CS698L: Write Cache-
Friendly Code

Swarnendu Biswas

Semester 2019-2020-1
CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

4 A

Things important with Computer Systemes:
* Correctness (obvious!)

* Performance

* Power

Correctness is Important!

» AT&T hangs up its long-distance service (1990)

* For nine hours in January 1990 no AT&T customer could make a long-distance call. The
problem was the software that controlled the company's long-distance relay switches—
software that had just been updated. AT&T wound up losing $60 million in charges that day—

a very expensive bug.
* The Pentium chip's math error (1993)

* The Mars Climate Orbiter disintegrates in space (1998)

* NASA's $S655-million robotic space probe plowed into Mars's upper atmosphere at the wrong
angle, burning up in the process. The problem? In the software that ran the ground
computers the thrusters' output was calculated in the wrong units (pound—seconds instead
of newton—seconds).

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

What is Performance?

(

Execution time = Time (s) taken by a program to execute
G

Exec time = Time to execute # instrs in the program

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

Exec time = Time to execute # instrs in the program

H# instrs

Exec time = x Time to execute 1 instr
program

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

instrs

Exec time = x Time to execute 1 instr
program

instrs # cycles

Exec time = * — * Time to execute 1 cycle
program Instr

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

instrs # cycles

Exec time = * — * Time to execute 1 cycle
program Instr

instrs # cycles time (s)
% X

Exec time = .
program instr cycle

What is Performance?

(

Execution time = Time (s) taken by a program to execute

.

instrs

Exec time = * CPI *
program freq

What is Performance?

(

o

N

Performance < frequency

1
Performance &« —
CPI

\

Buying Performance with Technological
Innovations

* 1986 — 2005

* Performance of microprocessors increased by ~50% per year

* Programs ran faster by themselves
* We did not worry about performance

* Parallel computing, concurrent programming, and HPC were jobs for
specialists

Moore’s Law

 Number of transistors on chip doubles every year
* 1965
* Recalibrated it later in 70’s to say “doubles every two years”

* David House from Intel said “improvements would cause
performance to double every 18 months”

CS 698L Swarnendu Biswas

Moore’s Law

 Number of transistors on chip doubles every year
* 1965
* Recalibrated it later in 70’s to say “doubles every two years”

* David House from Intel said “improvements would cause
performance to double every 18 months”

[“Moore’s law is a violation of Murphy’s law.” J

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

OurWorld

in Data

This advancement is important as other aspects of technological progress - such as processing speed or the price of electronic products - are

strongly linked to Moore's law.

20'000’(”0'000 M 213 Storage Controlier, SPARC M7
10,000,000,000 18-cor0 Xoon HaMEs\
Kb Crwy main SoC Q@ 22-cone Xoon Beoadwod-£5
5,000,000,000 61.core Xeon Pri .‘ ‘ﬂ CO"MM Bridge-EX
8cmmnmnd:mw‘m %n?caom ‘mode SoC)
Dual-core MX%"OO. .' 0:"' i Core i7 Broacwell-U
. MMW&JG&?}?%QJ&MK
1,000,000,000 Pertm O Preser popeng o8 “core + Haswes
llm? with \ ch.mw WA?!MMARW “motde SoC”)
500,000,000 Haum 2 Modaon e S SRy ML
nmgomvn 4 Prescots2 .&aﬁgxéi:dnﬂe\%m "
100,000,000 AVO KEQ ’moan‘m:mm
Pontram 4 Northw
= 50,000,000 Pectom S WAASUe By oy OO
§ o7 § @Pertiam i Coppermine OARM Contex-A9
M
S 10,000,000 AMO K e
@ Pertium Pr { =
@ 5,000,000 0 Vmsm
© -
e a0
1,000,000 ese oo
500 000 “ E.-uomr’a 324 tll. 'aa”m
it) Qi
Metoeoks 8020 @
100,000 — -, 29 itian &
50,000 @ni 00195 '
Intel 2080 € Inel 8088 Qi 2 A& 6
B o
10,000 T™Sjooo ZiogZ80 o o Bt
® ncassce &enones
5,000 .. s0tg, 8080
4 w Technology
Intel 4&5
1,000
QD AV A o D D P & > > O & ® P © OB 0
L LIS LI LTI T TS

Data sourca: Wikipedia (https.//en.wikipedia.org/wiki/Transistor_count)

The data visualization i$ available at OurWoridinData,org. There you find more visualizations and research on this topic.

Year of introduction

Licensed under CC-BY-SA by the author Max Roser.

42 Years of Microprocessor Trend Data

/2 S S S _
10 ; “ Transistors
| thousands
X S S ()
10° _ ___ | Single-Thread
Performance 3
104 | (SpecINT x 107)
Frequency (MHz)
10° e
Typical Power
102 F A 1 (Watts)
1 A Number of
10 B = = _ v Logical Cores
A . h 4
whgt o 3o I
| | | |
1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

Challenges to Growth in Performance

(-)

Clock speeds are not increasing any more
g J

Clock speeds are stagnating!

25
20
N
b
@ 15
g
o
8 10
(1]
2007 Roadmap —
5 - L=y = “ E———
Intel multicore
0 | | | |] |
2001 2003 2005 2007 2009 2011 2013

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.

CS 698L

Swarnendu Biswas

Surface of the Sun —p;."'
#*

L4
Rocket Nozzle —)’"
#
#

*

1000

100

Watts/cm 2

10

15 107 05 0.35 0.250.18 0.13 0.1 0.07

Minumum IC Feature size
in microns

Mark Smotherman. https://people.cs.clemson.edu/~mark/330/power_density.gif

CS 698L Swarnendu Biswas

B

Power Wall

* Power, and not manufacturing, limits microarchitectural
improvements — F. Pollack

(-)
Dynamic power < Capacitive load x Voltage? x

. Frequency)

Hardware Trends in the Last Ten Years!

* 2005 - 2018

 Single core performance increase is ~20%

* Programs do not run any faster by themselves

Programs Do Not Run Any Faster by
Themselves!

* Microarchitectural techniques

* Add more functional units to improve ILP
e Superscalar architecture, VLIW, more cache structures (e.g., L4 caches), deeper pipelines

Programs Do Not Run Any Faster by
Themselves!

* Microarchitectural techniques

° A(’AMMW LLD
Jipelines

Law of diminishing returns!

‘There is little or no more hidden parallelism)
(ILP) to be found

J

Multicore Architecture

* Make effective use of the extra transistors
* Chip density is continuing to double every two years

* New prediction: # cores will double every two years

* We now have manycore machines

What is the software side of

the story?

Develop Parallel Programs

éom my perspective, parallelism is the biggest challenge since high-level \
programming languages. It’s the biggest thing in 50 years because industry is

betting its future that parallel programming will be useful.

Industry is building parallel hardware, assuming people can use it. And | think
there’s a chance they’ll fail since the software is not necessarily in place. So this
is a gigantic challenge facing the computer science community.

(David Patterson, ACM Queue, 2006. /

Develop Parallel Programs

To save the IT industry, researchers must demonstrate
greater end-user value of from an increasing number of

cores —
A View of Parallel Computing Landscape, CACM 2009.

- v

New Challenges in Software Development

* Adapt to the changing hardware landscape
* Most applications are single-threaded

(-)
How can we develop software that makes

. effective use of the extra hardware?)

Challenges in Developing Parallel Programs

* Programmers tend to think sequentially
e Correctness issues — concurrency bugs like data races and deadlocks
* Performance issues — minimize communication across cores

Programmer’s
ﬂ tend to think
sequentially

Atomicity Violation
Thread 1 Thread 2

if (thd->proc_info)
thd->proc_info = NULL;

fputs(thd->proc_info, ..)

~— \

MySQL
ha_innodb.cc

Order Violation

Thread 1 Thread 2
void init(..) { void mMain() {
- mState=mThread->State;
mThreads= }
PR_CreateThread(mMain, ..);
cos (h . N
} Mozilla

nsthread.cpp

Deadlock

public class Account {
int bal = 0;
synchronized void transfer(int x, Account trg) 1{
this.bal -= Xx;
trg.deposit(x);
}
synchronized void deposit(int x) {
this.bal += x;
}
}

Starvation and Livelock

e Starvation

* A thread is unable to get regular access to shared resources and so is unable
to make progress

 Livelock

* Threads are not blocked, their states change, but they are unable to make
progress

Examples of Real-World Concurrency Bugs

> Directions [mn}

N S8
57
£74 >

g, 00 million W Buy an iPhonej5AtiTey said

~ 3

-

-

comes with a map, they'said.

n NASDAQ's Glitch Cost Facebook
Investors ~$500M. It Will Pay Out Just
, $62M. IPO Elsewhere.
% ’? ;
t 9

Josh Constine @joshconstine / 6 years ago L] comment
Nasdaq's Facebook Glitch
Came From Race Conditions

READY *¥

oab Jackson

@Joab_Jackson May 21, 2012 12:30 PM

The Nasdaq computer system that delayed trade notices of the Facebook IPO on Friday
was plagued by race conditions, the stock exchange announced Monday. As a result of
this technical glitch in its Nasdag OMX system, the market expects to pay out US$13

million or even more to traders.

A number of trading firms lost money due to mismatched Facebook share prices. About

30 million shares' worth of trading were affected, the exchange estimated.

KILLED BY A MACHINE: THE
THERAC-25

by: Adam Fabio @ 139 Comments

f ¥ 3 October 26, 2015

SEARCH

Search ... SEARCH

NEVER MISS A HACK
fRYEXNm=

SUBSCRIBE

The Therac-25 was not a device anyone was happy to see. It was a radiation therapy machine. In layman’s terms it
was a “cancer zapper”: a linear accelerator with a human as its target. Using X-rays or a beam of electrons, | Enter Email Address |m

Therac-25 Accident

* Therac-25 was a computer-controlled radiation therapy machine

* |t was involved in at least six accidents between 1985 and 1987, in
which patients were given massive overdoses of radiation. Because of
concurrent programming errors, it sometimes gave its patients

radiation doses that were hundreds of times greater than normal,
resulting in death or serious injury.

https://en.wikipedia.org/wiki/Therac-25

Parallelism vs Concurrency

Concurprek = Twe Queuce One C"QQ‘& ﬁe“'(‘;"\

SRRRERILIRE % Concurrency vs Paralellism

4%3Aa8233 2% —

Concurrent

Pa(mlh\ = (we Quewcs (we C-{(« (aclpue

C e < o

&
L_‘ﬁq_ Paralell

.....

e
® dae AM\‘A:, 2013

CS 698L Swarnendu Biswas

Parallelism vs Concurrency

Parallel programming

e Use additional resources to speed up computation
e Performance perspective

Concurrent programming

e Correct and efficient control of access to shared resources
e Correctness perspective

Distinction is not absolute

CS 698L Swarnendu Biswas

Challenges in Developing Parallel Programs

* Programmers tend to think sequentially
e Correctness issues — concurrency bugs like data races and deadlocks
* Performance issues — minimize communication across cores

* Amdahl’s law
* Overheads of parallel execution
e Other challenges: load balancing

We will focus on performance

aspects!

How to Write Efficient and Scalable Programs?

Good choice of algorithms and data structures

e Determines number of operations executed

Code that the compiler and architecture can effectively optimize

e Determines number of instructions executed

Proportion of parallelizable and concurrent code

e Amdahl’s law

Sensitive to the architecture platform

e Efficiency and characteristics of the platform
e For e.g., memory hierarchy, cache sizes

CS 698L Swarnendu Biswas

Let us compare the performance!

for (i = 0; i < 100000000; i++) { for (i = 0; i < 100000000; i++) {
W = 1.599999 % X; W= 1.599999 « W + 0.000001;
X = 0.999999 x W; X = 0.999999 * X;
} Y = 3.14159 * Y + 0.000001;
Z =7+ 1.0001;

Adapted from CS 5441 by P. Sadayappan @ Ohio State University

Let us compare the performance!

for (i = 0; i < 100000000; i++) { for (i = 0; i < 100000000; i++) {
W = 1.599999 % X; W = 1.599999 * W + 0.000001;
X = 0.999999 x W; X = 0.999999 * X;
} Y = 3.14159 * Y + 0.000001;
Z =7+ 1.0001;
}

550-600 ms } ?2?7? ms }

Let us compare the performance!

for (i = 0; i < 100000000; i++) { for (i = 0; i < 100000000; i++) {
W = 1.599999 % X; W = 1.599999 * W + 0.000001;
X = 0.999999 x W; X = 0.999999 * X;
} Y = 3.14159 * Y + 0.000001;
Z =7+ 1.0001;
}

550-600 ms } 350-400 ms }

Let us compare the performance!

#tdefine N 32
#tdefine T 1024 * 1024
double A[N]IN];

for (it = 0; it < T; it++)
for (J = 0; j < N; j++)
for (1 = @; 1 < N; i++)
A[1][J] += 1;

e #define N 32
e ftdefine T 1024 * 1024

230 ms }

Let us compare the performance!

#tdefine N 32
#tdefine T 1024 * 1024
double A[N]IN];

for (it = 0; it < T; it++)
for (j = 0; j < N; j++)
for (i = 0; i < N; i++)
A[1][J] += 1;

2?? ms }

#define

#tdefine T

#tdefine
#tdefine

#tdefine
#tdefine

#tdefine
#tdefine

32
1024

128
1024

256
1024

4096
1024

1024

1024

1024

1024

Istopo

Machine (31GB)

Package P#0

L3 (8192KB)

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

L1d (32KB) L1d (32KB) L1d (32KB) L1d (32KB)

L1li (32KB) L1li (32KB) L1i (32KB) L1li (32KB)

Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PU P#1 PU P#2 PU P#3
PU P#4 PU P#5 PU P#6 PU P#7

PCl 8086:0412

renderD128

controlD64

cardO

PCl 8086:153b

enol

PCI 8086:8c02

sda

Host: cse-BM1AF-BP1AF-BM6AF

Indexes: physical

Date: Monday 29 July 2019 11:54:37 AM IST

Let us compare the performance!

#tdefine N 32
#tdefine T 1024 * 1024
double A[N]IN];

for (it = 0; it < T; it++)
for (j = 0; J < N; j++)
for (i = 0; i < N; i++)
A[1][]] += 1;

#define

#tdefine T

#tdefine
#tdefine

#tdefine
#tdefine

#tdefine
#tdefine

32
1024

128
1024

256
1024

4096
1024

*

*

1024

1024

1024

1024

235 ms

240 ms

430 ms

NN N N

720 ms

A S N

Cache Memory: Quick Recap

Slides adapted from Bryant and O’Hallaron (CS 15-213 @ CMU)

Understanding the Memory Hierarchy

e Cache: A small, fast storage device that acts as a staging area for a
subset of the data in a larger but slower device.

* Key insight

* The memory hierarchy creates a large pool of storage that costs as much as
the cheap storage near the bottom, but that serves data to programs at the
rate of the fast storage near the top.

* Because of locality, programs tend to access the data at level k more often
than they access the data at level k+1.

* For each k, the faster, smaller device at level k serves as a cache for the larger,
slower device at level k+1.

Cache Memories

e Cache memories are small, fast SRAM-based memories managed
automatically in hardware.
* Hold frequently accessed blocks of main memory

* CPU looks first for data in caches (e.g., L1, L2, and L3), then in main
memory.

e Typical system structure:
:CPU chip

Register file

Cachg <—> |:>ALU
memories]

@ . System bus Memory bus

SN S

Bus interface <::::> I/O <:> ain

bridge memory

General Cache Organization (S, E, B)

S = 2% sets <

E = 2¢ lines per set

+«—— set

line

Cache size C =S x E x B data bytes

P A
ceece
ceece
ceece
R
ceece
v tag 112 eoeeee B-1
valid bit ~ —

B = 2P bytes per cache block (the data)

Cache Read

S = 2% sets <

E = 2¢ lines per set
AL

Address of word:

t bits s bits | b bits

— A

tag set block
index offset

|. Locate set
CaChe Read Il. Check if any line in set has

matching tag

E = 2¢ lines per set lll. Yes + line valid: hit
P A ~ IV. Locate data starting at offset
(
o0 00
Address of word:
o0 t bits s bits | b bits
_9s ~—~—""
S=2 sets< XXX tag set block
index offset
0 000000000000 OCOGCOGEOGOEOGOEOGEOSGSEOSOSOSOOSOO
o0 00 <
\
data begins at this offset
Vv tag Ol112] eccce- B-1
valid bit N~——u—

B = 2P bytes per cache block (the data)

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

4 Address of int:

v ta ol1l213T4a]s[6]7
g tbits | 0..01 | 100

\ ta O111213141516171]| -
: find set

S=255ets<
\Y tag O11121314151617

Vv tag 0111213145617

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:

valid? + match: assume yes = hit

t bits 0..01 | 100

Vv tag 0111213145617

block offset

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 (0000,],
1 [0001,],
7 [0111,],
8 [1000,],
0 (0000,]

v Tag Block

Set 0
Set 1
Set 2
Set 3

CS 698L Swarnendu Biswas

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,],
7 [0111,],
8 [1000,],
0 [0000,]

v Tag Block

Set0 | 1 0 M[0-1]
Set 1
Set 2
Set 3

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,],
8 [1000,],
0 [0000,]

v Tag Block

Set0 | 1 0 M[0-1]
Set 1
Set 2
Set 3

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 0001,], hit
7 [0111,], miss
8 [1000,],
0 [0000,]

v Tag Block

Set O 1 0 M[O0-1]
Set 1
Set 2

Set3 | 1 0 M[6-7]

Direct-Mapped Cache Simulation

t

1

s=2

b

1

X

XX

X

Set 0
Set 1
Set 2
Set 3

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
7 [Oﬂlz], MISS
8 [1000,], miss
0 [0000,]

v Tag Block
1 M[8-9]

1 0 M[6-7]

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set O 1 0 M[O0-1]
Set 1
Set 2

Set3 | 1 0 M[6-7]

E-way Set Associative Cache (Here: E = 2)

E =2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

\ tag 0]1)2|3]4]5]6]7

tag

t bits 0..01 | 100
Y tag Oj1{213141|5\|6|7 tag 51617
Y tag Oj1{213141|5\|6|7 tag 5617
Y tag 0112131415161 7 tag 51617

E-way Set Associative Cache (Here: E = 2)

E =2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

\ tag 0]1)2|3]4]5]6]7

tag

t bits 0..01 | 100
Y tag Oj1{213141|5\|6|7 tag 51617
v| | tag | [o]1]2]3]4]5]6]7 tag s[e[7]| <« find set
Y tag 0112131415161 7 tag 51617

E-way Set Associative Cache (Here: E = 2)

E =2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

2 2
|_\l/ tag 0]1}]2]3 51617 \ tag 0]1112]3]4]|5]6]|7]]| «—

m— N N

block offset

2-Way Set Associative Cache Simulation

t=2 s=1 b=1

XX X X M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,],
1 [0001,],
7 [01112]1
3 [10902]1
0 [0000,]
v Tag Block
seto |9
0
0
Set 1 0

2-Way Set Associative Cache Simulation

t=2 s=1 b=1

XX X X M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,],
7 [0111,],
8 [1000,],
0 [0000,]

v Tag Block
seto L1 00 | M[O-1]

o

Set 1

o

2-Way Set Associative Cache Simulation

t=2

s=1

b=1

XX

X

X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

Set O

Set 1

0
1
7
8
0

Vv

Tag

[0000,],
[0001,],
[0111,],
[1000,],
[0000,]

Block

00

M[0-1]

o

o

Mmiss
hit

2-Way Set Associative Cache Simulation

t=2

s=1

b=1

XX

X

X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,],

0 [0000,]

v Tag Block
seto |1 00 | M[0-1]

[HEY

Set 1 01 M[6-7]

2-Way Set Associative Cache Simulation

t=2

s=1

b=1

XX

X

X

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,]

v Tag Block

seto 1|00 [Mm[0-1]
1 |10 [m[8-9]

[HEY

Set 1 01 M[6-7]

2-Way Set Associative Cache Simulation

t=2 s=1 b=1

XX X X M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

seto 1|00 [Mm[0-1]
1 |10 [m[8-9]

[HEY

Set 1 01 M[6-7]

Evaluating Cache Performance

e Viss rate

e Fraction of memory references not found in cache (misses/access)

e Hit time

e Time to deliver a line in the cache to the processor, including the time to
determine whether the line is in the cache

s [Vliss penalty

e Additional time required because of a miss

CS 698L Swarnendu Biswas

Average Memory Access Time

* AMAT = time,,, + prob, ... * penalty, ...

* Let us compare performance of 99% and 97% hit rates
* Consider cache hit time of 1 cycle
* Miss penalty of 100 cycles

* AMAT 4, = ?
* AMAT,,, = ?

Average Memory Access Time

* AMAT = time,,, + prob, ... * penalty, ...

* Let us compare performance of 99% hit rate with 97%
* Consider cache hit time of 1 cycle
* Miss penalty of 100 cycles

* AMATgq,, = 1 +0.01*100 = 2 cycles
* AMATy., =1+ 0.03*100 = 4 cycles

* For multilevel cache

. AMATI (at |eve| |) = timehiti + prOb * AMATi_l

missi

Write Cache-Friendly Code

Slides adapted from Bryant and O’Hallaron (CS 15-213 @ CMU)

CCCCCC

s this function cache friendly?

int sumvec(int v[N]) {
int sum=0;
for (int 1 = 0; i < N; i++) {

sum += v[i];

}

return sum; Suppose v is block-aligned, words are 4 bytes, cache blocks are

4 words, and the cache is initially empty.

What can you say about locality of variables i, sum, and
elements of v?

-

s this function cache friendly?

int sumvec(int v[N]) {
int sum=0;
for (int i = 0; 1 < N; 1i++) {
sum += v[i];
}

return sum,

}

ADDR 0 4 8 12

Compare the two programs

for (int i = 0; 1 < n; i++) { for (int 1 = 0; 1 < n; 1i++) {
z[1] = x[1] - y[i]; z[1] = x[1] - y[i];
z[i] = z[i] * z[i]; }
} for (int 1 = 0; 1 < n; 1i++) {
z[1] = z[1i] *» z[1i];
}

Which version is more efficient
if we have large arrays?

Layout of C Arrays in Memory

e C arrays allocated in row-major

order

* Stepping through columns in

one row

* Exploits spatial locality if block size

(B) > 4 bytes

* Stepping through rows in one

column

* Accesses distant elements, no

spatial locality!

int A[N]J[N];

for (1
sum

for (i
sum

= 0; 1 < N;
+= A[Q][1];

0; 1 < n;
+= Al1][0];

Row-major order
1++) Qg 3
Aofogios
Agf—Ago—=EBas

Column-major order

&1 G 43
&1/ Gop / o3
y a4, di

i++)

https://en.wikipedia.org/wiki/Row-_and_column-major_order

Zeroing an Array

for (int j = 0; j < n; j++) for (int i = 0; 1 < n; 1i++)
for (int 1 = 0; i < n; i++) for (int j = 0; j < n; j++)
zZ[11[j] = ©o; z[1][3] = o;

Which version is more efficient
if the dimensions are large?

Data Locality

Parallelism and data locality go hand-in-hand

e Repeated references to memory locations or variables are good —
temporal locality

e Stride-1 reference patterns are good — spatial locality

Always focus on optimizing the common case

CS 698L Swarnendu Biswas

Compare Access Strides

int sumarrayrows(int a[M][N]) { int sumarraycols(int a[M][N]) {
int 1, Jj, sum=0; int 1, Jj, sum=0;
for (1 = 0; 1 < M; 1i++) for (j = 0; j < M; j++)
for (j = 0; j < N; j++) for (1 = 0; 1 < N; 1++)
sum += A[1]1[j]; sum += A[i][j];
return sum; return sum;

Compare Access Strides

int sumarrayrows(int a[M][N]) { int sumarraycols(int a[M][N]) {
int 1, Jj, sum=0; int 1, Jj, sum=0;
for (1 = 0; 1 < M; 1i++) for (j = 0; j < M; j++)
for (j = 0; j < N; j++) for (1 = 0; i < N; i++)
sum += A[1]1[j]; sum += A[i][j];
return sum; return sum;
} }

What are the miss rates per
iteration if the array a (i) fits
in cache and (ii) does not fit
in cache?

Compare Access Strides

int sumarrayrows(int a[M][N]) { int sumarraycols(int a[M][N]) {
int 1, Jj, sum=0; int 1, Jj, sum=0;
for (1 = 0; 1 < M; 1i++) for (j = 0; j < M; j++)
for (j = 0; j < N; j++) for (1 = 0; 1 < N; 1++)
sum += A[1]1[j]; sum += A[i][j];
return sum; return sum;
} }

Miss Rate Analysis for Matrix Multiply

e Matrix-Vector Multiply and
Matrix-Matrix Multiply are
important kernels

* Heavily used in computational
science applications

/* 1jk %/

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) {
sum += A[i][k] * B[k][j];
}
C[il[j] = sum;
}
}

Miss Rate Analysis for Matrix Multiply

* Multiply NxN matrices with
O(N3) operations

* N reads per source element

* N values summed per
destination

e sum can be stored in a register
* 3N? memory locations

* Algorithm is computation-
bound

* Memory accesses should not
constitute a bottleneck

/* 1jk */

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) {
sum += A[1][k] * B[kI[j];
}

C[il[j] = sum;
}
}

Cache Model

* Assumptions:
* Only consider cold and capacity misses, ignore conflict misses
* Large cache model: only cold misses
* Small cache model: both cold and capacity misses

Line size = 32B (big enough for four 64-bit words)
Matrix dimension (N) is very large

* Approximate % as 0.0

* Cache is not even big enough to hold multiple rows

Miss Rate Analysis for Matrix Multiply

* Analysis Method:
* Look at access pattern of inner loop

Matrix Multiplication (ijk)

for (i=0; i<n; i++) 1

Inner loop:
for (j=0; j<n; j++) { P

sum = 0.0; *

two stores, for (k=0; k<n; k++) I; - ﬁlﬁ QJ)
zero loads sum += A[1]1[k] * B[kI[j]; (i,*)

C[il[j] = sum; A B

}}]

Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

CS 698L Swarnendu Biswas

Matrix Multiplication (jik)

for (j=0; j<n; j++) {

) _ _ Inner loop:
for (1=0; i<n; i++) {

sum = 0.0; *i

for (k=0; k<n; k++) g . Elf)
sum += A[i1[k] * B[KI[j1; (i,)

C[i][Jj] = sum A B

’]

Row-wise Column- Fixed
wise

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

CS 698L Swarnendu Biswas

Matrix Multiplication (kij)

two stores,
one load

CS 698L

for (k=0; k<n; k++) 1
for (i=0; i<n; i++) {
r = A[i][k];
for (j=0; j<n; j++)
C[i][j] += r = B[KkI[j];

Misses per inner loop iteration:

A B
0.0 0.25

¢
0.25

Swarnendu Biswas

Inner loop:

(i,k)
[

A

|

Fixed

E (k’*)g (i,*)
B C

Row-wise Row-wise

Matrix Multiplication (ikj)

CS 698L

for (1=0; i<n; 1++) {
for (k=0; k<n; k++) {
r = A[i][k];
for (j=0; j<n; j++)
C[i][j] += r = B[k][j];

Misses per inner loop iteration:

A B
0.0 0.25

¢
0.25

Swarnendu Biswas

Inner loop:

(i,k)
[

A

|

Fixed

E (k’*)g (i,*)
|

Row-wise Row-wise

Matrix Multiplication (jki)

for (3=0; j<n; j++) { Inner loop:
for (k=0; k<n; k++) { (* k) (* i)
r = B[k][]]; j:| (k,j) |:E
for (i=0; i<n; i++) B
Cl1][j] += A[i][k] * r; A B C
Column- Fi)led Column-
wise wise

Misses per inner loop iteration:

A B C

1.0 0.0 1.0

CS 698L Swarnendu Biswas

Matrix Multiplication (kji)

for (k=0; k<n; k++) 1
for (j=0; j<n; j++) {
r = B[k][j];
for (1i=0; i<n; i++)
C[1][3] += A[1][k] * r;

Inner loop:

%*’k)

A

|

Column-
wise

Misses per inner loop iteration:

A B

1.0 0.0

CS 698L

C

1.0

Swarnendu Biswas

(I:,J')

B

|

Fixed

C

|

Column-
wise

Summary of Mat

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0,
for (k=0; k<n; k++)
sum += A[i][k] * B[kI[j];
C[iI[j] = sum;
}
}

for (k=0; k<n; k++) {
for (1=0; i<n; i++) {
r = A[i][k];
for (j=0; j<n; j++)
C[i][j] += r = B[kI[j];
}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = B[k][j];
for (i=0; i<n; 1i++)
C[il[Jj] += A[il[k] * r;
}
}

rix Multiplication

ijk (& jik):
¢ 2 |loads, O stores
e misses/iter = 1.25

kij (& ikj):
¢ 2 |loads, 1 store
e misses/iter = 0.5

jki (& kiji):
e 2 |loads, 1 store
* misses/iter = 2.0

Core i7 Matrix Multiply Performance

60

50

40

30

20

Cycles per inner loop iteration

10

ki / ki

—*-jKi
HkKiji
—-ijk
=-jik
—+Kij
K]

/

L i /
——e——— —
50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Array size (n)

Total Cache Misses (ijk)

for (i=0; i<n; i++)

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)
sum += A[i][k] * B[kI[j];

C[1][3] = sum;
}
}

Matrices are very
large compared to
cache size

A B C
n n n
n n n/BL
n/BL n 1
n3/BL n3 nZ/BL

Total Cache Misses (jki)

Matrices are very
large compared to

for (j=0; j<n; j++) { cache size
for (k=0; k<n; k++) {
r = B[k][j];

for (i=0; i<n; i++)
C[i][j] += A[1]l[k] * r;

—

> S5 S|P
5 S5 L | ™
> S5 o |60

Cache Miss Analysis for MVM

for (i = 0; i < M; i++)
for (j = @; j < N; j++)
y[i] += A[i][j]*x[j];
return sum;

}

Oy O O =

CS 698L Swarnendu Biswas

oSO W O

O Ot O N

~N O = O

o = Ot N

Cache Miss Analysis for MVM

* Number of memory locations: for (i = 0; 1 < M; i++)
N2 + 2N for (j = 0; J < N; j++)
y[i] += A[1][j]*x[3j];

* Number of operations: O(N?)
return sum;

* MVM is limited by memory 1
bandwidth

MVI\/I (U) for (i = 0; 1 < M; 1i++)

for (j = 0; j < N; j++)

y[i] += A[i][j]*x[j];
return sum; y
1 i
Large Cache Model Small Cache Model
¢ |\/|iSS€S ° Misses

* A:N?/B * A:N2/B
* X:N/B * X:N/B*N
*Y:N/B *Y:N/B

* Total: N°/B + 2N/B * Total: 2N2/B + N/B

MVM (J|) for (j = 0; J < M; j++)

for (i = @; 1 < N; 1i++)

y[i] += A[1][jI*x[j];
return sum; y
1 i
Large Cache Model Small Cache Model

¢ |\/|iSS€S ° Misses

* A: N?/B o A: N2

* X:N/B * X: N/B

*Y:N/B * Y: N2/B

* Total: N2/B + 2N/B * Total: N2+ N2/B + N/B

Using Blocking to Improve
Temporal Locality

Example: Matrix Multiplication

CS 698L

/* Multiply n x n matrices a and b %/
void mmm(double *a, double xb, double *c, int n) {
int 1, J, k;
for (1 = 0; 1 < n; i++)
for (j = @0; j < n; j++)
for (k = 0; k < n; k++)
cli*n+j] += al[i*n + k]xb[k*n + j];

S o

I
*

Swarnendu Biswas

Cache Miss Analysis

e Assume:

e Matrix elements are doubles
e Cache block = 8 doubles
e Cache size << n (much smaller than n)

* First iteration:

n on)
e — 4+ 1 =—misses
8 8

e Afterwards in cache:
(schematic)

8 wide

Cache Miss Analysis

e Assume:

e Matrix elements are doubles
e Cache block = 8 doubles
e Cache size << n (much smaller than n)

r
e Second iteration: ;
'§+n=9§misses = *
8 wide

 Total misses:
om 2 9

[] —*n e

8 8

Tl3

CS 698L Swarnendu Biswas

Cache Blocking

* Improve data reuse by chunking the data in to smaller blocks
* The block is supposed to fit in the cache

for (i = 0; i < N; i++) { for (j = 0; j < N; j +=B) {
. for (i = j; i < min(N, j+B); j++) {
}
}
}
for (bodyl = 0; bodyl < NBODIES; bodyl ++) { for (body2 = 0; body2 < NBODIES; body2 += BLOCK) {
for (body2=0; body2 < NBODIES; body2++) { for (body1=0; bodyl < NBODIES; bodyl ++) {
OUT[bodyl] += compute(bodyl, body2); for (body22=0; body22 < BLOCK; body22 ++) {
} OUT[body1] += compute(bodyl, body2 +
} body22);
}
}
}

https://software.intel.com/en-us/articles/cache-blocking-techniques

MVM with 2x2 Blocking

int i, j, x, y, ali1ee][100], b[100],

int i, j, al[100][100], b[100], c[100];
int n = 100;

0; i < n; i++) {

for (i
cl[i] = 0;
for (j = 0; j < n; j++) {
cl[i] = c[1i] + al1][j] * blj];
}

cl[100];
int n = 100;

for (i = 0; 1 <n; 1 +=2) {

c[i] = 0;

cli + 1] = o;

for (j = 0; j <n; j+=2) {
for (x = 1; x < min(i + 2, n); x++) {

for (y
clx]

j; y <min(j + 2, n); y++) {
c[x] + alx][y]l * bly];

https://en.wikipedia.org/wiki/Loop_nest_optimization

Blocked Matrix Multiplication

/* Multiply n x n matrices a and b %/
void mmm(double *a, double xb, double *c, int n) {
int i, j, k;
for (1 = 0; 1 < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1 = 1; il < i+B; 1i++)
for (j1 = j; Jj1 < j+B; Jj++)
for (k1 = k; k1 < k+B; k++)
clilxn+j1] += alilx*n + k1]xb[klxn + ji];

I

Block size B x B

Cache Miss Analysis

e Assume:
e Cache block = 8 doubles
* Cache size << n (much smaller than n)
* Three blocks M fit into cache: 3B2< C

. . - n/B blocks
* First (block) iteration: —
B% .
» — misses for each block] HEEEEN =
n B? nB
e) x E * ? = T = k []
[]
(ignoring matrix C) T
* Afterwards in cache Block size B x B

(schematic) O EENE

I
*

Cache Miss Analysis

e Assume:
e Cache block = 8 doubles
* Cache size << n (much smaller than n)
* Three blocks M fit into cache: 3B2< C

n/B blocks
» Second (block) iteration: —N
« Same as first iteration [NN
e 9 B2 _nB
B 8 4 = *

e Total misses:

RCLEE

Block size B x B

CS 698L Swarnendu Biswas

summary

* No blocking: % *n3

. 1
* Blocking: — * n3

* Find largest possible block size B, but limit 3B? < C!

e Reason for dramatic difference:

* Matrix multiplication has inherent temporal locality:
* Input data: 3n?, computation 2n3
* Every array elements used O(n) times!

* But the program has to be written properly

Pointers to Exploit Locality in your Code

Focus on the more frequently executed parts of the code (i.e.,

common case)

e E.g., inner loops

Maximize spatial locality with low strides (preferably 1)

Maximize temporal locality by reusing the data as much as
possible

CS 698L Swarnen du Biswas

References

Keshav Pingali — CS 377P: Programming for Performance, UT Austin.

P. Sadayappan and A. Sukumaran Rajam — CS 5441: Parallel Computing, Ohio State University.

R. Bryant and D. O’Hallaron — Cache Memories, CS 15-213, Introduction to Computer Systems., CMU.
R. Bryant and D. O’Hallaron — Computer Systems: A Programmer’s Perspective.

A. Aho et al. — Compilers: Principles, Techniques and Tools.

