• Thread divergence renders execution sequential 
• SIMD hardware takes multiple passes through the divergent paths

if (threadIdx.x > 2) {}

if (threadIdx.x / WARP_SIZE > 2) {}
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Deal with Thread Divergence

• Condition evaluating to different truth values is not bad

• Branch granularity is a whole multiple of warp size; all threads in any given 
warp follow the same path

• Conditions evaluating to different truth-values for threads in a warp is 
bad

• Creates two different control paths for threads in a block; branch granularity < 
warp size; threads 0 and 1 follow different path than the rest of the threads in the 
first warp

if (threadIdx.x > 2) {}

if (threadIdx.x / WARP_SIZE > 2) {}
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Implement a Reduction Kernel in CUDA
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Reduction Kernel

__shared__ float partialSum[];

…

unsigned int t = threadIdx.x; 

for (unsigned int stride = 1; stride < blockDim.x; stride *= 2)  { 

__syncthreads(); 

if (t % (2*stride) == 0) 

partialSum[t] += partialSum[t+stride]; 

} 
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Reduction Kernel

__shared__ float partialSum[];

… 

unsigned int t = threadIdx.x; 

for (unsigned int stride = blockDim.x; stride > 1; stride /= 2) {

__syncthreads(); 

if (t < stride) 

partialSum[t] += partialSum[t+stride]; 

} 
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Execution of the Revised Kernel
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Parallel Memory Architecture

• In a parallel machine, many threads 
access memory

• Memory is divided into banks to 
achieve high bandwidth
• Each bank can service one address per 

cycle
• A memory can service as many 

simultaneous accesses as it has banks

• Multiple simultaneous accesses to a 
bank result in a bank conflict
• Conflicting accesses are serialized
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Example of Bank Addressing

• No bank conflicts
• Linear addressing, stride=1

• No bank conflicts
• Random permutation
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Example of Bank Addressing

• 2-way Bank Conflicts
• Linear addressing, stride = 2

• 8-way Bank Conflicts
• Linear addressing, stride = 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8
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Shared Memory Bank Conflicts

• Shared memory is as fast as registers if there are no bank conflicts

• Fast case
• If all threads of a warp access different banks, there is no bank conflict

• If all threads of a warp access the identical address, there is no bank conflict 

• Slow case
• Bank Conflict: multiple threads in the same half-warp access the same bank

• Must serialize the accesses

• Cost = max # of simultaneous accesses to a single bank
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Memory Coalescing

• Coalesced memory access
• A warp of threads access adjacent data in a cache line 

• In the best case, this results in one memory transaction (best bandwidth)

• Uncoalesced memory access
• A warp of threads access scattered data all in different cache lines

• This may result in 32 different memory transactions (poor bandwidth)
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Memory Coalescing
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Memory Access Patterns in C 2D Arrays
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Memory Access Patterns in C 2D Arrays
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Matrix Multiplication Example

__global__ void matmulKernel(float* A, float* B, float* C) {

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

float tmp = 0;
if (row < N && col < N) {

// Each thread computes one element of the matrix

for (int k = 0; k < N; k++) {

tmp += A[row * N + k] * B[k * N + col];

}

}

C[row * N + col] = tmp;

}

Coalesced

Thread 1

Thread 2

Not coalesced
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Optimizing Global Memory Accesses

• Try to ensure that memory requests 
from a warp can be coalesced
• Using known optimizations like tiling to 

make use of the faster shared memory

• Stride-one access across threads in a warp 
is good

• Use structure of arrays rather than array of 
structures

Md

W
I D

T
H

WIDTH

Coalesced

Thread 1

Thread 2

Not coalesced
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