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How can we sum up all elements in an array?

int array[1000] = {0, 1, 34, 2, 89, -5, 67, 8, 4, 56,  
23, 67, 0, 9, …}
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Comparing Implementations
Main Thread

long sum = 0;

for (int i =0; i < LEN; i++) {

sum += array[i];

}
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Comparing Implementations
Main Thread

long sum = 0;

for (int i =0; i < LEN; i++) {
sum += array[i];

}

Main Thread

Spawn n threads
long thr_sum[n] = {0}

for (int i = 0; i < n; i++) {
sum += thr_sum[i];

}

Thread i

Compute CHUNK i of array[]
for (int j = CHUNK_START; j + CHUNK_START < 

CHUNK_END; j++) {
thr_sum[j] += array[j];

}
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Serial vs Parallel Processing
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https://computing.llnl.gov/tutorials/parallel_comp/



Is it Worth the Extra Complexity?
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Order of magnitude 
improvement

Array of unsigned ints of 
size 10^6, and four threads



Parallel Programming Overview
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Parallel Programming Overview
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Create parallel units of execution
• Manage efficient execution of the parallel units

Find parallelization opportunities in the problem
• Decompose the problem into parallel units

Problem may require inter-unit communication
• Communication between threads, cores, …



Inter-unit Communication
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Units may be on the same processor or across 
processors or across nodes

The problem logic will possibly require inter-unit 
communication



What do we communicate in sequential 
programs?
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What do we communicate in sequential 
programs?
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• Global variables or data structures
• Function arguments and call parameters



Parallelism vs Concurrency
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Parallelism vs Concurrency

Parallel programming

• Use additional resources to speed up computation

• Performance perspective

Concurrent programming

• Correct and efficient control of access to shared resources

• Correctness perspective

Distinction is not absolute
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Parallel Architectures
Quick Overview
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Architecture Classification

• Popular dimensions for classification
• Instruction and data stream

• Source of parallelism

• Structure of the system
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Flynn’s Taxonomy

• Single Instruction Single Data • Single Instruction Multiple Data
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Flynn’s Taxonomy

• Multiple Instructions Single Data • Multiple Instructions Multiple 
Data
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Sources of Parallelism in Hardware

• Instruction-Level Parallelism 
(ILP)
• Pipelining, out-of-order execution, 

Superscalar, VLIW, … 

• Data parallelism
• Increase amount of data to be 

operated on at same time

• Processor and resource 
parallelism
• Increase units, memory 

bandwidth, …
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Source of Parallelism 

Data

• Vector processors, systolic 
arrays, and SIMD 

Control/Function

• Pipelined, superscalar, VLIW 
processors

• Shared-memory systems, 
distributed memory systems
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Control Parallel Architectures

Function-parallel 

architectures

Instruction level 

Parallel Arch
Thread level 

Parallel Arch

Process level 

Parallel Arch
(ILPs) (MIMDs)

VLIWs Superscalar 

processors
Distributed 

Memory MIMD

Shared 

Memory 

MIMD

Pipelined 

processors

Xin Yuang - Parallel Computer Architecture Classification. UFL.



Modern Classification

Uniprocessor

• Scalar processor

• Vector processor

• SIMD

Multiprocessor

• Symmetric multiprocessors 
(SMP)

• Distributed memory 
multiprocessor

• SMP clusters
• Shared memory addressing within 

node

• Message passing between nodes

CS 698L Swarnendu Biswas



Performance Metrics of Parallel Architectures

• MIPS – million instructions per second

• MFLOPS – million floating point operations per second

• Which is a better metric?



Shared Memory Architecture

• Single address space shared by multiple 
cores

• Communication is implicit through 
memory instructions (i.e., loads and stores)

• Can share data efficiently
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Implementing Shared Memory 

• Uniform memory access 
(UMA)

• Interconnection network 
used in the UMA can be a 
single bus, multiple buses, 
or a crossbar switch
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Wikipedia.



Implementing Shared Memory 

• Non-uniform memory 

access

• Memory access time 
depends on the distance 
from the core
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Challenges with Shared Memory 

• Caches play key role in SMP performance
• Reduce average data access time, reduce interconnect bandwidth

• However, private caches create problem of data coherence
• Copies of a variable can be present in multiple caches
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Sequence of Operations
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Core 1
Private 
Cache

X = 10
x = x + 5

x = x + 15



Sequence of Operations
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Core 1
Private 
Cache

X = 10
x = x + 5

x = x + 15

Final value of x 
will be 30



Problem of Data Coherence
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Core 1

Core 2
Private 
Cache

Private 
Cache

X = 10



Problem of Data Coherence
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Core 1

Core 2
Private 
Cache

Private 
Cache

X = 10

Read x

Read x
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Problem of Data Coherence
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Problem of Data Coherence
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Core 1

Core 2

X = 10

x = x + 5

x = x + 15

X = 15

X = 25



Problem of Data Coherence
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Core 1

Core 2

X = 15

x = x + 5

x = x + 15

X = 15

X = 25



Problem of Data Coherence
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Core 1

Core 2

X = 25

x = x + 5

x = x + 15

X = 15

X = 25



Challenges with Shared Memory 

• Caches play key role in SMP performance
• Reduce average data access time, reduce interconnect bandwidth

• Private caches create data coherence problem
• Copies of a variable can be present in multiple caches

• Need support for cache coherence
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Challenges with Shared Memory 

• Access conflicts - several threads can try to access the same shared location
• Data race is the accesses are not correctly synchronized and one the accesses is a 

write

• Synchronization is not cheap

• Programmer responsible for synchronized accesses to memory

• Coherence operations can become a bottleneck
• Takes time and effort in keeping shared-memory locations consistent

• Traffic due to data and cache/memory management

• Lack of scalability

• Other performance hazards – false sharing
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False Sharing

CS 698L Swarnendu Biswas

Intel. Avoiding and Identifying False Sharing Among Threads. 

What is going on here?



False Sharing
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Intel. Avoiding and Identifying False Sharing Among Threads. 

What is going on here?

Does anyone 
remember the MESI 

protocol?



State Transitions in MESI
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A Primer on Memory Consistency and Cache Coherence.



Distributed Memory Architecture

• Each processor has its own private memory
• Physically separated memory address space

• Processor must communicate to access non-local data
• Also called message passing architecture

• Requires interconnection network for communication 
• Interconnection network topology is a key design factor, determines how the 

system scales

• Need high bandwidth for communication
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Wikipedia. 



Advantages of Distributed Memory 
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• Memory scales with the number of processors
• Can quickly access your own memory without the need for 

global coherence
• Can use off-the-shelf components 



Be clear with uses!

Parallel computing

• Multiple tasks in a program cooperate to solve a problem efficiently

Concurrent programming

• Multiple tasks in a program can be in progress at the same time

Distributed computing

• A program needs to cooperate with other programs to solve a problem
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Yonghong Yan. 



Parallel Programming Models
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Parallel Programming Models

• An abstraction of parallel computer architectures

• Building block to design algorithms and write programs

• Dimensions
• Performance – how efficiently can programs run

• Productivity – how easy is it to develop programs
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Parallel Programming Models

Shared-memory

Distributed memory

Data parallel (PGAS)

Single program multiple data (SPMD)

Multiple program multiple data (MPMD)

Hybrid
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Shared Memory without Threads

• Processes share a common 
address space
• Notion of ownership of data is 

missing, complicating matters

• Unix-like systems provide 
support via functions like 
shm_open(), shmget(), and
shmctl()
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Shared Memory with Threads

• A single process can be composed 
of multiple worker threads

• Threads are software analog of 
cores
• Each thread has its own PC, SP, 

registers, etc

• All threads share the process heap 
and the global data structures
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Shared Memory with Threads

• All threads access the shared address space
• Threads also have a private memory

• Synchronization is required to access shared resources
• Can otherwise lead to pernicious bugs

• Runtime system schedules threads to cores
• Concurrent units of execution

• If there are more threads than cores, the runtime will time-slice threads on to 
the cores
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Distributed Memory

• The problem size may not fit on a single machine
• Graph analytics

• Obvious step: Go distributed!

• Distributed computing model
• Launch multiple processes on multiple systems

• Processes carry out work 

• Processes may communicate through message passing

• Processes coordinate either through message passing or synchronization
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Distributed Memory

• Also called message passing 
programming model

• Set of tasks that use local 
memory for computation
• Exchange data via communication

• MPI is a popular runtime
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Challenges with Distributed Memory 
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Often, communication turns out to be the primary bottleneck
• How do you partition the data between different nodes?
• Network topology is very important for scalability

• Non-uniform memory access

Since communication is explicit, therefore it excludes race 
conditions
• Programmer’s responsibility to synchronize between tasks



Shared Memory vs Distributed Memory 
Programming

Shared Memory

• Communication is implicit

• Explicit synchronization

• Requires hardware support for 
coherence

• Lower development effort to begin 
with 

Distributed Memory

• Communication via explicit messages

• Synchronization implicit via messages

• Requires support for in-node 
coherence and network 
communication

• Higher development effort to begin 
with
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Data Parallel

• Also known as the partitioned 
global address space (PGAS)
• Address space is global, and 

partitioned for tasks
• Tasks operate on their own 

partition
• Can have locality of reference

• Implementations
• Unified Parallel C (UPC)
• X10 from IBM
• Chapel
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Data Parallel

• No library calls for 
communication

• Variables can name memory 
locations on other machines
• Assume y points to a remote 

location

• The following is equivalent to a 
send/receive

• x = *y
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Single Program Multiple Data (SPMD)

• Tasks execute the same copy of 
the program on different data
• Data parallel

• Can be threads or message 
passing interface
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Multiple Program Multiple Data (MPMD)

• Tasks may execute different 
programs with different data 
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Hybrid 

• Combine more than one of the 
other models

• Examples
• Combine shared-memory on local 

nodes, and exchange data over 
networks

• Use GPUs for compute kernels 
with CUDA for exchange between 
host and device, and MPI for inter-
node communication
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