CS 610: Compiler Challenges
for Parallel Architectures

Swarnendu Biswas

Semester 2020-2021-1
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Copyright Information

* “The instructor of this course owns the copyright of all the course
materials. This lecture material was distributed only to the students
attending the course CS 610: Programming for Performance of IIT
Kanpur, and should not be distributed in print or through electronic
media without the consent of the instructor. Students can make their
own copies of the course materials for their use.”

https://www.iitk.ac.in/doaa/data/FAQ-2020-21-1.pdf

Improvements in Computing Capabilities

* Last few decades have been exciting for the parallel computing
community

* Improvements in computing capabilities
i. Improvement in underlying technology (aka Moore’s law)

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld
in Data

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

linked to Moor
50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

Transistor count

1,000,000
500,000

100,000
50,000

10,000
5,000

1,000

N

e's law.

8-core Xeon Nehalem-EX~
Six-core Xeon 7400,
Dual-core tanium 2@ @

Pentium D Presler

Itg%mc% e}/‘nh

72-core Xeon Phi Centriq 2400 ©GC2 IPU
SPARC M7 ’32 core AMD Epyc
IBM 213 Storage Conlro!ler pple A12X Bionic

18-core Xeon Haswell- Es

Xbox One main SOC\
61-core Xeon Phi

Tegra Xavier SoC
8 8 Qualcomm Snapdragon 8cx/SCX8180
12-core POWER

™ HiSilicon Kirin 980 + Apple A12 Bionic
10 CHlS:Iglo%n Klgn 7|I1%
core or roadwe
m Snapdiagon 835
3 .Dual core + GPU Ins Core i7 Broadwell-U
Quad-core + GPU GT2 Core i7 Skylake K
g L4 . %uad -core + GPU Core i7 Haswell
Apple A7 (dual-core ARMG4 "mobile SoC*)

wes’s
\ A:“&?g da] 2M L3
‘Core q% ifdale

Itanium 2 Madison 6M€® 2 Duo otfd le
Pentium D Smithfield ore 2 Duo
Itanium 2 McKinley@p E-3 ell Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-2M@ \OCow 2 Dug Allendale
Pentium 4 Cedar Mill
AMD K& ® 0Pemnum 4 Prescott
Pentium 4 Northwoodo ©Barton
tom
Pentium 4 Willamette@y €, . "\ L O

Pentium Il Mobile Dixon,

QARM Cortex-A9

AMD K7 ?Pemlum 1Il Coppermine
AMD K6-I
AMD K6 d>antiym Il Kat
Pentium P"b pﬁgﬁlﬁgﬁum "rBeschu{gg’
Pentlumo AMD K5
SA™110
Intel 80486, @ s
LEmRae i
Intel 8038 Intel . @ARM 3
Motorola 68020 060 ‘9&8
Inter 30286 Wt fan %M
M 1%rola M
& ©lntel 80186 e
intel 8086€p € Intel 8088 FgAAf«M 2 AR% 6
Co ©
Motaorol <
TMS 1000 Zilog 280 38 6@8 FE Wkt
RCA 1802 &ntel 8085 ¢
Intel 8008 intel 8080
'o' la Ng(agTechnology
Intel 4004 Mg 8 ¢
AL TSSO T TSSO
NN NN RN BN N A N S AR RN A R NI S S S S S SR SR S)

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

Improvements in Computing Capabilities

* Last few decades have been exciting for the parallel computing
community

* Improvements in computing capabilities
i. Improvement in underlying technology (aka Moore’s law)

ii. Advances in computer architecture
* Instruction level parallelism (pipelining)
Multiple execution units

Vector operations
VLIW and Superscalar instruction issue
Deeper and sophisticated cache hierarchies

Optimizing Compilers for Modern Architectures — R. Allen and K. Kennedy

Swarnendu Biswas

Challenges to Growth in Performance

25

. Clock speeds are
i not InCreasing
£ any more
2 w0

5 b e S—

Intel multicore
I | | | | |
2001 2003 2005 2007 2009 2011 2013

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.

Challenges to Growth in Performance

. mk speeds are
5 L 2asing
: °|— Power, and not manufacturing, limits S
§ »|— microarchitectural improvements — F. Pollack
5 Foratalairctlo ear — sl
| : | Intel mui.t;cure | |
2001 2003 2005 2007 2008 2011 2013

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.

48 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 10%)

Frequency (MHz)

Typical Power
(Watts)

Number of
Logical Cores

v
v
¢ o H 000 W LD Wenowm o0 -

| | | J

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Hardware Trends in the Last Ten Years!

* 2005 - 2018

 Single core performance increase is ~20%

* Programs do not run any faster by themselves

Programs Do Not Run Any Faster by
Themselves!

* Microarchitectural techniques

* Multiple functional units, superscalar architecture, VLIW, more cache
structures (e.g., L4 caches), deeper pipelines

Programs Do Not Run Any Faster by
Themselves!

Law of diminishing returns!

There is little or no more hidden parallelism
(ILP) to be found

Programs Do Not Run Any Faster by
Themselves!

* Complex systems are more difficult to program efficiently

» Systems programmers now need to be aware of memory hierarchies and
other architectural features to fully exploit the potential of the hardware

Programs Do Not Run Any Faster by
Themselves!

Have you heard of ninja programmers?

Intel MKL, Intel MKL-DNN, cuDNN and several other
popular libraries are hand-optimized for best performance

What is the software side of
the story?

Develop Parallel Programs

éom my perspective, parallelism is the biggest challenge since high-level \
programming languages. It’s the biggest thing in 50 years because industry is

betting its future that parallel programming will be useful.

Industry is building parallel hardware, assuming people can use it. And | think
there’s a chance they’ll fail since the software is not necessarily in place. So this
is a gigantic challenge facing the computer science community.

(David Patterson, ACM Queue, 2006. /

Develop Parallel Programs

To save the IT industry, researchers must demonstrate
greater end-user value of from an increasing number of

cores —
A View of Parallel Computing Landscape, CACM 2009.

- v

New Challenges in Software Development

* Adapt to the changing hardware landscape
* Most applications are single-threaded

(-)
How can we develop software that makes

. effective use of the extra hardware?)

Compilers to the rescue!

* A compiler is a system software that translates a program in a source
language to an equivalent program in a target language

source , Compiler , target
program program

Compilers to the rescue!

* A compiler is a system software that translates a program in a source
language to an equivalent program in a target language

4 _)
Role of a compiler

 Generate correct code

\- Improve the code according to some metric y

Compilers to the rescue!

* Compiler technology has become more important as machines have
become more complex

* Success of computer architecture innovations depends on the ability
of compilers to provide efficient language implementations on that
architecture

Compiling for Scalar Pipelines

* Pipelining subdivides a complex operation into independent
microoperations so that, if the different microoperations use different
resources, the microoperations can be overlapped by starting an
operation as soon as its predecessor has completed the first
microoperation

* A pipelined functional unit is effective only when the pipe is kept full;
that is, only when there are operands available for operation on each
segment clock cycle.

Compiling for Scalar Pipelines

Floating-point Adder

Inputs

Fetch

Operands
(FO)

Equate
Exponents (EE)

Add Mantissas
(AM)

Normalize
Result (NR)

Results

A pipelined execution unit computing a,= b, + ¢,

(FO)
b,
Cy

(EE)
b,
C3

(AM)
b,+c,

(NR)
dq

Compiling for Scalar Pipelines

* Multiple functional units

* Can issue n/m operations per
cycle

* Assuming n units and m cycles for
an operation to complete

 Also called fine-grained
parallelism

A 4

Adder 1
a;+b;

by

Cs

A 4

Adder 2
a,+b,

A 4

Adder 3
a; + b,

\ 4

A 4

Results

Adder 4
a, +b,

\ 4

Compiler Challenges with Pipelining

* The key performance barrier is pipeline stalls

* A stall occurs when a new set of inputs cannot be injected into the pipeline
because of a hazard

e Structural hazards — Available machine resources do not support
instruction overlap

* For example, if a machine has only one port to memory, it cannot overlap the
fetch of instructions with the fetch of data

* Such a hazard cannot be avoided through compiler strategies

Compiler Challenges with Pipelining

e Data hazards — Result produced by one instruction is needed by a
later one

LW R1, 0(R2)
ADD R3, R1, R4
* Compiler can schedule an instruction that does not use R1

e Control hazards — Occurs during processing of branch instructions

Vector Instructions

* Apply same operation to different positions of one or more arrays
e Goal: keep pipelines of execution units full

VLOAD V1,A

VLOAD V2,B B |
VADD V3.V1,V2) C(1:64) = A(1:64) + B(1:64)

VSTORE V3,C

* Challenges
* Increases processor state for the vector registers
* Increases the cost of processor context switching
* Expanded the instruct set complicating instruction decode
* Can pollute the cache hierarchy

Compiler Challenges with Vector Instructions

DO I = 1, 64
C(I) = A(I) = B(I)
ENDDO

DO I =1, 64
A(I+1) = A(I) + B(I)
ENDDO

Superscalar and VLIW Processors

* Goal is to issue multiple instructions on the same cycle

e Superscalar —looks ahead in the instruction stream and issues
instructions that are ready to execute

* VLIW — executes a wide instruction per cycle
e Usually one instruction slot per functional unit

e Challenges
* Finding enough parallel instructions
* Require more memory bandwidth

Compiling for Multiple-Issue Processors

* Compiler must recognize when operations are not related by
dependence

e Solution: vectorization

* Compiler must schedule instructions so that it requires as few total
cycles as possible
 Solution: instruction scheduling

Importance of Instruction Scheduling

* Assume a 2 cycle delay for loads from cache and for floating-point
addition

LD R1,A
LD R2,B How many
FADD R3,R1,R2 -
STD X,R3 cycles:
LD R4, C

FADD R5,R3,R&4
STD Y,R5

Importance of Instruction Scheduling

* Assume a 2 cycle delay for loads from cache and for floating-point
addition

LD R1,A LD R1,A
LD R2,B LD R2,B
FADD R3,R1,R2 LD R4, C
STD X,R3 FADD R3,R1,R2
LD R4, C FADD R5,R3,R4
FADD R5,R3,R4 STD X, R3
STD Y,R5 How many STD Y,R5

cycles?

Scheduling in VLIW

LD
LD
FADD
STD
LD
LD
FADD
STD

R1,A
R2,B
R3,R1,R2
X,R3
R4, C
R5,D
R6, R4, R5
Y, R6

LD R1, A

LD R2, B

delay

FADD R3, R1, R2
STD X,R3

LD R4, C

LD R5, D

delay

FADD R, R4, R5
STD Y, R6

Processor Parallelism

* Synchronous parallelism

* Replicate processors, with each processor executing the same program on
different data

e Data Parallelism — same task on different data

* Asynchronous parallelism
* Replicate processors, but each processor can execute different programs
* Requires explicit synchronization
* Task Parallelism — independent tasks on same or different data

Compiling for Asynchronous Parallelism

PARALLEL DO I = 1, N
AC(I+1) = A(I) + B(I)
ENDDO

PARALLEL DO I = 1, N
A(I-1) = A(I) + B(I)
ENDDO

Bernstein’s Conditions

 When is it safe to run two tasks R1 and R2 in parallel?

* If none of the following holds
1.R1 writes into a memory location that R2 reads
2.R2 writes into a memory location that R1 reads
3.Both R1 and R2 write to the same memory location

Granularity of Parallelism

Vectorization Asynchronous Parallelism
* Parallelism is finer-grained * Parallelism is coarser-grained
* Synchronization overhead is Larger start-up and
smal synchronization overheads

Granularity of Parallelism

Vectorization Asynchronous Parallelism
* Parallelism is finer-grained * Parallelism is coarser-grained
* Synchronization overhead is Larger start-up and
smal synchronization overheads

Compilers should parallelize the outer loops and
vectorize the inner ones

References

* R. Allen and K. Kennedy — Optimizing Compilers for Multicore Architectures, Chap 1.

