
CS 610: Compiler Challenges
for Parallel Architectures

Swarnendu Biswas

Semester 2020-2021-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Copyright Information

• “The instructor of this course owns the copyright of all the course
materials. This lecture material was distributed only to the students
attending the course CS 610: Programming for Performance of IIT
Kanpur, and should not be distributed in print or through electronic
media without the consent of the instructor. Students can make their
own copies of the course materials for their use.”

CS 610 Swarnendu Biswas

https://www.iitk.ac.in/doaa/data/FAQ-2020-21-I.pdf

Improvements in Computing Capabilities

• Last few decades have been exciting for the parallel computing
community

• Improvements in computing capabilities
i. Improvement in underlying technology (aka Moore’s law)

CS 610 Swarnendu Biswas

Swarnendu Biswas

Improvements in Computing Capabilities

• Last few decades have been exciting for the parallel computing
community

• Improvements in computing capabilities
i. Improvement in underlying technology (aka Moore’s law)

ii. Advances in computer architecture
• Instruction level parallelism (pipelining)

• Multiple execution units

• Vector operations

• VLIW and Superscalar instruction issue

• Deeper and sophisticated cache hierarchies

CS 610 Swarnendu Biswas

CS 610 Swarnendu Biswas

Optimizing Compilers for Modern Architectures – R. Allen and K. Kennedy

Challenges to Growth in Performance

CS 610 Swarnendu Biswas

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.

Clock speeds are
not increasing

any more

Challenges to Growth in Performance

CS 610 Swarnendu Biswas

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.

Clock speeds are
not increasing

any morePower, and not manufacturing, limits
microarchitectural improvements – F. Pollack

CS 610 Swarnendu Biswas

Hardware Trends in the Last Ten Years!

• 2005 – 2018
• Single core performance increase is ~20%

• Programs do not run any faster by themselves

CS 610 Swarnendu Biswas

Programs Do Not Run Any Faster by
Themselves!
• Microarchitectural techniques

• Multiple functional units, superscalar architecture, VLIW, more cache
structures (e.g., L4 caches), deeper pipelines

CS 610 Swarnendu Biswas

Programs Do Not Run Any Faster by
Themselves!
• Microarchitectural techniques

• Multiple functional units, superscalar architecture, VLIW, more cache
structures (e.g., L4 caches), deeper pipelines

CS 610 Swarnendu Biswas

Law of diminishing returns!

There is little or no more hidden parallelism
(ILP) to be found

Programs Do Not Run Any Faster by
Themselves!
• Microarchitectural techniques

• Multiple functional units, superscalar architecture, VLIW, more cache
structures (e.g., L4 caches), deeper pipelines

• Complex systems are more difficult to program efficiently
• Systems programmers now need to be aware of memory hierarchies and

other architectural features to fully exploit the potential of the hardware

CS 610 Swarnendu Biswas

Programs Do Not Run Any Faster by
Themselves!
• Microarchitectural techniques

• Multiple functional units, superscalar architecture, VLIW, more cache
structures (e.g., L4 caches), deeper pipelines

• Complex systems are more difficult to program efficiently
• Systems programmers now need to be aware of memory hierarchies and

other architectural features to fully exploit the potential of the hardware

CS 610 Swarnendu Biswas

Have you heard of ninja programmers?

Intel MKL, Intel MKL-DNN, cuDNN and several other
popular libraries are hand-optimized for best performance

What is the software side of
the story?

Develop Parallel Programs

From my perspective, parallelism is the biggest challenge since high-level
programming languages. It’s the biggest thing in 50 years because industry is
betting its future that parallel programming will be useful.
…
Industry is building parallel hardware, assuming people can use it. And I think
there’s a chance they’ll fail since the software is not necessarily in place. So this
is a gigantic challenge facing the computer science community.

– David Patterson, ACM Queue, 2006.

CS 610 Swarnendu Biswas

Develop Parallel Programs

To save the IT industry, researchers must demonstrate
greater end-user value of from an increasing number of

cores –
A View of Parallel Computing Landscape, CACM 2009.

CS 610 Swarnendu Biswas

New Challenges in Software Development

• Adapt to the changing hardware landscape

• Most applications are single-threaded

How can we develop software that makes
effective use of the extra hardware?

CS 610 Swarnendu Biswas

Compilers to the rescue!

• A compiler is a system software that translates a program in a source
language to an equivalent program in a target language

CS 610 Swarnendu Biswas

Compilersource
program

target
program

Compilers to the rescue!

• A compiler is a system software that translates a program in a source
language to an equivalent program in a target language

CS 610 Swarnendu Biswas

Compilersource
program

target
program

Role of a compiler
• Generate correct code
• Improve the code according to some metric

Compilers to the rescue!

• Compiler technology has become more important as machines have
become more complex

• Success of computer architecture innovations depends on the ability
of compilers to provide efficient language implementations on that
architecture

CS 610 Swarnendu Biswas

Compiling for Scalar Pipelines

• Pipelining subdivides a complex operation into independent
microoperations so that, if the different microoperations use different
resources, the microoperations can be overlapped by starting an
operation as soon as its predecessor has completed the first
microoperation

• A pipelined functional unit is effective only when the pipe is kept full;
that is, only when there are operands available for operation on each
segment clock cycle.

CS 610 Swarnendu Biswas

Compiling for Scalar Pipelines

CS 610 Swarnendu Biswas

Fetch
Operands

(FO)

Equate
Exponents (EE)

Add Mantissas
(AM)

Normalize
Result (NR)

Results
Inputs

Floating-point Adder

(FO)
b4

c4

(EE)
b3

c3

(AM)
b2+c2

(NR)
a1

b5

c5

A pipelined execution unit computing ai = bi + ci

Compiling for Scalar Pipelines

• Multiple functional units

• Can issue n/m operations per
cycle
• Assuming n units and m cycles for

an operation to complete

• Also called fine-grained
parallelism

CS 610 Swarnendu Biswas

Adder 1
a1 + b1

Adder 3
a3 + b3

Adder 4
a4 + b4

Adder 2
a2 + b2b5

c5

Results

Compiler Challenges with Pipelining

• The key performance barrier is pipeline stalls
• A stall occurs when a new set of inputs cannot be injected into the pipeline

because of a hazard

• Structural hazards – Available machine resources do not support
instruction overlap
• For example, if a machine has only one port to memory, it cannot overlap the

fetch of instructions with the fetch of data

• Such a hazard cannot be avoided through compiler strategies

CS 610 Swarnendu Biswas

Compiler Challenges with Pipelining

• Data hazards – Result produced by one instruction is needed by a
later one

• Compiler can schedule an instruction that does not use R1

• Control hazards – Occurs during processing of branch instructions

CS 610 Swarnendu Biswas

LW R1, 0(R2)
ADD R3, R1, R4

Vector Instructions

• Apply same operation to different positions of one or more arrays
• Goal: keep pipelines of execution units full

• Challenges
• Increases processor state for the vector registers
• Increases the cost of processor context switching
• Expanded the instruct set complicating instruction decode
• Can pollute the cache hierarchy

CS 610 Swarnendu Biswas

VLOAD V1,A
VLOAD V2,B
VADD V3,V1,V2
VSTORE V3,C

C(1:64) = A(1:64) + B(1:64)

Compiler Challenges with Vector Instructions

CS 610 Swarnendu Biswas

DO I = 1, 64
C(I) = A(I) * B(I)

ENDDO

DO I = 1, 64
A(I+1) = A(I) + B(I)

ENDDO

Superscalar and VLIW Processors

• Goal is to issue multiple instructions on the same cycle

• Superscalar – looks ahead in the instruction stream and issues
instructions that are ready to execute

• VLIW – executes a wide instruction per cycle
• Usually one instruction slot per functional unit

• Challenges
• Finding enough parallel instructions

• Require more memory bandwidth

CS 610 Swarnendu Biswas

Compiling for Multiple-Issue Processors

• Compiler must recognize when operations are not related by
dependence
• Solution: vectorization

• Compiler must schedule instructions so that it requires as few total
cycles as possible
• Solution: instruction scheduling

CS 610 Swarnendu Biswas

Importance of Instruction Scheduling

• Assume a 2 cycle delay for loads from cache and for floating-point
addition

CS 610 Swarnendu Biswas

LD R1,A
LD R2,B
FADD R3,R1,R2
STD X,R3
LD R4,C
FADD R5,R3,R4
STD Y,R5

How many
cycles?

Importance of Instruction Scheduling

• Assume a 2 cycle delay for loads from cache and for floating-point
addition

CS 610 Swarnendu Biswas

LD R1,A
LD R2,B
FADD R3,R1,R2
STD X,R3
LD R4,C
FADD R5,R3,R4
STD Y,R5

LD R1,A
LD R2,B
LD R4,C
FADD R3,R1,R2
FADD R5,R3,R4
STD X,R3
STD Y,R5How many

cycles?

Scheduling in VLIW

CS 610 Swarnendu Biswas

LD R1,A
LD R2,B
FADD R3,R1,R2
STD X,R3
LD R4,C
LD R5,D
FADD R6,R4,R5
STD Y,R6

LD R1, A LD R4, C

LD R2, B LD R5, D

delay delay

FADD R3, R1, R2 FADD R, R4, R5

STD X,R3 STD Y, R6

Processor Parallelism

• Synchronous parallelism
• Replicate processors, with each processor executing the same program on

different data

• Data Parallelism – same task on different data

• Asynchronous parallelism
• Replicate processors, but each processor can execute different programs

• Requires explicit synchronization

• Task Parallelism – independent tasks on same or different data

CS 610 Swarnendu Biswas

Compiling for Asynchronous Parallelism

CS 610 Swarnendu Biswas

PARALLEL DO I = 1, N
A(I+1) = A(I) + B(I)

ENDDO

PARALLEL DO I = 1, N
A(I-1) = A(I) + B(I)

ENDDO

Bernstein’s Conditions

• When is it safe to run two tasks R1 and R2 in parallel?

• If none of the following holds
1.R1 writes into a memory location that R2 reads

2.R2 writes into a memory location that R1 reads

3.Both R1 and R2 write to the same memory location

CS 610 Swarnendu Biswas

Granularity of Parallelism

Vectorization

• Parallelism is finer-grained

• Synchronization overhead is
small

Asynchronous Parallelism

• Parallelism is coarser-grained

• Larger start-up and
synchronization overheads

CS 610 Swarnendu Biswas

Granularity of Parallelism

Vectorization

• Parallelism is finer-grained

• Synchronization overhead is
small

Asynchronous Parallelism

• Parallelism is coarser-grained

• Larger start-up and
synchronization overheads

CS 610 Swarnendu Biswas

Compilers should parallelize the outer loops and
vectorize the inner ones

References

• R. Allen and K. Kennedy – Optimizing Compilers for Multicore Architectures, Chap 1.

CS 610 Swarnendu Biswas

