
CS 698L: Parallel Architecture
and Programming Models

Swarnendu Biswas

Semester 2019-2020-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

How can we sum up all elements in an array?

int array[1000] = {0, 1, 34, 2, 89, -5, 67, 8, 4, 56,
23, 67, 0, 9, …}

CS 698L Swarnendu Biswas

𝑠𝑢𝑚 = ෍

𝑖=1

𝑛

𝑎𝑟𝑟𝑎𝑦[𝑖]

Comparing Implementations
Main Thread

long sum = 0;

for (int i =0; i < LEN; i++) {

sum += array[i];

}

CS 698L Swarnendu Biswas

Comparing Implementations
Main Thread

long sum = 0;

for (int i =0; i < LEN; i++) {
sum += array[i];

}

Main Thread

Spawn n threads
long thr_sum[n] = {0}

for (int i = 0; i < n; i++) {
sum += thr_sum[i];

}

Thread i

Compute CHUNK i of array[]
for (int j = CHUNK_START; j + CHUNK_START <

CHUNK_END; j++) {
thr_sum[j] += array[j];

}

CS 698L Swarnendu Biswas

Serial vs Parallel Processing

CS 698L Swarnendu Biswas

https://computing.llnl.gov/tutorials/parallel_comp/

Is it Worth the Extra Complexity?

CS 698L Swarnendu Biswas

Order of magnitude
improvement

Array of unsigned ints of
size 10^6, and four threads

Parallel Programming Overview

CS 698L Swarnendu Biswas

Find parallelization opportunities in the problem
• Decompose the problem into parallel units

Parallel Programming Overview

CS 698L Swarnendu Biswas

Create parallel units of execution
• Manage efficient execution of the parallel units

Find parallelization opportunities in the problem
• Decompose the problem into parallel units

Parallel Programming Overview

CS 698L Swarnendu Biswas

Create parallel units of execution
• Manage efficient execution of the parallel units

Find parallelization opportunities in the problem
• Decompose the problem into parallel units

Problem may require inter-unit communication
• Communication between threads, cores, …

Inter-unit Communication

CS 698L Swarnendu Biswas

Units may be on the same processor or across
processors or across nodes

The problem logic will possibly require inter-unit
communication

What do we communicate in sequential
programs?

CS 698L Swarnendu Biswas

What do we communicate in sequential
programs?

CS 698L Swarnendu Biswas

• Global variables or data structures
• Function arguments and call parameters

Parallelism vs Concurrency

CS 698L Swarnendu Biswas

Parallelism vs Concurrency

Parallel programming

• Use additional resources to speed up computation

• Performance perspective

Concurrent programming

• Correct and efficient control of access to shared resources

• Correctness perspective

Distinction is not absolute

CS 698L Swarnendu Biswas

Parallel Architectures
Quick Overview

CS 698L Swarnendu Biswas

Architecture Classification

• Popular dimensions for classification
• Instruction and data stream

• Source of parallelism

• Structure of the system

CS 698L Swarnendu Biswas

Flynn’s Taxonomy

• Single Instruction Single Data • Single Instruction Multiple Data

CS 698L Swarnendu Biswas

Flynn’s Taxonomy

• Multiple Instructions Single Data • Multiple Instructions Multiple
Data

CS 698L Swarnendu Biswas

Sources of Parallelism in Hardware

• Instruction-Level Parallelism
(ILP)
• Pipelining, out-of-order execution,

Superscalar, VLIW, …

• Data parallelism
• Increase amount of data to be

operated on at same time

• Processor and resource
parallelism
• Increase units, memory

bandwidth, …

CS 698L Swarnendu Biswas

Source of Parallelism

Data

• Vector processors, systolic
arrays, and SIMD

Control/Function

• Pipelined, superscalar, VLIW
processors

• Shared-memory systems,
distributed memory systems

CS 698L Swarnendu Biswas

Control Parallel Architectures

Function-parallel

architectures

Instruction level

Parallel Arch
Thread level

Parallel Arch

Process level

Parallel Arch
(ILPs) (MIMDs)

VLIWs Superscalar

processors
Distributed

Memory MIMD

Shared

Memory

MIMD

Pipelined

processors

Xin Yuang - Parallel Computer Architecture Classification. UFL.

Modern Classification

Uniprocessor

• Scalar processor

• Vector processor

• SIMD

Multiprocessor

• Symmetric multiprocessors
(SMP)

• Distributed memory
multiprocessor

• SMP clusters
• Shared memory addressing within

node

• Message passing between nodes

CS 698L Swarnendu Biswas

Performance Metrics of Parallel Architectures

• MIPS – million instructions per second

• MFLOPS – million floating point operations per second

• Which is a better metric?

Shared Memory Architecture

• Single address space shared by multiple
cores

• Communication is implicit through
memory instructions (i.e., loads and stores)

• Can share data efficiently

CS 698L Swarnendu Biswas

P

M

P

M

P P

multi-port

P

M

P P

shared bus

P P P

M
interconnection
network

Implementing Shared Memory

• Uniform memory access
(UMA)

• Interconnection network
used in the UMA can be a
single bus, multiple buses,
or a crossbar switch

CS 698L Swarnendu Biswas

Wikipedia.

Implementing Shared Memory

• Non-uniform memory

access

• Memory access time
depends on the distance
from the core

CS 698L Swarnendu Biswas

Challenges with Shared Memory

• Caches play key role in SMP performance
• Reduce average data access time, reduce interconnect bandwidth

• However, private caches create problem of data coherence
• Copies of a variable can be present in multiple caches

CS 698L Swarnendu Biswas

Sequence of Operations

CS 698L Swarnendu Biswas

Core 1
Private
Cache

X = 10
x = x + 5

x = x + 15

Sequence of Operations

CS 698L Swarnendu Biswas

Core 1
Private
Cache

X = 10
x = x + 5

x = x + 15

Final value of x
will be 30

Problem of Data Coherence

CS 698L Swarnendu Biswas

Core 1

Core 2
Private
Cache

Private
Cache

X = 10

Problem of Data Coherence

CS 698L Swarnendu Biswas

Core 1

Core 2
Private
Cache

Private
Cache

X = 10

Read x

Read x

Problem of Data Coherence

CS 698L Swarnendu Biswas

Core 1

Core 2

X = 10

Read x

Read x

X = 10

X = 10

Problem of Data Coherence

CS 698L Swarnendu Biswas

Core 1

Core 2

X = 10

x = x + 5

x = x + 15

X = 10

X = 10

Problem of Data Coherence

CS 698L Swarnendu Biswas

Core 1

Core 2

X = 10

x = x + 5

x = x + 15

X = 15

X = 25

Problem of Data Coherence

CS 698L Swarnendu Biswas

Core 1

Core 2

X = 15

x = x + 5

x = x + 15

X = 15

X = 25

Problem of Data Coherence

CS 698L Swarnendu Biswas

Core 1

Core 2

X = 25

x = x + 5

x = x + 15

X = 15

X = 25

Challenges with Shared Memory

• Caches play key role in SMP performance
• Reduce average data access time, reduce interconnect bandwidth

• Private caches create data coherence problem
• Copies of a variable can be present in multiple caches

• Need support for cache coherence

CS 698L Swarnendu Biswas

Challenges with Shared Memory

• Access conflicts - several threads can try to access the same shared location
• Data race is the accesses are not correctly synchronized and one the accesses is a

write

• Synchronization is not cheap

• Programmer responsible for synchronized accesses to memory

• Coherence operations can become a bottleneck
• Takes time and effort in keeping shared-memory locations consistent

• Traffic due to data and cache/memory management

• Lack of scalability

• Other performance hazards – false sharing

CS 698L Swarnendu Biswas

False Sharing

CS 698L Swarnendu Biswas

Intel. Avoiding and Identifying False Sharing Among Threads.

What is going on here?

False Sharing

CS 698L Swarnendu Biswas

Intel. Avoiding and Identifying False Sharing Among Threads.

What is going on here?

Does anyone
remember the MESI

protocol?

State Transitions in MESI

CS 698L Swarnendu Biswas

A Primer on Memory Consistency and Cache Coherence.

Distributed Memory Architecture

• Each processor has its own private memory
• Physically separated memory address space

• Processor must communicate to access non-local data
• Also called message passing architecture

• Requires interconnection network for communication
• Interconnection network topology is a key design factor, determines how the

system scales

• Need high bandwidth for communication

CS 698L Swarnendu Biswas

CS 698L Swarnendu Biswas

Wikipedia.

Advantages of Distributed Memory

CS 698L Swarnendu Biswas

• Memory scales with the number of processors
• Can quickly access your own memory without the need for

global coherence
• Can use off-the-shelf components

Be clear with uses!

Parallel computing

• Multiple tasks in a program cooperate to solve a problem efficiently

Concurrent programming

• Multiple tasks in a program can be in progress at the same time

Distributed computing

• A program needs to cooperate with other programs to solve a problem

CS 698L Swarnendu Biswas

Yonghong Yan.

Parallel Programming Models

CS 698L Swarnendu Biswas

Parallel Programming Models

• An abstraction of parallel computer architectures

• Building block to design algorithms and write programs

• Dimensions
• Performance – how efficiently can programs run

• Productivity – how easy is it to develop programs

CS 698L Swarnendu Biswas

Parallel Programming Models

Shared-memory

Distributed memory

Data parallel (PGAS)

Single program multiple data (SPMD)

Multiple program multiple data (MPMD)

Hybrid

CS 698L Swarnendu Biswas

Shared Memory without Threads

• Processes share a common
address space
• Notion of ownership of data is

missing, complicating matters

• Unix-like systems provide
support via functions like
shm_open(), shmget(), and
shmctl()

CS 698L Swarnendu Biswas

Shared Memory with Threads

• A single process can be composed
of multiple worker threads

• Threads are software analog of
cores
• Each thread has its own PC, SP,

registers, etc

• All threads share the process heap
and the global data structures

CS 698L Swarnendu Biswas

Shared Memory with Threads

• All threads access the shared address space
• Threads also have a private memory

• Synchronization is required to access shared resources
• Can otherwise lead to pernicious bugs

• Runtime system schedules threads to cores
• Concurrent units of execution

• If there are more threads than cores, the runtime will time-slice threads on to
the cores

CS 698L Swarnendu Biswas

Distributed Memory

• The problem size may not fit on a single machine
• Graph analytics

• Obvious step: Go distributed!

• Distributed computing model
• Launch multiple processes on multiple systems

• Processes carry out work

• Processes may communicate through message passing

• Processes coordinate either through message passing or synchronization

CS 698L Swarnendu Biswas

Distributed Memory

• Also called message passing
programming model

• Set of tasks that use local
memory for computation
• Exchange data via communication

• MPI is a popular runtime

CS 698L Swarnendu Biswas

Challenges with Distributed Memory

CS 698L Swarnendu Biswas

Often, communication turns out to be the primary bottleneck
• How do you partition the data between different nodes?
• Network topology is very important for scalability

• Non-uniform memory access

Since communication is explicit, therefore it excludes race
conditions
• Programmer’s responsibility to synchronize between tasks

Shared Memory vs Distributed Memory
Programming

Shared Memory

• Communication is implicit

• Explicit synchronization

• Requires hardware support for
coherence

• Lower development effort to begin
with

Distributed Memory

• Communication via explicit messages

• Synchronization implicit via messages

• Requires support for in-node
coherence and network
communication

• Higher development effort to begin
with

CS 698L Swarnendu Biswas

Data Parallel

• Also known as the partitioned
global address space (PGAS)
• Address space is global, and

partitioned for tasks
• Tasks operate on their own

partition
• Can have locality of reference

• Implementations
• Unified Parallel C (UPC)
• X10 from IBM
• Chapel

CS 698L Swarnendu Biswas

Data Parallel

• No library calls for
communication

• Variables can name memory
locations on other machines
• Assume y points to a remote

location

• The following is equivalent to a
send/receive

• x = *y

CS 698L Swarnendu Biswas

Single Program Multiple Data (SPMD)

• Tasks execute the same copy of
the program on different data
• Data parallel

• Can be threads or message
passing interface

CS 698L Swarnendu Biswas

Multiple Program Multiple Data (MPMD)

• Tasks may execute different
programs with different data

CS 698L Swarnendu Biswas

Hybrid

• Combine more than one of the
other models

• Examples
• Combine shared-memory on local

nodes, and exchange data over
networks

• Use GPUs for compute kernels
with CUDA for exchange between
host and device, and MPI for inter-
node communication

CS 698L Swarnendu Biswas

References

• James Demmel and Katherine Yelick – CS 267: Shared Memory Programming: Threads and OpenMP

• Keshav Pingali – CS 377P: Programming Shared-memory Machines, UT Austin.

• Blaise Barney, LLNL. Introduction to Parallel Computing, https://computing.llnl.gov/tutorials/parallel_comp/

CS 698L Swarnendu Biswas

https://computing.llnl.gov/tutorials/parallel_comp/

