
CS698L: Write Cache-
Friendly Code

Swarnendu Biswas

Semester 2019-2020-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Things important with Computer Systems:
• Correctness (obvious!)
• Performance
• Power

CS 698L Swarnendu Biswas

Correctness is Important!

• AT&T hangs up its long-distance service (1990)

• For nine hours in January 1990 no AT&T customer could make a long-distance call. The
problem was the software that controlled the company's long-distance relay switches—
software that had just been updated. AT&T wound up losing $60 million in charges that day—
a very expensive bug.

• The Pentium chip's math error (1993)

• The Mars Climate Orbiter disintegrates in space (1998)

• NASA's $655-million robotic space probe plowed into Mars's upper atmosphere at the wrong
angle, burning up in the process. The problem? In the software that ran the ground
computers the thrusters' output was calculated in the wrong units (pound–seconds instead
of newton–seconds).

CS 698L Swarnendu Biswas

What is Performance?

Execution time = Time (s) taken by a program to execute

CS 698L Swarnendu Biswas

What is Performance?

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 # 𝑖𝑛𝑠𝑡𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

CS 698L Swarnendu Biswas

What is Performance?

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 # 𝑖𝑛𝑠𝑡𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑖𝑛𝑠𝑡𝑟

CS 698L Swarnendu Biswas

What is Performance?

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑖𝑛𝑠𝑡𝑟

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑐𝑦𝑐𝑙𝑒

CS 698L Swarnendu Biswas

What is Performance?

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑐𝑦𝑐𝑙𝑒

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗

time (s)

cycle

CS 698L Swarnendu Biswas

What is Performance?

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝐶𝑃𝐼 ∗

1

𝑓𝑟𝑒𝑞

CS 698L Swarnendu Biswas

What is Performance?

Execution time = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝐶𝑃𝐼 ∗

1

𝑓𝑟𝑒𝑞

Performance ∝ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Performance ∝
1

𝐶𝑃𝐼

CS 698L Swarnendu Biswas

Buying Performance with Technological
Innovations
• 1986 – 2005

• Performance of microprocessors increased by ~50% per year

• Programs ran faster by themselves
• We did not worry about performance

• Parallel computing, concurrent programming, and HPC were jobs for
specialists

CS 698L Swarnendu Biswas

Moore’s Law

• Number of transistors on chip doubles every year
• 1965

• Recalibrated it later in 70’s to say “doubles every two years”

• David House from Intel said “improvements would cause
performance to double every 18 months”

CS 698L Swarnendu Biswas

Moore’s Law

• Number of transistors on chip doubles every year
• 1965

• Recalibrated it later in 70’s to say “doubles every two years”

• David House from Intel said “improvements would cause
performance to double every 18 months”

“Moore’s law is a violation of Murphy’s law.”

CS 698L Swarnendu Biswas

Challenges to Growth in Performance

Clock speeds are not increasing any more

CS 698L Swarnendu Biswas

Clock speeds are stagnating!

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.

CS 698L Swarnendu Biswas

Mark Smotherman. https://people.cs.clemson.edu/~mark/330/power_density.gif

CS 698L Swarnendu Biswas

Power Wall

• Power, and not manufacturing, limits microarchitectural
improvements – F. Pollack

Dynamic power ∝ Capacitive load x Voltage2 x
Frequency

CS 698L Swarnendu Biswas

Hardware Trends in the Last Ten Years!

• 2005 – 2018
• Single core performance increase is ~20%

• Programs do not run any faster by themselves

CS 698L Swarnendu Biswas

Programs Do Not Run Any Faster by
Themselves!
• Microarchitectural techniques

• Add more functional units to improve ILP
• Superscalar architecture, VLIW, more cache structures (e.g., L4 caches), deeper pipelines

CS 698L Swarnendu Biswas

Programs Do Not Run Any Faster by
Themselves!
• Microarchitectural techniques

• Add more functional units to improve ILP
• Superscalar architecture, VLIW, more cache structures (e.g., L4 caches), deeper pipelines

CS 698L Swarnendu Biswas

Law of diminishing returns!

There is little or no more hidden parallelism
(ILP) to be found

Multicore Architecture

• Make effective use of the extra transistors
• Chip density is continuing to double every two years

• New prediction: # cores will double every two years

• We now have manycore machines

CS 698L Swarnendu Biswas

What is the software side of
the story?

Develop Parallel Programs

From my perspective, parallelism is the biggest challenge since high-level
programming languages. It’s the biggest thing in 50 years because industry is
betting its future that parallel programming will be useful.
…
Industry is building parallel hardware, assuming people can use it. And I think
there’s a chance they’ll fail since the software is not necessarily in place. So this
is a gigantic challenge facing the computer science community.

– David Patterson, ACM Queue, 2006.

CS 698L Swarnendu Biswas

Develop Parallel Programs

To save the IT industry, researchers must demonstrate
greater end-user value of from an increasing number of

cores –
A View of Parallel Computing Landscape, CACM 2009.

CS 698L Swarnendu Biswas

New Challenges in Software Development

• Adapt to the changing hardware landscape

• Most applications are single-threaded

How can we develop software that makes
effective use of the extra hardware?

CS 698L Swarnendu Biswas

Challenges in Developing Parallel Programs

• Programmers tend to think sequentially
• Correctness issues – concurrency bugs like data races and deadlocks

• Performance issues – minimize communication across cores

CS 698L Swarnendu Biswas

Programmer’s
tend to think
sequentially

Atomicity Violation

Thread 1

if (thd->proc_info)

fputs(thd->proc_info, …)

Thread 2

thd->proc_info = NULL;

MySQL
ha_innodb.cc

CS 698L Swarnendu Biswas

Order Violation

Thread 1

void init(…) {
…
mThread=

PR_CreateThread(mMain, …);
…

}

Thread 2

void mMain() {
mState=mThread->State;

}

Mozilla
nsthread.cpp

CS 698L Swarnendu Biswas

Deadlock

public class Account {
int bal = 0;
synchronized void transfer(int x, Account trg) {
this.bal -= x;
trg.deposit(x);

}
synchronized void deposit(int x) {
this.bal += x;

}
}

CS 698L Swarnendu Biswas

Starvation and Livelock

• Starvation
• A thread is unable to get regular access to shared resources and so is unable

to make progress

• Livelock
• Threads are not blocked, their states change, but they are unable to make

progress

CS 698L Swarnendu Biswas

Examples of Real-World Concurrency Bugs

50 million
people

Therac-25 Accident

• Therac-25 was a computer-controlled radiation therapy machine

• It was involved in at least six accidents between 1985 and 1987, in
which patients were given massive overdoses of radiation. Because of
concurrent programming errors, it sometimes gave its patients
radiation doses that were hundreds of times greater than normal,
resulting in death or serious injury.

https://en.wikipedia.org/wiki/Therac-25

CS 698L Swarnendu Biswas

Parallelism vs Concurrency

CS 698L Swarnendu Biswas

Parallelism vs Concurrency

Parallel programming

• Use additional resources to speed up computation

• Performance perspective

Concurrent programming

• Correct and efficient control of access to shared resources

• Correctness perspective

Distinction is not absolute

CS 698L Swarnendu Biswas

Challenges in Developing Parallel Programs

• Programmers tend to think sequentially
• Correctness issues – concurrency bugs like data races and deadlocks

• Performance issues – minimize communication across cores

• Amdahl’s law

• Overheads of parallel execution

• Other challenges: load balancing

CS 698L Swarnendu Biswas

We will focus on performance
aspects!

How to Write Efficient and Scalable Programs?

Good choice of algorithms and data structures

• Determines number of operations executed

Code that the compiler and architecture can effectively optimize

• Determines number of instructions executed

Proportion of parallelizable and concurrent code

• Amdahl’s law

Sensitive to the architecture platform

• Efficiency and characteristics of the platform

• For e.g., memory hierarchy, cache sizes

CS 698L Swarnendu Biswas

Let us compare the performance!

for (i = 0; i < 100000000; i++) {

W = 1.599999 * X;

X = 0.999999 * W;

}

for (i = 0; i < 100000000; i++) {

W = 1.599999 * W + 0.000001;

X = 0.999999 * X;

Y = 3.14159 * Y + 0.000001;

Z = Z + 1.0001;

}

CS 698L Swarnendu Biswas

Adapted from CS 5441 by P. Sadayappan @ Ohio State University

Let us compare the performance!

for (i = 0; i < 100000000; i++) {

W = 1.599999 * X;

X = 0.999999 * W;

}

for (i = 0; i < 100000000; i++) {

W = 1.599999 * W + 0.000001;

X = 0.999999 * X;

Y = 3.14159 * Y + 0.000001;

Z = Z + 1.0001;

}

CS 698L Swarnendu Biswas

550-600 ms ??? ms

Let us compare the performance!

for (i = 0; i < 100000000; i++) {

W = 1.599999 * X;

X = 0.999999 * W;

}

for (i = 0; i < 100000000; i++) {

W = 1.599999 * W + 0.000001;

X = 0.999999 * X;

Y = 3.14159 * Y + 0.000001;

Z = Z + 1.0001;

}

CS 698L Swarnendu Biswas

550-600 ms 350-400 ms

Let us compare the performance!

#define N 32

#define T 1024 * 1024

double A[N][N];

for (it = 0; it < T; it++)

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

A[i][j] += 1;

• #define N 32

• #define T 1024 * 1024

CS 698L Swarnendu Biswas

230 ms

Let us compare the performance!

#define N 32

#define T 1024 * 1024

double A[N][N];

for (it = 0; it < T; it++)

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

A[i][j] += 1;

• #define N 32

• #define T 1024 * 1024

• #define N 128

• #define T 1024 * 1024

• #define N 256

• #define T 1024 * 1024

• #define N 4096

• #define T 1024 * 1024

CS 698L Swarnendu Biswas

??? ms

Let us compare the performance!

#define N 32

#define T 1024 * 1024

double A[N][N];

for (it = 0; it < T; it++)

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

A[i][j] += 1;

• #define N 32

• #define T 1024 * 1024

• #define N 128

• #define T 1024 * 1024

• #define N 256

• #define T 1024 * 1024

• #define N 4096

• #define T 1024 * 1024

CS 698L Swarnendu Biswas

235 ms

240 ms

430 ms

720 ms

Cache Memory: Quick Recap
Slides adapted from Bryant and O’Hallaron (CS 15-213 @ CMU)

Understanding the Memory Hierarchy

• Cache: A small, fast storage device that acts as a staging area for a
subset of the data in a larger but slower device.

• Key insight
• The memory hierarchy creates a large pool of storage that costs as much as

the cheap storage near the bottom, but that serves data to programs at the
rate of the fast storage near the top.

• Because of locality, programs tend to access the data at level k more often
than they access the data at level k+1.

• For each k, the faster, smaller device at level k serves as a cache for the larger,
slower device at level k+1.

CS 698L Swarnendu Biswas

Cache Memories

• Cache memories are small, fast SRAM-based memories managed
automatically in hardware.
• Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then in main
memory.

• Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache
memories

General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size C = S x E x B data bytes

valid bit

Cache Read
E = 2e lines per set

S = 2s sets

t bits s bits b bits

Address of word:

tag set
index

block
offset

CS 698L Swarnendu Biswas

Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

I. Locate set
II. Check if any line in set has

matching tag
III. Yes + line valid: hit
IV. Locate data starting at offset

Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

CS 698L Swarnendu Biswas

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid? +

block offset

tag

Example: Direct Mapped Cache (E = 1)

CS 698L Swarnendu Biswas

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

1 0 M[0-1]1 1 M[8-9]Set 0

Set 1

Set 2

Set 3

CS 698L Swarnendu Biswas

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]1 1 M[8-9]1 0 M[0-1]Set 0

Set 1

Set 2

Set 3

CS 698L Swarnendu Biswas

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit

1 1 M[8-9]1 0 M[0-1]Set 0

Set 1

Set 2

Set 3

CS 698L Swarnendu Biswas

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

1 1 M[8-9]1 0 M[0-1]Set 0

Set 1

Set 2

Set 3

CS 698L Swarnendu Biswas

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]1 1 M[8-9]Set 0

Set 1

Set 2

Set 3

CS 698L Swarnendu Biswas

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0

Set 1

Set 2

Set 3

CS 698L Swarnendu Biswas

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

CS 698L Swarnendu Biswas

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set

CS 698L Swarnendu Biswas

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid? + match: yes = hit

block offset

tag

E-way Set Associative Cache (Here: E = 2)

CS 698L Swarnendu Biswas

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

0

0

0
Set 0

Set 1

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

0

0
Set 0

Set 1

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit

0

0
Set 0

Set 1

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

0
Set 0

Set 1

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]
Set 0

Set 1

2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

2-Way Set Associative Cache Simulation

Evaluating Cache Performance

• Fraction of memory references not found in cache (misses/access)

Miss rate

• Time to deliver a line in the cache to the processor, including the time to
determine whether the line is in the cache

Hit time

• Additional time required because of a miss

Miss penalty

CS 698L Swarnendu Biswas

Average Memory Access Time

• AMAT = timehit + probmiss * penaltymiss

• Let us compare performance of 99% and 97% hit rates
• Consider cache hit time of 1 cycle

• Miss penalty of 100 cycles

• AMAT99% = ?

• AMAT97% = ?

CS 698L Swarnendu Biswas

Average Memory Access Time

• AMAT = timehit + probmiss * penaltymiss

• Let us compare performance of 99% hit rate with 97%
• Consider cache hit time of 1 cycle

• Miss penalty of 100 cycles

• AMAT99% = 1 + 0.01*100 = 2 cycles

• AMAT97% = 1 + 0.03*100 = 4 cycles

• For multilevel cache
• AMATi (at level i) = timehiti

+ probmissi
* AMAT

i-1

CS 698L Swarnendu Biswas

Write Cache-Friendly Code
Slides adapted from Bryant and O’Hallaron (CS 15-213 @ CMU)

CS 698L

Is this function cache friendly?

int sumvec(int v[N]) {

int sum=0;

for (int i = 0; i < N; i++) {

sum += v[i];

}

return sum;

}

CS 698L Swarnendu Biswas

Suppose v is block-aligned, words are 4 bytes, cache blocks are
4 words, and the cache is initially empty.

What can you say about locality of variables i, sum, and
elements of v?

Is this function cache friendly?

int sumvec(int v[N]) {

int sum=0;

for (int i = 0; i < N; i++) {

sum += v[i];

}

return sum;

}

CS 698L Swarnendu Biswas

ADDR 0 4 8 12 16 20

Contents v0 v1 v2 v3 v4 V5

Iteration 0 1 2 3 4 5

Compare the two programs

for (int i = 0; i < n; i++) {

z[i] = x[i] – y[i];

z[i] = z[i] * z[i];

}

for (int i = 0; i < n; i++) {

z[i] = x[i] – y[i];

}

for (int i = 0; i < n; i++) {

z[i] = z[i] * z[i];

}

CS 698L Swarnendu Biswas

Which version is more efficient
if we have large arrays?

Layout of C Arrays in Memory

• C arrays allocated in row-major
order

• Stepping through columns in
one row
• Exploits spatial locality if block size

(B) > 4 bytes

• Stepping through rows in one
column
• Accesses distant elements, no

spatial locality!

int A[N][N];

for (i = 0; i < N; i++)
sum += A[0][i];

for (i = 0; i < n; i++)
sum += A[i][0];

CS 698L Swarnendu Biswas

https://en.wikipedia.org/wiki/Row-_and_column-major_order

Zeroing an Array

for (int j = 0; j < n; j++)

for (int i = 0; i < n; i++)

Z[i][j] = 0;

for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

Z[i][j] = 0;

CS 698L Swarnendu Biswas

Which version is more efficient
if the dimensions are large?

Data Locality

Parallelism and data locality go hand-in-hand

• Repeated references to memory locations or variables are good –
temporal locality

• Stride-1 reference patterns are good – spatial locality

Always focus on optimizing the common case

CS 698L Swarnendu Biswas

Compare Access Strides

int sumarrayrows(int a[M][N]) {

int i, j, sum=0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += A[i][j];

return sum;

}

int sumarraycols(int a[M][N]) {

int i, j, sum=0;

for (j = 0; j < M; j++)

for (i = 0; i < N; i++)

sum += A[i][j];

return sum;

}

CS 698L Swarnendu Biswas

Compare Access Strides

int sumarrayrows(int a[M][N]) {

int i, j, sum=0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += A[i][j];

return sum;

}

int sumarraycols(int a[M][N]) {

int i, j, sum=0;

for (j = 0; j < M; j++)

for (i = 0; i < N; i++)

sum += A[i][j];

return sum;

}

CS 698L Swarnendu Biswas

What are the miss rates per
iteration if the array a (i) fits
in cache and (ii) does not fit

in cache?

Compare Access Strides

int sumarrayrows(int a[M][N]) {

int i, j, sum=0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += A[i][j];

return sum;

}

int sumarraycols(int a[M][N]) {

int i, j, sum=0;

for (j = 0; j < M; j++)

for (i = 0; i < N; i++)

sum += A[i][j];

return sum;

}

CS 698L Swarnendu Biswas

4X slower

Miss Rate Analysis for Matrix Multiply

• Matrix-Vector Multiply and
Matrix-Matrix Multiply are
important kernels
• Heavily used in computational

science applications

/* ijk */

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) {
sum += A[i][k] * B[k][j];

}
C[i][j] = sum;

}
}

CS 698L Swarnendu Biswas

Miss Rate Analysis for Matrix Multiply

• Multiply NxN matrices with
O(N3) operations

• N reads per source element

• N values summed per
destination
• sum can be stored in a register

• 3N2 memory locations

• Algorithm is computation-
bound
• Memory accesses should not

constitute a bottleneck

/* ijk */

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) {
sum += A[i][k] * B[k][j];

}
C[i][j] = sum;

}
}

CS 698L Swarnendu Biswas

Cache Model

• Assumptions:
• Only consider cold and capacity misses, ignore conflict misses

• Large cache model: only cold misses

• Small cache model: both cold and capacity misses

• Line size = 32B (big enough for four 64-bit words)

• Matrix dimension (N) is very large

• Approximate
1

𝑁
as 0.0

• Cache is not even big enough to hold multiple rows

CS 698L Swarnendu Biswas

Miss Rate Analysis for Matrix Multiply

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j

CS 698L Swarnendu Biswas

Matrix Multiplication (ijk)

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += A[i][k] * B[k][j];

C[i][j] = sum;
}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

CS 698L Swarnendu Biswas

two stores,
zero loads

Matrix Multiplication (jik)

for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += A[i][k] * B[k][j];

C[i][j] = sum
}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

CS 698L Swarnendu Biswas

Matrix Multiplication (kij)

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = A[i][k];
for (j=0; j<n; j++)
C[i][j] += r * B[k][j];

}
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

CS 698L Swarnendu Biswas

two stores,
one load

Matrix Multiplication (ikj)

for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = A[i][k];
for (j=0; j<n; j++)
C[i][j] += r * B[k][j];

}
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

CS 698L Swarnendu Biswas

Matrix Multiplication (jki)

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = B[k][j];
for (i=0; i<n; i++)
C[i][j] += A[i][k] * r;

}
}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

CS 698L Swarnendu Biswas

Matrix Multiplication (kji)

for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = B[k][j];
for (i=0; i<n; i++)
C[i][j] += A[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

CS 698L Swarnendu Biswas

Summary of Matrix Multiplication

ijk (& jik):
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj):
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji):
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += A[i][k] * B[k][j];

C[i][j] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = A[i][k];
for (j=0; j<n; j++)
C[i][j] += r * B[k][j];

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = B[k][j];
for (i=0; i<n; i++)
C[i][j] += A[i][k] * r;

}
}CS 698L Swarnendu Biswas

Core i7 Matrix Multiply Performance

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

C
y
c
le

s
 p

e
r

in
n

e
r

lo
o

p
 i
te

ra
ti

o
n

Array size (n)

jki
kji
ijk
jik
kij
ikj

jki / kji

ijk / jik

kij / ikj

Total Cache Misses (ijk)

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += A[i][k] * B[k][j];

C[i][j] = sum;
}

}

A B C

I n n n

J n n n/BL

K n/BL n 1

n3/BL n3 n2/BL

CS 698L Swarnendu Biswas

Matrices are very
large compared to

cache size

Total Cache Misses (jki)

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = B[k][j];
for (i=0; i<n; i++)
C[i][j] += A[i][k] * r;

}
}

A B C

I n 1 n

J n n n

K n n n

n3 n2 n3

CS 698L Swarnendu Biswas

Matrices are very
large compared to

cache size

Cache Miss Analysis for MVM

CS 698L Swarnendu Biswas

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j]*x[j];

return sum;

}

Cache Miss Analysis for MVM

• Number of memory locations:
N2 + 2N

• Number of operations: O(N2)

• MVM is limited by memory
bandwidth

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j]*x[j];

return sum;

}

CS 698L Swarnendu Biswas

MVM (ij)

Large Cache Model

• Misses
• A: N2/B

• X: N/B

• Y: N/B

• Total: N2/B + 2N/B

Small Cache Model

• Misses
• A: N2/B

• X: N/B * N

• Y: N/B

• Total: 2N2/B + N/B

CS 698L Swarnendu Biswas

y

x

A

i

j

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
y[i] += A[i][j]*x[j];

return sum;
}

MVM (ji)

Large Cache Model

• Misses
• A: N2/B

• X: N/B

• Y: N/B

• Total: N2/B + 2N/B

Small Cache Model

• Misses
• A: N2

• X: N/B

• Y: N2/B

• Total: N2 + N2/B + N/B

CS 698L Swarnendu Biswas

y

x

A

i

j

for (j = 0; j < M; j++)
for (i = 0; i < N; i++)
y[i] += A[i][j]*x[j];

return sum;
}

Using Blocking to Improve
Temporal Locality

Example: Matrix Multiplication

a b

i

j

*

c

=

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i*n+j] += a[i*n + k]*b[k*n + j];
}

CS 698L Swarnendu Biswas

Cache Miss Analysis

• Assume:
• Matrix elements are doubles
• Cache block = 8 doubles
• Cache size << n (much smaller than n)

• First iteration:
•

𝑛

8
+ 𝑛 =

9𝑛

8
misses

• Afterwards in cache:
(schematic)

*=

n

*=

8 wide

Cache Miss Analysis

• Assume:
• Matrix elements are doubles
• Cache block = 8 doubles
• Cache size << n (much smaller than n)

• Second iteration:
•

𝑛

8
+ 𝑛 =

9𝑛

8
misses

• Total misses:
•

9𝑛

8
∗ 𝑛2 =

9

8
𝑛3

CS 698L Swarnendu Biswas

n

*=

8 wide

Cache Blocking
• Improve data reuse by chunking the data in to smaller blocks

• The block is supposed to fit in the cache

for (i = 0; i < N; i++) {
…

}

for (j = 0; j < N; j +=B) {
for (i = j; i < min(N, j+B); j++) {

…
}

}

for (body1 = 0; body1 < NBODIES; body1 ++) {
for (body2=0; body2 < NBODIES; body2++) {
OUT[body1] += compute(body1, body2);

}
}

for (body2 = 0; body2 < NBODIES; body2 += BLOCK) {
for (body1=0; body1 < NBODIES; body1 ++) {

for (body22=0; body22 < BLOCK; body22 ++) {
OUT[body1] += compute(body1, body2 +

body22);
}

}
}

https://software.intel.com/en-us/articles/cache-blocking-techniques

MVM with 2x2 Blocking
int i, j, a[100][100], b[100], c[100];

int n = 100;

for (i = 0; i < n; i++) {

c[i] = 0;

for (j = 0; j < n; j++) {

c[i] = c[i] + a[i][j] * b[j];

}

}

int i, j, x, y, a[100][100], b[100],
c[100];

int n = 100;

for (i = 0; i < n; i += 2) {

c[i] = 0;

c[i + 1] = 0;

for (j = 0; j < n; j += 2) {

for (x = i; x < min(i + 2, n); x++) {

for (y = j; y < min(j + 2, n); y++) {

c[x] = c[x] + a[x][y] * b[y];

}

}

}

}

https://en.wikipedia.org/wiki/Loop_nest_optimization

Blocked Matrix Multiplication
/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)
for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*

c

=
c

+

Block size B x B

Cache Miss Analysis
• Assume:

• Cache block = 8 doubles
• Cache size << n (much smaller than n)
• Three blocks fit into cache: 3B2 < C

• First (block) iteration:
•

𝐵2

8
misses for each block

• 2 ∗
𝑛

𝐵
∗

𝐵2

8
=

𝑛𝐵

4

(ignoring matrix C)

• Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks

Cache Miss Analysis

• Assume:
• Cache block = 8 doubles
• Cache size << n (much smaller than n)
• Three blocks fit into cache: 3B2 < C

• Second (block) iteration:
• Same as first iteration

• 2 ∗
𝑛

𝐵
∗

𝐵2

8
=

𝑛𝐵

4

• Total misses:
•

𝑛𝐵

4
∗ (

𝑛

𝐵
)2 =

𝑛3

4𝐵

CS 698L Swarnendu Biswas

*=

Block size B x B

n/B blocks

Summary

• No blocking:
9

8
∗ 𝑛3

• Blocking:
1

4𝐵
∗ 𝑛3

• Find largest possible block size B, but limit 3B2 < C!

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array elements used O(n) times!

• But the program has to be written properly

CS 698L Swarnendu Biswas

Pointers to Exploit Locality in your Code

Focus on the more frequently executed parts of the code (i.e.,
common case)

• E.g., inner loops

Maximize spatial locality with low strides (preferably 1)

Maximize temporal locality by reusing the data as much as
possible

CS 698L Swarnendu Biswas

References

• Keshav Pingali – CS 377P: Programming for Performance, UT Austin.

• P. Sadayappan and A. Sukumaran Rajam – CS 5441: Parallel Computing, Ohio State University.

• R. Bryant and D. O’Hallaron – Cache Memories, CS 15-213, Introduction to Computer Systems., CMU.

• R. Bryant and D. O’Hallaron – Computer Systems: A Programmer’s Perspective.

• A. Aho et al. – Compilers: Principles, Techniques and Tools.

CS 698L Swarnendu Biswas

