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How to Write Efficient and Scalable Programs?

Good choice of algorithms and data structures

• Determines number of operations executed

Code that the compiler and architecture can effectively optimize

• Determines number of instructions executed

Proportion of parallelizable and concurrent code

• Amdahl’s law

Sensitive to the architecture platform

• Efficiency and characteristics of the platform

• For e.g., memory hierarchy, cache sizes
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Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

• Code restructuring optimizations

• Prefetching optimizations

• Data layout optimizations

• Code layout optimizations
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Parallelism Challenges for a Compiler

• On single-core machines
• Focus is on register allocation, instruction scheduling, reduce the cost of array 

accesses

• On parallel machines
• Find parallelism in sequential code, find portions of work that can be 

executed in parallel

• Principle strategy is data decomposition – good idea since this can scale
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Can we parallelize the following loops?

CS 610 Swarnendu Biswas

do i = 1, 100
A(i) = A(i) + 1

enddo

do i = 1, 100
A(i) = A(i-1) + 1

enddo



Dependences

S1     a = b + c

S2     d = a * 2

S3     a = c + 2

S4     e = d + c + 2
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Dependences

S1     a = b + c

S2     d = a * 2

S3     a = c + 2

S4     e = d + c + 2

Execution constraints

• S2 must execute after S1

• S3 must execute after S2

• S3 must execute after S1

• S3 and S4 can execute in any order, 
and concurrently
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Data Dependence

• There is a data dependence from S1 to S2 if and only if 
• Both statements access the same memory location

• At least one of the accesses is a write

• There is a feasible execution path at run time from S1 to S2
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Types of Dependences

Flow (true)

Anti 

Output

Input

S1  X = …
S2  … = X

S1  … = X
S2  X = … 

S1  X = …
S2  X = …

S1  … = a/b
S2  … = b * c
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S1 δ S2

S1 δ-1 S2

S1 δo S2



Bernstein’s Conditions

• Suppose there are two processes 
P1 and P2

• Let Ii be the set of all input 
variables for process Pi

• Let Oi be the set of all output 
variables for process Pi

• P1 and P2 can execute in parallel 
(denoted as P1 || P2) if and only 
if 
• 𝐼1 ∩ 𝐼2 = Φ

• 𝐼2 ∩ 𝑂1 = Φ

• 𝑂2 ∩ 𝑂1 = Φ
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Two processes can execute in parallel if they are flow-, 
anti-, and output-independent



Bernstein’s Conditions

• Suppose there are two processes 
P1 and P2

• Let Ii be the set of all input 
variables for process Pi

• Let Oi be the set of all output 
variables for process Pi

• P1 and P2 can execute in parallel 
(denoted as P1 || P2) if and only 
if 
• 𝐼1 ∩ 𝐼2 = Φ

• 𝐼2 ∩ 𝑂1 = Φ

• 𝑂2 ∩ 𝑂1 = Φ
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Two processes can execute in parallel if they are 
flow-, anti-, and output-independent

• If Pi || Pj, does that imply Pj || Pi?
• If Pi || Pj and Pj || Pk, does that imply Pi || Pk?



Find Parallelism in Loops – Is it Easy?

• Need to analyze array subscripts

• Need to check whether two array subscripts access the same memory 
location
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Dependence in Loops

for i = 1 to 50

S1    A[i] = B[i-1] + C[i]

S2    B[i] = A[i+2] + C[i]

endfor

• Unrolling loops can help figure 
out dependences

S1(1)    A[1] = B[0] + C[1]

S2(1)    B[1] = A[3] + C[1]

S1(2)    A[2] = B[1] + C[2]

S2(2)    B[2] = A[4] + C[2]

S1(3)    A[3] = B[2] + C[3]

S2(3)    B[3] = A[5] + C[3]

……
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Dependence in Loops
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• large loop bounds
• loop bounds may not be 

known at compile time



Dependence in Loops

• Parameterize the statement with 
the loop iteration number

DO I = 1, N

S1    A(I+1) = A(I) + B(I)

ENDDO

DO I = L, U, S

S1    ...

ENDDO
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Normalized Iteration Number
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For an arbitrary loop in which the loop index I runs from L to U in 
steps of S, the normalized iteration number i of a specific iteration 
is equal to the value (I– L+1)/S, where I is the value of the index on 
that iteration



Iteration Vector
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Given a nest of n loops, the iteration vector i of a particular 
iteration of the innermost loop is a vector of integers that 
contains the iteration numbers for each of the loops in order of 
nesting level. 

The iteration vector i is {i1, i2, ..., in} where ik, 1 ≤ k ≤ n, represents 
the iteration number for the loop at nesting level k.



Iteration Space Graphs

• Represent each dynamic instance of a loop as a point in the graph

• Draw arrows from one point to another to represent dependences
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for (i = 1; i <= 4; i++)
for (j = 1; j <= 4; j++)

S1:      a[i][j] = a[i][j-1] * x;



Iteration Space Graph 

• Dimension of iteration space is the loop nest level

• Not restricted to be rectangular

for i = 1 to 5 do

for j = i to 5 do

A(i, j) = B(i, j) + C(j)

endfor

endfor
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Lexicographic Ordering of Iteration Vectors

• Assume i is a vector, ik is the kth element of the vector i, and i[1:k] is a 
k-vector consisting of the leftmost k elements of i

• Iteration i precedes iteration j, denoted by i < j, if and only if 
i. i[1:n-1] < j[1:n-1], or

ii. i[1:n-1] = j[1:n-1] and in < jn
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Formal Definition of Loop Dependence
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There exists a dependence from statement S1 to statement S2 in a 
common nest of loops if and only if there exist two iteration vectors i
and j for the nest, such that 
i. i < j or i = j and there is a path from S1 to S2 in the body of the 

loop, 
ii. statement S1 accesses memory location M on iteration i and 

statement S2 accesses location M on iteration j, and 
iii. one of these accesses is a write.



Distance Vectors

• For each dimension of an iteration space, the distance is the number 
of iterations between accesses to the same memory location

• Distance vector: (1, 2)
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do i = 1, 6
do j = 1, 5
A(i, j) = A(i-1, j-2) + 1

enddo
enddo

outer loop

inner loop



Distance Vectors

• Suppose that there is a dependence from statement S1 on iteration i
of a loop nest and statement S2 on iteration j, then the dependence
distance vector d(i,j) is defined as a vector of length n such that d(i,j)k
= jk – ik.

• A vector (d1, d2) is positive if (0,0) < (d1, d2), i.e., its first (leading)
non-zero component is positive
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Direction Vectors

• Suppose that there is a dependence from statement S1 on iteration i
of a loop nest of n loops and statement S2 on iteration j, then the 
dependence direction vector is D(i,j) is defined as a vector of length n 
such that

𝐷 𝑖, 𝑗 𝑘 = ൞

− 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 < 0

0 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 = 0

+ 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 > 0
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Distance and Direction Vectors

• Suppose that there is a dependence from statement S1 on iteration i
of a loop nest of n loops and statement S2 on iteration j, then the 
dependence direction vector is D(i,j) is defined as a vector of length n 
such that

𝐷 𝑖, 𝑗 𝑘 = ൞

− 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 < 0

0 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 = 0

+ 𝑖𝑓 𝐷 𝑖, 𝑗 𝑘 > 0
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In any valid dependence, the leftmost non-“0” component 
of the direction vector must be “+”



Distance and Direction Vector Example

DO I = 1, N

DO J = 1, M

DO K = 1, L

S1        A(I+1,J,K-1) = A(I,J,K) + 10

ENDDO

ENDDO

ENDDO 
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Distance and Direction Vector Example

FOR I = 1, 5

DO J = 1, 5

S1      A(I,J) = A(I,J-3) + A(I-2,J) + A(I-1,J+2) + A(I+1,J-1)

ENDFOR

ENDFOR
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Program Transformations and 
Validity
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Reordering Transformations

• A reordering transformation does not add or remove statements from 
a loop nest 
• Only reorders the execution of the statements that are already in the loop
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Does not add or remove 
statements

Does not add or remove 
any new dependences



Validity of Dependence-Based Transformations

• A reordering transformation is said to be valid for the program to 
which it applies if it preserves all dependences in the program
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Direction Vector Transformation

• Let T be a transformation applied to a loop nest 
• Does not rearrange the statements in the body of the loop

• T is valid if, after it is applied, none of the direction vectors for 
dependences with source and sink in the nest has a leftmost non-“0” 
component that is “-”
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Dependence Types

• If in a loop, statement S2 depends on S1, then there are two possible 
ways of this dependence occurring
• S1 and  S2 execute on different iterations - this is called a loop-carried 

dependence

• S1 and S2 execute on the same iteration - this is called a loop-independent
dependence

• These types partition all possible data dependences
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Loop-Carried Dependences

• S1 can reference the common 
location on one iteration of a loop; 
on a subsequent iteration S2 can 
reference the same location

i. S1 references location M on 
iteration i

ii. S2 references M on iteration j

iii. d(i,j) > 0 (that is, contains a “+” 
as leftmost non-“0” component)

DO I = 1, N

S1    A(I+1) = F(I)

S2    F(I+1) = A(I)

ENDDO
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Level of Loop-Carried Dependence

• The level of a loop-carried 
dependence is the index of the 
leftmost non-“0” of D(i,j) for the 
dependence.

DO I = 1, 10

DO J = 1, 10

DO K = 1, 10

S1        A(I,J,K+1) = A(I,J,K)

ENDDO

ENDDO

ENDDO

CS 610 Swarnendu Biswas



Utility of Dependence Levels

• A reordering transformation preserves all level-k dependences if it
i. preserves the iteration order of the level-k loop 

ii. does not interchange any loop at level < k to a position inside the level-k 
loop and 

iii. does not interchange any loop at level > k to a position outside the level-k 
loop.
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DO I = 1, 10
S1    A(I+1) = F(I)
S2    F(I+1) = A(I)

ENDDO

DO I = 1, 10
S2    F(I+1) = A(I)
S1    A(I+1) = F(I)

ENDDO



Is this transformation valid?

DO I = 1, 10

DO J = 1, 10

DO K = 1, 10

S       A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO

ENDDO

ENDDO

DO I = 1, 10

DO K = 10, 1, -1

DO J = 1, 10

S       A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO

ENDDO

ENDDO
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Loop-Independent Dependences

• S1 and S2 can both reference the 
common location on the same loop 
iteration, but with S1 preceding S2 
during execution of the loop 
iteration.

i. S1 refers to memory location M 
on iteration i

ii. S2 refers to M on iteration j and i
= j

iii. There is a control flow path from 
S1 to S2 within the iteration.

DO I = 1, N
S1    A(I+1) = F(I)
S2    G(I+1) = A(I+1)

ENDDO

DO I = 1, 9
S1    A(I) =
S2    ... = A(10-I)

ENDDO
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Validity of Transformations for Loop-
Independent Dependences
• If there is a loop-independent dependence from S1 to S2, any 

reordering transformation that does not move statement instances 
between iterations and preserves the relative order of S1 and S2 in 
the loop body preserves that dependence.
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Is this transformation valid?

DO I = 1, N

S1:   A(I) = B(I) + C

S2:   D(I) = A(I) + E

ENDDO

D(1) = A(1) + E

DO I = 2, N

S1:   A(I-1) = B(I-1) + C

S2:   D(I) = A(I) + E

ENDDO

A(N) = B(N) + C
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Dependency Testing
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Dependence Testing

• Dependence question
• Can 4*I be equal to 2*I+1 for I in [1,N]?

DO I=1, N

A(4*I) = …

… = A(2*I+1)

ENDDO
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Given (i) two subscript functions f and g, and (ii) lower and upper loop 
bounds L and U respectively, does 𝑓 𝑖1 = 𝑔 𝑖2 have a solution such 
that 𝐿 ≤ 𝑖1, 𝑖2 ≤ 𝑈?



Multiple Loop Nests

• Dependence test

DO i=1,n

DO j=1,m

X(a1*i + b1*j + c1) = …

… = X(a2*i + b2*j + c2)

ENDDO

ENDDO
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𝑎1 ∗ 𝑖1 + 𝑏1 ∗ 𝑗1 + 𝑐1 = 𝑎2 ∗ 𝑖2 + 𝑏2 ∗ 𝑗2 + 𝑐2
1 ≤ 𝑖1, 𝑖2 ≤ 𝑛
1 ≤ 𝑗1, 𝑗2 ≤ 𝑚



Multiple Loop Indices, Multi-Dimensional 
Array

• Dependence test

DO i=1,n

DO j=1,m

X(a1*i1 + b1*j1 + c1, d1*i1 + e1*j1 + f1) = …

… = X(a2*i2 + b2*j2 + c2, d2*i2 + e2*j2 + f2)

ENDDO

ENDDO
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𝑎1𝑖1 + 𝑏1𝑗1 + 𝑐1 = 𝑎2𝑖2 + 𝑏2𝑗2 + 𝑐2
𝑑1𝑖1 + 𝑒1𝑗1 + 𝑓1 = 𝑑2𝑖2 + 𝑒2𝑗2 + 𝑓2
1 ≤ 𝑖1, 𝑖2 ≤ 𝑛
1 ≤ 𝑗1, 𝑗2 ≤ 𝑚



Multiple Loop Indices, Multi-Dimensional 
Array

• Dependence test

DO i=1,n

DO j=1,m

X(a1*i1 + b1*j1 + c1, d1*i1 + e1*j1 + f1) = …

… = X(a2*i2 + b2*j2 + c2, d2*i2 + e2*j2 + f2)

ENDDO

ENDDO
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𝑎1𝑖1 + 𝑏1𝑗1 + 𝑐1 = 𝑎2𝑖2 + 𝑏2𝑗2 + 𝑐2
𝑑1𝑖1 + 𝑒1𝑗1 + 𝑓1 = 𝑑2𝑖2 + 𝑒2𝑗2 + 𝑓2
1 ≤ 𝑖1, 𝑖2 ≤ 𝑛
1 ≤ 𝑗1, 𝑗2 ≤ 𝑚

complex



Data Dependence Testing

• Variables in loop indices are integers → Diophantine equations

• The Diophantine equation 𝑎1𝑖1 + 𝑎2𝑖2 +⋯+ 𝑎𝑛𝑖𝑛 = 𝑐 has an 
integer solution if and only if gcd(𝑎1, 𝑎2, … , 𝑎𝑛) evenly divides 𝑐

• If there is a solution, we can test if it lies within the loop bounds 
• If not, then there is no dependence
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Complexity in Dependence Testing

• Subscript: A pair of subscript positions in a pair of array references
• A(i,j) = A(i,k) + C
• <i,i> is the first subscript, <j,k> is the second subscript

• A subscript is said to be

• Zero index variable (ZIV) if it contains no index

• Single index variable (SIV) if it contains only one index

• Multi index variable (MIV) if it contains more than one index
• A(5,I+1,j) = A(1,I,k) + C
• First subscript is ZIV, second subscript is SIV, third subscript is MIV
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Separability and Couple Subscript Groups

• A subscript is separable if its indices do not occur in other subscripts

• If two different subscripts contain the same index they are coupled
• A(I+1,j) = A(k,j) + C   : Both subscripts are separable

• A(I,j,j) = A(I,j,k) + C : Second and third subscripts are coupled

• Coupling can cause imprecision in dependence testing
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DO I = 1, 100
S1 A(I+1,I) = B(I) + C
S2 D(I) = A(I,I) * E

ENDDO



Overview of Dependency Testing

1. Partition subscripts of a pair of array references into separable and 
coupled groups

2. Classify each subscript as ZIV, SIV or MIV

3. For each separable subscript apply single subscript test
• If not done, goto next step

4. For each coupled group apply multiple subscript test like Delta Test

5. If still not done, merge all direction vectors computed in the 
previous steps into a single set of direction vectors
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Simple Dependence Testing: Delta Notation

• Notation represents index values at the source and sink

• Let source Iteration be denoted by I0, and sink iteration be denoted 
by I0 + I

• Valid dependence implies I0 + 1 = I0 + I

• We get I = 1  Loop-carried dependence with distance vector (1) 
and direction vector (+)

DO I = 1, N
S A(I + 1) = A(I) + B

ENDDO



Simple Dependence Testing: Delta Notation

DO I = 1, 100
DO J = 1, 100

DO K = 1, 100
A(I+1,J,K) = A(I,J,K+1) + B

ENDDO
ENDDO

ENDDO

• I0 + 1 = I0 + I;         J0 = J0 + J;         K0 = K0 + K + 1

• Solutions: I = 1;    J = 0;      K = -1

• Corresponding direction vector: (+,0,-)



Simple Dependence Testing: Delta Notation

• If a loop index does not appear, its distance is unconstrained and its 
direction is “*”

DO I = 1, 100
DO J = 1, 100

A(I+1) = A(I) + B(J)
ENDDO

ENDDO

• The direction vector for the dependence is (+, *)



Simple Dependence Testing: Delta Notation

• * denotes union of all 3 directions

DO I = 1, 100
DO J = 1, 100

A(I+1) = A(I) + B(J)
ENDDO

ENDDO

• (*, +) denotes { (+, +), (0, +), (-, +) }
• (-, +) denotes a level 1 anti-dependence with direction vector (+, -)



Other Dependence Tests

• GCD test is simple but not accurate
• It can tell us that there is no solution

• Other tests
• Banerjee-Wolfe test: widely used test

• Power Test: improvement over Banerjee 
test

• Omega test: “precise” test, most accurate 
for linear subscripts

• Range test: handles non-linear and symbolic 
subscripts

• many variants of these tests

for i = 1 to 10  

S1    a[i] = b[i] + c[i] 

S2    d[i] = a[i-100]; 
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Dependence Testing is Hard

Unknown loop bounds can lead to false dependences

Need to be conservative about aliasing 

Triangular loops add new constraints
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Why is Dependence Analysis Important?

• Dependence information can be used to drive other important loop 
transformations
• For example, loop parallelization, loop interchange, loop fusion

• We will see many examples soon
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