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How can we sum up all elements in an array?

int array[1000] = {0, 1, 34, 2, 89, -5, 67, 8, 4, 56,
23, 67, 0, 9, ..}

n
sum = Z array|i]
i=1



Comparing Implementations

Main Thread
long sum = 0,
for (int i =0; i < LEN; i++) {

sum += arrayl[il];

}




Comparing Implementations

Main Thread Main Thread

long sum = 0; Spawn n threads

long thr_sum[n] = {0}
for (int i =0; i < LEN; i++) {

sum += arrayl[i]; for (int 1 = 0; 1 < n; i++) {
} sum += thr _sum[i];
}
Thread 1

Compute CHUNK i of arrayl[]

for (int j = CTUNK_START; j + CHUNK_START <
CHUNK_END; J++)

thr_sum[j] += array[j];
}



Serial vs Parallel Processing
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s it Worth the Extra Complexity?

~/i/c/src $ ./a.out

Sequential sum: 499158189 Time (ns): 2119657 Array Of UﬂSlgnEd |ntS Of

_ size 1076, and four threads
Parallel sum: 499158189 Time (ns): 147934

~/i/c/src $ ./a.out
Sequential sum: 499019481 Time (ns): 2063707

Parallel sum: 499019481 Time (ns): 259234
~/i/c/src $ ./a.out l

Sequential sum: 498973205 Time (ns): 2113602 Order Of magnltude
Improvement

Parallel sum: 498973205 Time (ns): 257328

~/i/c/src $ ./a.out
Sequential sum: 499697650 Time (ns): 2110496

Parallel sum: 499697650 Time (ns): 252351

~f1/c/src $ [
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Parallel Programming Overview

Q
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Parallel Programming Overview

p
q Find parallelization opportunities in the problem
_* Decompose the problem into parallel units

p
eeee | Create parallel units of execution
* Manage efficient execution of the parallel units )

p
m Problem may require inter-unit communication
- Communication between threads, cores, ...




Inter-unit Communication

[ )
The problem logic will possibly require inter-unit
communication
. J
[ )
l‘b Units may be on the same processor or across
processors or across nodes
. J




What do we communicate in sequential  h
programs?



What do we communicate in sequential
programs?

-

\_

Global variables or data structures
Function arguments and call parameters

J

P
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Parallelism vs Concurrency

Concurprek = Twe Queuce One C"QQ‘& ﬁe“'(‘;"\
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Parallelism vs Concurrency

Parallel programming

e Use additional resources to speed up computation
e Performance perspective

Concurrent programming

e Correct and efficient control of access to shared resources
e Correctness perspective

Distinction is not absolute
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Parallel Architectures



Architecture Classification

* Popular dimensions for classification
* |Instruction and data stream
* Source of parallelism
 Structure of the system

Instruction

stream

CPU Main Memory

Data stream



Flynn’s Taxonomy

* Single Instruction Single Data  Single Instruction Multiple Data
SISD Instruction Pool SIMD Instruction Pool
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Flynn’s Taxonomy

* Multiple Instructions Single Data ¢ Multiple Instructions Multiple

Data
MISD Instruction Pool MIMD Instruction Pool
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Sources of Parallelism in Hardware

 Instruction-Level Parallelism * Processor and resource
(ILP) parallelism
* Pipelining, out-of-order execution, * |[ncrease units, memory
Superscalar, VLIW, ... bandwidth, ...

* Data parallelism

* |ncrease amount of data to be
operated on at same time



Source of Parallelism

Data Control/Function
* Vector processors, systolic * Pipelined, superscalar, VLIW
arrays, and SIMD processors

e Shared-memory systemes,
distributed memory systems



Control Parallel Architectures

Function-parallel
architectures

_— | T

Instruction level Thread level Process level
Parallel Arch Parallel Arch Parallel Arch
(ILPs) (MIMDSs)
Pipelined VLIWSs Superscalar Distributed Shared
Processors Processors Memory MIMD Memory
MIMD

Xin Yuang - Parallel Computer Architecture Classification. UFL.



Modern Classification

Uniprocessor

* Scalar processor
* Vector processor
* SIMD

Multiprocessor

* Symmetric multiprocessors
(SMP)

 Distributed memory
multiprocessor

e SMP clusters

e Shared memory addressing within
node

* Message passing between nodes



Performance Metrics of Parallel Architectures

* MIPS — million instructions per second
* MFLOPS — million floating point operations per second

* Which is a better metric?



Shared Memory Architecture

* Single address space shared by multiple P PP LR
cores M M multi-port
e Communication is implicit through
memory instructions (i.e., loads and stores) o1 [l [p
* Can share data efficiently e

M | shared bus

P

interconnection
network

< 4 4 ©




Implementing Shared Memory

e Uniform memory access SMP - Symmetric Multiprocessor System
(UMA)

* Interconnection network

used in the UMA can be a System Bus 1
single bus, multiple buses, - | | | |

or a crossbar switch

Main
Memory

Cache Cache Cache 1/0

By Ferruccio Zulian - Milan.Italy

Wikipedia.
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Implementing Shared Memory

* Non-uniform memory
access

* Memory access time
depends on the distance
from the core
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Challenges with Shared Memory

e Caches play key role in SMP performance
* Reduce average data access time, reduce interconnect bandwidth

* However, private caches create problem of data coherence
* Copies of a variable can be present in multiple caches



Sequence of Operations

X=X+5 Private
X=X+15 Cache
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Sequence of Operations

CS 698L

Cache

Final value of x
will be 30

y
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Problem of Data Coherence

Cache
Cache
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Problem of Data Coherence
Private

=
Private

e
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Problem of Data Coherence
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Problem of Data Coherence

e e
-~ |
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Problem of Data Coherence

e e
-~ |
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Problem of Data Coherence
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Problem of Data Coherence
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Challenges with Shared Memory

e Caches play key role in SMP performance
* Reduce average data access time, reduce interconnect bandwidth

* Private caches create data coherence problem
* Copies of a variable can be present in multiple caches

* Need support for cache coherence



Challenges with Shared Memory

* Access conflicts - several threads can try to access the same shared location

* Data race is the accesses are not correctly synchronized and one the accesses is a
write

e Synchronization is not cheap
* Programmer responsible for synchronized accesses to memory

* Coherence operations can become a bottleneck
* Takes time and effort in keeping shared-memory locations consistent
 Traffic due to data and cache/memory management
» Lack of scalability

e Other performance hazards — false sharing



False Sharing

What is going on here?

i

Thread 0 Thread 1
CPUO CPU 1
Cache Line Cache Line

m:ac he _/X Cache
| |
A

Memory

Intel. Avoiding and Identifying False Sharing Among Threads.




False Sharing

What is going

Does anyone
remember the MESI
protocol?

Thread 0 Thread 1
CPUO CPU 1
I I
Cache Line Cache Line
]
Cache _/X Cache
) 1 ]
N
h

Memory

Intel. Avoiding and Identifying False Sharing Among Threads.




State Transitions in MESI

(1) GetM r]JnGLtI'-.*[ (2) Fwd-GetM
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e - } ) -“"x \ Shanir | The only sharer might be the requestor,
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] » '. =M | ' ‘;JJ_-, M I are sent and the Data message from
(1) PutM+data (1) PatE (no data) (1) PutS R M/ A)II {21 Inv j Sh \ the Diir to Reg has an AckCount of zero.
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Transitions from I or S to M. Transition from E to M is silent.

A Primer on Memory Consistency and Cache Coherence.
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Distributed Memory Architecture

* Each processor has its own private memory
* Physically separated memory address space

* Processor must communicate to access non-local data
* Also called message passing architecture

* Requires interconnection network for communication

* Interconnection network topology is a key design factor, determines how the
system scales

* Need high bandwidth for communication



MNETYORK HUB

Wikipedia.
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Advantages of Distributed Memory

* Memory scales with the number of processors
* Can quickly access your own memory without the need for

global coherence
* (Can use off-the-shelf components



Be clear with uses!

@

e Multiple tasks in a program cooperate to solve a problem efficiently

Parallel computing

Concurrent programming

e Multiple tasks in a program can be in progress at the same time

Distributed computing

e A program needs to cooperate with other programs to solve a problem

Yonghong Yan.
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Parallel Programming Models



Parallel Programming Models

* An abstraction of parallel computer architectures
* Building block to design algorithms and write programs

* Dimensions
* Performance — how efficiently can programs run
* Productivity — how easy is it to develop programs



Parallel Programming Models

Shared-memory
Distributed memory
Data parallel (PGAS)

Single program multiple data (SPMD)

Multiple program multiple data (MPMD)

Hybrid
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Shared Memory without Threads

* Processes share a common
address space

* Notion of ownership of data is PIOEESS \\Memow

missing, complicating matters

* Unix-like systems provide oy
support via functions like process \* E
shm_open(), shmget(), and

shmct1()

process \
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Shared Memory with Threads

* A single process can be composed
of multiple worker threads

* Threads are software analog of

cores
e Each thread has its own PC, SP,
registers, etc

* All threads share the process heap
and the global data structures
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a.out

call sub1() — T2

call sub2() —

doi=1,n
A[i)=fnc(i**2)
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Shared Memory with Threads

* All threads access the shared address space
* Threads also have a private memory

* Synchronization is required to access shared resources
* Can otherwise lead to pernicious bugs

* Runtime system schedules threads to cores

* Concurrent units of execution

* |If there are more threads than cores, the runtime will time-slice threads on to
the cores



Distributed Memory

* The problem size may not fit on a single machine
e Graph analytics
* Obvious step: Go distributed!

* Distributed computing model
* Launch multiple processes on multiple systems
* Processes carry out work
* Processes may communicate through message passing
* Processes coordinate either through message passing or synchronization



Distributed Memory

* Also called message passing
programming model

e Set of tasks that use local
memory for computation

* Exchange data via communication

* MPI is a popular runtime

CS 698L

Machine A

task 0

Machine B

task 1
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network

recv()

task 3
| dem

send()




Challenges with Distributed Memory

(Often, communication turns out to be the primary bottleneck
e How do you partition the data between different nodes?
 Network topology is very important for scalability

. ° Non-uniform memory access

Since communication is explicit, therefore it excludes race

conditions
C Programmer’s responsibility to synchronize between tasks




Shared Memory vs Distributed Memory
Programming

Shared Memory Distributed Memory

e Communication is implicit Communication via explicit messages

Explicit synchronization Synchronization implicit via messages

e Requires hardware support for Requires support for in-node
coherence coherence and network
communication

* Lower development effort to begin Higher development effort to begin



Data Parallel

* Also known as the partitioned
global address space (PGAS)

* Address space is global, and
partitioned for tasks

» Tasks operate on their own
partition

e Can have locality of reference

* Implementations
e Unified Parallel C (UPC)
e X10 from IBM
* Chapel
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task 1

do i=26,50
A(i)=B(i)*delta
end do

task 2

du i=m,n
A(i)=B(i)*delta
end do

task n



Data Parallel

* No library calls for
communication

* Variables can name memory
locations on other machines

* Assume y points to a remote
location

* The following is equivalent to a
send/receive

oxz*y
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task 1

do i=26,50
A(i)=B(i)*delta
end do

task 2

task n



Single Program Multiple Data (SPMD)

* Tasks execute the same copy of
the program on different data

D rallel
ata paralle task 1 task2 task3 .. taskn
e Can be threads or message

passing interface
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Multiple Program Multiple Data (MPMD)

* Tasks may execute different
programs with different data

task 1 task2 task 3 ... taskn
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Hybrid

e Combine more than one of the
other models

* Examples

* Combine shared-memory on local
nodes, and exchange data over
networks

* Use GPUs for compute kernels
with CUDA for exchange between E E
host and device, and MPI for inter-
node communication
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