
CS698L: Write Cache-
Friendly Code

Swarnendu Biswas

Semester 2019-2020-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.



Things important with Computer Systems:
• Correctness (obvious!)
• Performance
• Power
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Correctness is Important!

• AT&T hangs up its long-distance service (1990) 

• For nine hours in January 1990 no AT&T customer could make a long-distance call. The 
problem was the software that controlled the company's long-distance relay switches—
software that had just been updated. AT&T wound up losing $60 million in charges that day—
a very expensive bug.

• The Pentium chip's math error (1993)

• The Mars Climate Orbiter disintegrates in space (1998)

• NASA's $655-million robotic space probe plowed into Mars's upper atmosphere at the wrong 
angle, burning up in the process. The problem? In the software that ran the ground 
computers the thrusters' output was calculated in the wrong units (pound–seconds instead 
of newton–seconds). 
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What is Performance?

Execution time  = Time (s) taken by a program to execute
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What is Performance?

Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 # 𝑖𝑛𝑠𝑡𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚
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What is Performance?

Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 # 𝑖𝑛𝑠𝑡𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝑇𝑖𝑚𝑒 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 1 𝑖𝑛𝑠𝑡𝑟
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What is Performance?

Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
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𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗

# 𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟
∗

time (s)

cycle
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What is Performance?

Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝐶𝑃𝐼 ∗
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𝑓𝑟𝑒𝑞
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What is Performance?

Execution time  = Time (s) taken by a program to execute

𝐸𝑥𝑒𝑐 𝑡𝑖𝑚𝑒 =
# 𝑖𝑛𝑠𝑡𝑟𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
∗ 𝐶𝑃𝐼 ∗

1

𝑓𝑟𝑒𝑞

Performance ∝ 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Performance ∝  
1

𝐶𝑃𝐼
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Buying Performance with Technological 
Innovations
• 1986 – 2005

• Performance of microprocessors increased by ~50% per year

• Programs ran faster by themselves
• We did not worry about performance

• Parallel computing, concurrent programming, and HPC were jobs for 
specialists
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Moore’s Law

• Number of transistors on chip doubles every year
• 1965

• Recalibrated it later in 70’s to say “doubles every two years”

• David House from Intel said “improvements would cause 
performance to double every 18 months”
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Moore’s Law

• Number of transistors on chip doubles every year
• 1965

• Recalibrated it later in 70’s to say “doubles every two years”

• David House from Intel said “improvements would cause 
performance to double every 18 months”

“Moore’s law is a violation of Murphy’s law.”
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Challenges to Growth in Performance 

Clock speeds are not increasing any more
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Clock speeds are stagnating!

K. Asanovic et al. A View of the Parallel Computing Landscape. CACM, Oct 2009.
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Mark Smotherman. https://people.cs.clemson.edu/~mark/330/power_density.gif
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Power Wall

• Power, and not manufacturing, limits microarchitectural 
improvements – F. Pollack 

Dynamic power ∝ Capacitive load x Voltage2 x   
Frequency
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Hardware Trends in the Last Ten Years!

• 2005 – 2018 
• Single core performance increase is ~20%

• Programs do not run any faster by themselves
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Programs Do Not Run Any Faster by 
Themselves!
• Microarchitectural techniques

• Add more functional units to improve ILP
• Superscalar architecture, VLIW, more cache structures (e.g., L4 caches), deeper pipelines
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Programs Do Not Run Any Faster by 
Themselves!
• Microarchitectural techniques

• Add more functional units to improve ILP
• Superscalar architecture, VLIW, more cache structures (e.g., L4 caches), deeper pipelines

CS 698L Swarnendu Biswas

Law of diminishing returns!

There is little or no more hidden parallelism 
(ILP) to be found



Multicore Architecture

• Make effective use of the extra transistors
• Chip density is continuing to double every two years

• New prediction: # cores will double every two years

• We now have manycore machines
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What is the software side of 
the story?



Develop Parallel Programs

From my perspective, parallelism is the biggest challenge since high-level 
programming languages. It’s the biggest thing in 50 years because industry is 
betting its future that parallel programming will be useful.
… 
Industry is building parallel hardware, assuming people can use it. And I think 
there’s a chance they’ll fail since the software is not necessarily in place. So this 
is a gigantic challenge facing the computer science community.

– David Patterson, ACM Queue, 2006.
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Develop Parallel Programs

To save the IT industry, researchers must demonstrate 
greater end-user value of from an increasing number of 

cores –
A View of Parallel Computing Landscape, CACM 2009.
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New Challenges in Software Development

• Adapt to the changing hardware landscape

• Most applications are single-threaded

How can we develop software that makes 
effective use of the extra hardware?
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Challenges in Developing Parallel Programs

• Programmers tend to think sequentially
• Correctness issues – concurrency bugs like data races and deadlocks

• Performance issues – minimize communication across cores
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Programmer’s 
tend to think 
sequentially



Atomicity Violation 

Thread 1

if (thd->proc_info)

fputs(thd->proc_info, …)

Thread 2

thd->proc_info = NULL;

MySQL
ha_innodb.cc
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Order Violation

Thread 1

void init(…) {
…
mThread=

PR_CreateThread(mMain, …); 
…

}

Thread 2

void mMain() {
mState=mThread->State;

}

Mozilla
nsthread.cpp
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Deadlock

public class Account {
int bal = 0;
synchronized void transfer(int x, Account trg) {
this.bal -= x;
trg.deposit(x);

}
synchronized void deposit(int x) {
this.bal += x;

}
}
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Starvation and Livelock

• Starvation
• A thread is unable to get regular access to shared resources and so is unable 

to make progress

• Livelock
• Threads are not blocked, their states change, but they are unable to make 

progress
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Examples of Real-World Concurrency Bugs

50 million 
people 







Therac-25 Accident

• Therac-25 was a computer-controlled radiation therapy machine

• It was involved in at least six accidents between 1985 and 1987, in 
which patients were given massive overdoses of radiation. Because of 
concurrent programming errors, it sometimes gave its patients 
radiation doses that were hundreds of times greater than normal, 
resulting in death or serious injury.

https://en.wikipedia.org/wiki/Therac-25
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Parallelism vs Concurrency
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Parallelism vs Concurrency

Parallel programming

• Use additional resources to speed up computation

• Performance perspective

Concurrent programming

• Correct and efficient control of access to shared resources

• Correctness perspective

Distinction is not absolute
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Challenges in Developing Parallel Programs

• Programmers tend to think sequentially
• Correctness issues – concurrency bugs like data races and deadlocks

• Performance issues – minimize communication across cores

• Amdahl’s law

• Overheads of parallel execution

• Other challenges: load balancing
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We will focus on performance 
aspects!



How to Write Efficient and Scalable Programs?

Good choice of algorithms and data structures

• Determines number of operations executed

Code that the compiler and architecture can effectively optimize

• Determines number of instructions executed

Proportion of parallelizable and concurrent code

• Amdahl’s law

Sensitive to the architecture platform

• Efficiency and characteristics of the platform

• For e.g., memory hierarchy, cache sizes
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Let us compare the performance!

for (i = 0; i < 100000000; i++) {

W = 1.599999 * X;

X = 0.999999 * W; 

}

for (i = 0; i < 100000000; i++) {

W = 1.599999 * W + 0.000001;

X = 0.999999 * X;

Y = 3.14159 * Y + 0.000001;

Z = Z + 1.0001; 

}
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Let us compare the performance!

for (i = 0; i < 100000000; i++) {

W = 1.599999 * X;

X = 0.999999 * W; 

}

for (i = 0; i < 100000000; i++) {

W = 1.599999 * W + 0.000001;

X = 0.999999 * X;

Y = 3.14159 * Y + 0.000001;

Z = Z + 1.0001; 

}
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Let us compare the performance!

#define N 32

#define T 1024 * 1024

double A[N][N];

for (it = 0; it < T; it++)

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

A[i][j] += 1;

• #define N 32

• #define T 1024 * 1024
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Let us compare the performance!

#define N 32

#define T 1024 * 1024

double A[N][N];

for (it = 0; it < T; it++)

for (j = 0; j < N; j++)

for (i = 0; i < N; i++)

A[i][j] += 1;

• #define N 32

• #define T 1024 * 1024

• #define N 128

• #define T 1024 * 1024

• #define N 256

• #define T 1024 * 1024

• #define N 4096

• #define T 1024 * 1024
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Cache Memory: Quick Recap
Slides adapted from Bryant and O’Hallaron (CS 15-213 @ CMU)



Understanding the Memory Hierarchy

• Cache: A small, fast storage device that acts as a staging area for a 
subset of the data in a larger but slower device.

• Key insight
• The memory hierarchy creates a large pool of storage that costs as much as 

the cheap storage near the bottom, but that serves data to programs at the 
rate of the fast storage near the top.

• Because of locality, programs tend to access the data at level k more often 
than they access the data at level k+1. 

• For each k, the faster, smaller device at level k serves as a cache for the larger, 
slower device at level k+1.
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Cache Memories

• Cache memories are small, fast SRAM-based memories managed 
automatically in hardware. 
• Hold frequently accessed blocks of main memory

• CPU looks first for data in caches (e.g., L1, L2, and L3), then in main 
memory.

• Typical system structure:

Main
memory

I/O
bridge

Bus interface

ALU

Register file

CPU chip

System bus Memory bus

Cache 
memories



General Cache Organization (S, E, B)
E = 2e lines per set

S = 2s sets

set

line

0 1 2 B-1tagv

B = 2b bytes per cache block (the data)

Cache size C = S x E x B data bytes

valid bit



Cache Read
E = 2e lines per set

S = 2s sets

t bits s bits b bits

Address of word:

tag set
index

block
offset
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Cache Read
E = 2e lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits

Address of word:

tag set
index

block
offset

data begins at this offset

I. Locate set
II. Check if any line in set has 

matching tag
III. Yes + line valid: hit
IV. Locate data starting at offset



Example: Direct Mapped Cache (E = 1)

S = 2s sets

Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set
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Direct mapped: One line per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match: assume yes = hitvalid?   +

block offset

tag

Example: Direct Mapped Cache (E = 1)
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Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

1 0 M[0-1]1 1 M[8-9]Set 0

Set 1

Set 2

Set 3
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Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]1 1 M[8-9]1 0 M[0-1]Set 0

Set 1

Set 2

Set 3
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Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit

1 1 M[8-9]1 0 M[0-1]Set 0

Set 1

Set 2

Set 3
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Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

1 1 M[8-9]1 0 M[0-1]Set 0

Set 1

Set 2

Set 3
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Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]1 1 M[8-9]Set 0

Set 1

Set 2

Set 3
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Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?

v Tag Block

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]Set 0

Set 1

Set 2

Set 3
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

find set
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E = 2: Two lines per set
Assume: cache block size 8 bytes

t bits 0…01 100

Address of short int:

0 1 2 7tagv 3 654 0 1 2 7tagv 3 654

compare both

valid?  + match: yes = hit

block offset

tag

E-way Set Associative Cache (Here: E = 2)
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2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

0

0

0
Set 0

Set 1



M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

0

0
Set 0

Set 1

2-Way Set Associative Cache Simulation



M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit

0

0
Set 0

Set 1

2-Way Set Associative Cache Simulation



M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

0
Set 0

Set 1

2-Way Set Associative Cache Simulation



M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]
Set 0

Set 1

2-Way Set Associative Cache Simulation



M=16 byte addresses, B=2 bytes/block, 
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):
0 [00002], 
1 [00012],  
7 [01112],  
8 [10002],  
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?

v Tag Block

0

0

0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

Set 0

Set 1

2-Way Set Associative Cache Simulation



Evaluating Cache Performance

• Fraction of memory references not found in cache (misses/access)

Miss rate

• Time to deliver a line in the cache to the processor, including the time to 
determine whether the line is in the cache

Hit time

• Additional time required because of a miss

Miss penalty
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Average Memory Access Time

• AMAT = timehit + probmiss * penaltymiss

• Let us compare performance of 99% and 97% hit rates
• Consider cache hit time of 1 cycle 

• Miss penalty of 100 cycles

• AMAT99% = ?

• AMAT97% = ?
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Average Memory Access Time

• AMAT = timehit + probmiss * penaltymiss

• Let us compare performance of 99% hit rate with 97%
• Consider cache hit time of 1 cycle 

• Miss penalty of 100 cycles

• AMAT99% = 1 + 0.01*100 = 2 cycles

• AMAT97% = 1 + 0.03*100 = 4 cycles

• For multilevel cache 
• AMATi (at level i) = timehiti

+ probmissi
* AMAT

i-1
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Write Cache-Friendly Code
Slides adapted from Bryant and O’Hallaron (CS 15-213 @ CMU)

CS 698L



Is this function cache friendly?

int sumvec(int v[N]) {

int sum=0;

for (int i = 0; i < N; i++) {

sum += v[i];

} 

return sum;

}

CS 698L Swarnendu Biswas

Suppose v is block-aligned, words are 4 bytes, cache blocks are 
4 words, and the cache is initially empty.

What can you say about locality of variables i, sum, and 
elements of v?



Is this function cache friendly?

int sumvec(int v[N]) {

int sum=0;

for (int i = 0; i < N; i++) {

sum += v[i];

} 

return sum;

}

CS 698L Swarnendu Biswas

ADDR 0 4 8 12 16 20

Contents v0 v1 v2 v3 v4 V5

Iteration 0 1 2 3 4 5



Compare the two programs

for (int i = 0; i < n; i++) {

z[i] = x[i] – y[i];

z[i] = z[i] * z[i];

}

for (int i = 0; i < n; i++) {

z[i] = x[i] – y[i];

}

for (int i = 0; i < n; i++) {

z[i] = z[i] * z[i];

}

CS 698L Swarnendu Biswas

Which version is more efficient 
if we have large arrays?



Layout of C Arrays in Memory

• C arrays allocated in row-major 
order

• Stepping through columns in 
one row
• Exploits spatial locality if block size 

(B) > 4 bytes

• Stepping through rows in one 
column
• Accesses distant elements, no 

spatial locality!

int A[N][N];

for (i = 0; i < N; i++)
sum += A[0][i];

for (i = 0; i < n; i++)
sum += A[i][0];
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https://en.wikipedia.org/wiki/Row-_and_column-major_order



Zeroing an Array

for (int j = 0; j < n; j++) 

for (int i = 0; i < n; i++)

Z[i][j] = 0;

for (int i = 0; i < n; i++) 

for (int j = 0; j < n; j++)

Z[i][j] = 0;

CS 698L Swarnendu Biswas

Which version is more efficient 
if the dimensions are large?



Data Locality

Parallelism and data locality go hand-in-hand

• Repeated references to memory locations or variables are good –
temporal locality

• Stride-1 reference patterns are good – spatial locality

Always focus on optimizing the common case
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Compare Access Strides

int sumarrayrows(int a[M][N]) {

int i, j, sum=0;

for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 

sum += A[i][j];

return sum;

}

int sumarraycols(int a[M][N]) {

int i, j, sum=0;

for (j = 0; j < M; j++) 

for (i = 0; i < N; i++) 

sum += A[i][j];

return sum;

}

CS 698L Swarnendu Biswas



Compare Access Strides

int sumarrayrows(int a[M][N]) {

int i, j, sum=0;

for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 

sum += A[i][j];

return sum;

}

int sumarraycols(int a[M][N]) {

int i, j, sum=0;

for (j = 0; j < M; j++) 

for (i = 0; i < N; i++) 

sum += A[i][j];

return sum;

}

CS 698L Swarnendu Biswas

What are the miss rates per 
iteration if the array a (i) fits 
in cache and (ii) does not fit 

in cache? 



Compare Access Strides

int sumarrayrows(int a[M][N]) {

int i, j, sum=0;

for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 

sum += A[i][j];

return sum;

}

int sumarraycols(int a[M][N]) {

int i, j, sum=0;

for (j = 0; j < M; j++) 

for (i = 0; i < N; i++) 

sum += A[i][j];

return sum;

}
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4X slower



Miss Rate Analysis for Matrix Multiply

• Matrix-Vector Multiply and 
Matrix-Matrix Multiply are 
important kernels
• Heavily used in computational 

science applications

/* ijk */

for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) {
sum += A[i][k] * B[k][j];

}
C[i][j] = sum;

}
} 
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Miss Rate Analysis for Matrix Multiply

• Multiply NxN matrices with 
O(N3) operations

• N reads per source element

• N values summed per 
destination
• sum can be stored in a register

• 3N2 memory locations

• Algorithm is computation-
bound
• Memory accesses should not 

constitute a bottleneck

/* ijk */

for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) {
sum += A[i][k] * B[k][j];

}
C[i][j] = sum;

}
} 
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Cache Model

• Assumptions:
• Only consider cold and capacity misses, ignore conflict misses

• Large cache model: only cold misses

• Small cache model: both cold and capacity misses

• Line size = 32B (big enough for four 64-bit words)

• Matrix dimension (N) is very large

• Approximate 
1

𝑁
as 0.0

• Cache is not even big enough to hold multiple rows
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Miss Rate Analysis for Matrix Multiply

• Analysis Method:
• Look at access pattern of inner loop

A

k

i

B

k

j

C

i

j
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Matrix Multiplication (ijk)

for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += A[i][k] * B[k][j];

C[i][j] = sum;
}

} 

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Column-
wise

Row-wise Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

CS 698L Swarnendu Biswas

two stores, 
zero loads



Matrix Multiplication (jik)

for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += A[i][k] * B[k][j];

C[i][j] = sum
}

}

A B C

(i,*)

(*,j)
(i,j)

Inner loop:

Row-wise Column-
wise

Fixed

Misses per inner loop iteration:
A B C

0.25 1.0 0.0
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Matrix Multiplication (kij)

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = A[i][k];
for (j=0; j<n; j++)
C[i][j] += r * B[k][j];   

}
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25

CS 698L Swarnendu Biswas

two stores, 
one load



Matrix Multiplication (ikj)

for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = A[i][k];
for (j=0; j<n; j++)
C[i][j] += r * B[k][j];

}
}

A B C

(i,*)
(i,k) (k,*)

Inner loop:

Row-wise Row-wiseFixed

Misses per inner loop iteration:
A B C

0.0 0.25 0.25
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Matrix Multiplication (jki)

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = B[k][j];
for (i=0; i<n; i++)
C[i][j] += A[i][k] * r;

}
}

A B C

(*,j)

(k,j)

Inner loop:

(*,k)

Column-
wise

Column-
wise

Fixed

Misses per inner loop iteration:
A B C

1.0 0.0 1.0
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Matrix Multiplication (kji)

for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
r = B[k][j];
for (i=0; i<n; i++)
C[i][j] += A[i][k] * r;

}
}

A B C

(*,j)
(k,j)

Inner loop:

(*,k)

FixedColumn-
wise

Column-
wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0
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Summary of Matrix Multiplication

ijk (& jik): 
• 2 loads, 0 stores
• misses/iter = 1.25

kij (& ikj): 
• 2 loads, 1 store
• misses/iter = 0.5

jki (& kji): 
• 2 loads, 1 store
• misses/iter = 2.0

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += A[i][k] * B[k][j];

C[i][j] = sum;
}
} 

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = A[i][k];
for (j=0; j<n; j++)
C[i][j] += r * B[k][j];   

}
}

for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r = B[k][j];
for (i=0; i<n; i++)
C[i][j] += A[i][k] * r;

}
}CS 698L Swarnendu Biswas



Core i7 Matrix Multiply Performance
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Total Cache Misses (ijk)

for (i=0; i<n; i++)  {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++) 
sum += A[i][k] * B[k][j];

C[i][j] = sum;
}

} 

A B C

I n n n

J n n n/BL

K n/BL n 1

n3/BL n3 n2/BL
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Matrices are very 
large compared to 

cache size



Total Cache Misses (jki)

for (j=0; j<n; j++)  {
for (k=0; k<n; k++) {
r = B[k][j];
for (i=0; i<n; i++) 
C[i][j] += A[i][k] * r;

}
} 

A B C

I n 1 n

J n n n

K n n n

n3 n2 n3

CS 698L Swarnendu Biswas

Matrices are very 
large compared to 

cache size



Cache Miss Analysis for MVM

CS 698L Swarnendu Biswas

for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 

y[i] += A[i][j]*x[j];

return sum;

}



Cache Miss Analysis for MVM

• Number of memory locations: 
N2 + 2N 

• Number of operations: O(N2)

• MVM is limited by memory 
bandwidth 

for (i = 0; i < M; i++) 

for (j = 0; j < N; j++) 

y[i] += A[i][j]*x[j];

return sum;

}
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MVM (ij)

Large Cache Model

• Misses
• A: N2/B 

• X: N/B

• Y: N/B

• Total: N2/B + 2N/B

Small Cache Model

• Misses
• A: N2/B

• X: N/B * N

• Y: N/B

• Total: 2N2/B + N/B
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y

x

A

i

j

for (i = 0; i < M; i++) 
for (j = 0; j < N; j++) 
y[i] += A[i][j]*x[j];

return sum;
}



MVM (ji)

Large Cache Model

• Misses
• A: N2/B 

• X: N/B

• Y: N/B

• Total: N2/B + 2N/B

Small Cache Model

• Misses
• A: N2

• X: N/B 

• Y: N2/B

• Total: N2 + N2/B + N/B
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y

x

A

i

j

for (j = 0; j < M; j++) 
for (i = 0; i < N; i++) 
y[i] += A[i][j]*x[j];

return sum;
}



Using Blocking to Improve 
Temporal Locality



Example: Matrix Multiplication

a b

i

j

*

c

=

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i*n+j] += a[i*n + k]*b[k*n + j];
}
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Cache Miss Analysis

• Assume: 
• Matrix elements are doubles
• Cache block = 8 doubles
• Cache size << n (much smaller than n)

• First iteration:
•

𝑛

8
+ 𝑛 = 

9𝑛

8
misses

• Afterwards in cache:
(schematic)

*=

n

*=

8 wide



Cache Miss Analysis

• Assume: 
• Matrix elements are doubles
• Cache block = 8 doubles
• Cache size << n (much smaller than n)

• Second iteration:
•

𝑛

8
+ 𝑛 = 

9𝑛

8
misses

• Total misses:
•

9𝑛

8
∗ 𝑛2 = 

9

8
𝑛3
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n

*=

8 wide



Cache Blocking
• Improve data reuse by chunking the data in to smaller blocks

• The block is supposed to fit in the cache

for (i = 0; i < N; i++) {
…

}

for (j = 0; j < N; j +=B) {
for (i = j; i < min(N, j+B); j++) {

…
}

}

for (body1 = 0; body1 < NBODIES; body1 ++) {
for (body2=0; body2 < NBODIES; body2++) {
OUT[body1] += compute(body1, body2);

}
}

for (body2 = 0; body2 < NBODIES; body2 += BLOCK) {
for (body1=0; body1 < NBODIES; body1 ++) {

for (body22=0; body22 < BLOCK; body22 ++) {
OUT[body1] += compute(body1, body2 + 

body22);
}

}
}

https://software.intel.com/en-us/articles/cache-blocking-techniques



MVM with 2x2 Blocking
int i, j, a[100][100], b[100], c[100];

int n = 100;

for (i = 0; i < n; i++) {

c[i] = 0;

for (j = 0; j < n; j++) {

c[i] = c[i] + a[i][j] * b[j];

}

}

int i, j, x, y, a[100][100], b[100], 
c[100];

int n = 100;

for (i = 0; i < n; i += 2) {

c[i] = 0;

c[i + 1] = 0;

for (j = 0; j < n; j += 2) {

for (x = i; x < min(i + 2, n); x++) {

for (y = j; y < min(j + 2, n); y++) {

c[x] = c[x] + a[x][y] * b[y];

}

}

}

}

https://en.wikipedia.org/wiki/Loop_nest_optimization



Blocked Matrix Multiplication
/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i++)

for (j1 = j; j1 < j+B; j++)
for (k1 = k; k1 < k+B; k++)

c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*

c

=
c

+

Block size B x B



Cache Miss Analysis
• Assume: 

• Cache block = 8 doubles
• Cache size << n (much smaller than n)
• Three blocks       fit into cache: 3B2 < C

• First (block) iteration:
•

𝐵2

8
misses for each block

• 2 ∗
𝑛

𝐵
∗

𝐵2

8
= 

𝑛𝐵

4

(ignoring matrix C)

• Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks



Cache Miss Analysis

• Assume: 
• Cache block = 8 doubles
• Cache size << n (much smaller than n)
• Three blocks       fit into cache: 3B2 < C

• Second (block) iteration:
• Same as first iteration

• 2 ∗
𝑛

𝐵
∗

𝐵2

8
= 

𝑛𝐵

4

• Total misses:
•

𝑛𝐵

4
∗ (

𝑛

𝐵
)2 = 

𝑛3

4𝐵
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*=

Block size B x B

n/B blocks



Summary

• No blocking: 
9

8
∗ 𝑛3

• Blocking:  
1

4𝐵
∗ 𝑛3

• Find largest possible block size B, but limit 3B2 < C!

• Reason for dramatic difference:
• Matrix multiplication has inherent temporal locality:

• Input data: 3n2, computation 2n3

• Every array elements used O(n) times!

• But the program has to be written properly
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Pointers to Exploit Locality in your Code

Focus on the more frequently executed parts of the code (i.e., 
common case)

• E.g., inner loops

Maximize spatial locality with low strides (preferably 1)

Maximize temporal locality by reusing the data as much as 
possible 

CS 698L Swarnendu Biswas



References

• Keshav Pingali – CS 377P: Programming for Performance, UT Austin.

• P. Sadayappan and A. Sukumaran Rajam – CS 5441: Parallel Computing, Ohio State University.

• R. Bryant and D. O’Hallaron – Cache Memories, CS 15-213, Introduction to Computer Systems., CMU.

• R. Bryant and D. O’Hallaron – Computer Systems: A Programmer’s Perspective.

• A. Aho et al. – Compilers: Principles, Techniques and Tools. 

CS 698L Swarnendu Biswas


