CS 698L: Parallel Architecture
and Programming Models

Swarnendu Biswas

Semester 2019-2020-1
CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

How can we sum up all elements in an array?

int array[1000] = {0, 1, 34, 2, 89, -5, 67, 8, 4, 56,
23, 67, 0, 9, ..}

n
sum = Z array|i]
i=1

Comparing Implementations

Main Thread
long sum = 0,
for (int i =0; i < LEN; i++) {

sum += arrayl[il];

}

Comparing Implementations

Main Thread Main Thread

long sum = 0; Spawn n threads

long thr_sum[n] = {0}
for (int i =0; i < LEN; i++) {

sum += arrayl[i]; for (int 1 = 0; 1 < n; i++) {
} sum += thr _sum[i];
}
Thread 1

Compute CHUNK i of arrayl[]

for (int j = CTUNK_START; j + CHUNK_START <
CHUNK_END; J++)

thr_sum[j] += array[j];
}

Serial vs Parallel Processing

11

LanJjsul LanJjsul LanJysul LanJjsul

w
4 zonasu B zonausul Jib zonasu Jb zonusul

tructi

P4 conusur Ml conaisu M connsu b conasul

FanJsul
GanJIsul
ganJysuj
Lanssu]
NanJjsuj

FanJsul
GaNJIsu|
ganJysuj
Lanssuj
NanJjsuj

FanAsU|
GanAsu|
ganssu|
Langysuj
NanJsu

Fanasu]
GONJISU]
ganJsu|
Lansgsuj
NanJjsuj

problem

do_payroll{emp1) —_— 'll'l
do_payroll{jemp2) —_— 'II'I
do_payroll{emp3) =‘ 'II'I
do_payroll{empN) —_— 'II'l

1

spy~ pduwsa

t

2

el L dwa

t

instructions

13

N

onpap Ldwa
e} Ldwa

yaayas Ldwsa

sy~ Fdusa

l

onpap rdwa

=
©
=
@
%
o
°

anpap gdwa

i2

13

https://computing.linl.gov/tutorials/parallel_comp/

Swarnendu Biswas

CS 698L

s it Worth the Extra Complexity?

~/i/c/src $./a.out

Sequential sum: 499158189 Time (ns): 2119657 Array Of UﬂSlgnEd |ntS Of

_ size 1076, and four threads
Parallel sum: 499158189 Time (ns): 147934

~/i/c/src $./a.out
Sequential sum: 499019481 Time (ns): 2063707

Parallel sum: 499019481 Time (ns): 259234
~/i/c/src $./a.out l

Sequential sum: 498973205 Time (ns): 2113602 Order Of magnltude
Improvement

Parallel sum: 498973205 Time (ns): 257328

~/i/c/src $./a.out
Sequential sum: 499697650 Time (ns): 2110496

Parallel sum: 499697650 Time (ns): 252351

~f1/c/src $ [

CS 698L Swarnendu Biswas

Parallel Programming Overview

Q

p
Find parallelization opportunities in the problem

_* Decompose the problem into parallel units

Parallel Programming Overview

p
q Find parallelization opportunities in the problem
_* Decompose the problem into parallel units

p
eeee | Create parallel units of execution
* Manage efficient execution of the parallel units)

Parallel Programming Overview

p
q Find parallelization opportunities in the problem
_* Decompose the problem into parallel units

p
eeee | Create parallel units of execution
* Manage efficient execution of the parallel units)

p
m Problem may require inter-unit communication
- Communication between threads, cores, ...

Inter-unit Communication

[)
The problem logic will possibly require inter-unit
communication
. J
[)
l‘b Units may be on the same processor or across
processors or across nodes
. J

What do we communicate in sequential h
programs?

What do we communicate in sequential
programs?

-

_

Global variables or data structures
Function arguments and call parameters

J

P
€

Parallelism vs Concurrency

Concurprek = Twe Queuce One C"QQ‘& ﬁe“'(‘;"\

SRRRERILIRE % Concurrency vs Paralellism

4%3Aa8233 2% —

Concurrent

Pa(mlh\ = (we Quewcs (we C-{(« (aclpue

C e < o

&
L‘ﬁq_ Paralell

.....

&
g

© Joe Amsbng, 2013

CS 698L Swarnendu Biswas

Parallelism vs Concurrency

Parallel programming

e Use additional resources to speed up computation
e Performance perspective

Concurrent programming

e Correct and efficient control of access to shared resources
e Correctness perspective

Distinction is not absolute

CS 698L Swarnendu Biswas

Parallel Architectures

Architecture Classification

* Popular dimensions for classification
* |Instruction and data stream
* Source of parallelism
 Structure of the system

Instruction

stream

CPU Main Memory

Data stream

Flynn’s Taxonomy

* Single Instruction Single Data Single Instruction Multiple Data
SISD Instruction Pool SIMD Instruction Pool
» | PU | +—
Tg I=
» | PU | +—
ﬂ; | PU [+ F:E
K 3
=]
A A | PU | +—
»PU |+

Flynn’s Taxonomy

* Multiple Instructions Single Data ¢ Multiple Instructions Multiple

Data
MISD Instruction Pool MIMD Instruction Pool
—|PU|+{ “=|PU|«
E S|—|pu|+ L|pul--
s|+|Pul- lPU|- P
o (a3
a A |—|PU| —=|PU|—
—|PU| Ls|PU|«

Sources of Parallelism in Hardware

 Instruction-Level Parallelism * Processor and resource
(ILP) parallelism
* Pipelining, out-of-order execution, * |[ncrease units, memory
Superscalar, VLIW, ... bandwidth, ...

* Data parallelism

* |ncrease amount of data to be
operated on at same time

Source of Parallelism

Data Control/Function
* Vector processors, systolic * Pipelined, superscalar, VLIW
arrays, and SIMD processors

e Shared-memory systemes,
distributed memory systems

Control Parallel Architectures

Function-parallel
architectures

_— | T

Instruction level Thread level Process level
Parallel Arch Parallel Arch Parallel Arch
(ILPs) (MIMDSs)
Pipelined VLIWSs Superscalar Distributed Shared
Processors Processors Memory MIMD Memory
MIMD

Xin Yuang - Parallel Computer Architecture Classification. UFL.

Modern Classification

Uniprocessor

* Scalar processor
* Vector processor
* SIMD

Multiprocessor

* Symmetric multiprocessors
(SMP)

 Distributed memory
multiprocessor

e SMP clusters

e Shared memory addressing within
node

* Message passing between nodes

Performance Metrics of Parallel Architectures

* MIPS — million instructions per second
* MFLOPS — million floating point operations per second

* Which is a better metric?

Shared Memory Architecture

* Single address space shared by multiple P PP LR
cores M M multi-port
e Communication is implicit through
memory instructions (i.e., loads and stores) o1 [l [p
* Can share data efficiently e

M | shared bus

P

interconnection
network

< 4 4 ©

Implementing Shared Memory

e Uniform memory access SMP - Symmetric Multiprocessor System
(UMA)

* Interconnection network

used in the UMA can be a System Bus 1
single bus, multiple buses, - | | | |

or a crossbar switch

Main
Memory

Cache Cache Cache 1/0

By Ferruccio Zulian - Milan.Italy

Wikipedia.

CS 698L Swarnendu Biswas

Implementing Shared Memory

* Non-uniform memory
access

* Memory access time
depends on the distance
from the core

CS 698L Swarnen du Biswas

Challenges with Shared Memory

e Caches play key role in SMP performance
* Reduce average data access time, reduce interconnect bandwidth

* However, private caches create problem of data coherence
* Copies of a variable can be present in multiple caches

Sequence of Operations

X=X+5 Private
X=X+15 Cache

CS 698L Swarnen du Biswas

Sequence of Operations

CS 698L

Cache

Final value of x
will be 30

y

Swarnendu Biswas

Problem of Data Coherence

Cache
Cache

CS 698L Swarnen du Biswas

Problem of Data Coherence
Private

=
Private

e

CS 698L Swarnen du Biswas

|
|

Problem of Data Coherence

=
=

CS 698L Swarnendu Biswas

Problem of Data Coherence

e e
-~ |

CS 698L Swarnendu Biswas

Problem of Data Coherence

e e
-~ |

CS 698L Swarnendu Biswas

Problem of Data Coherence

CS 698L Swarnendu Biswas

Problem of Data Coherence

.
(roers]

CS 698L Swarnen du Biswas

Challenges with Shared Memory

e Caches play key role in SMP performance
* Reduce average data access time, reduce interconnect bandwidth

* Private caches create data coherence problem
* Copies of a variable can be present in multiple caches

* Need support for cache coherence

Challenges with Shared Memory

* Access conflicts - several threads can try to access the same shared location

* Data race is the accesses are not correctly synchronized and one the accesses is a
write

e Synchronization is not cheap
* Programmer responsible for synchronized accesses to memory

* Coherence operations can become a bottleneck
* Takes time and effort in keeping shared-memory locations consistent
 Traffic due to data and cache/memory management
» Lack of scalability

e Other performance hazards — false sharing

False Sharing

What is going on here?

i

Thread 0 Thread 1
CPUO CPU 1
Cache Line Cache Line

m:ac he _/X Cache
| |
A

Memory

Intel. Avoiding and Identifying False Sharing Among Threads.

False Sharing

What is going

Does anyone
remember the MESI
protocol?

Thread 0 Thread 1
CPUO CPU 1
I I
Cache Line Cache Line
]
Cache _/X Cache
) 1]
N
h

Memory

Intel. Avoiding and Identifying False Sharing Among Threads.

State Transitions in MESI

(1) GetM r]JnGLtI'-.*[(2) Fwd-GetM
(1) GetS (DGeS (2) Fwd- Gu:ﬁ (1) GetS o -5{::“' — < -
e T - -__\1/"--_ - —— .f i '-II . |

/keg) }Di:\“- / Req) -'>;}Lr N U‘“ ner [Req Dir)
Lk) s) Lok) | M>s) M) \J=>M a I=>M IJ,: M
AN { NS N . /{B}I}nta}E >3/ - . xh___ » ,-*

—w s J\ f’ﬁ .

(2) Data - Data —
5) Dats | hwa (2) Datafack=0] (3) Datalack=0]
Transitions from [to S. Transition from I to E. L
e (3) Inv-Ack ™
~ '\'H.ll
7 (1) GetM @ tny N
e - }) -“"x \ Shanir | The only sharer might be the requestor,
(" Req 1 ! Dir ! _ f in which case no Invalidation Messages
] » '. =M | ' ‘;JJ_-, M I are sent and the Data message from
(1) PutM+data (1) PatE (no data) (1) PutS R M/ A)II {21 Inv j Sh \ the Diir to Reg has an AckCount of zero.

;”f_ -q‘(\\ }-._ﬂ\,l ." R \ /}E—Hr ™ 'r 1 "/P e

(ML) (o) (Sg, || s>t '\ (2) Datafack>0] N4

h \ 4 \,

MY\ NS = ¢ N ya

— _.1 _’/ — — —_ -’J_,-"
(2) Put-Ack (2) Put-Ack (2) Put-Ack T
Transition from M or Eor Sto 1 L]” Inv-Ack

Transitions from I or S to M. Transition from E to M is silent.

A Primer on Memory Consistency and Cache Coherence.

CS 698L Swarnendu Biswas

Distributed Memory Architecture

* Each processor has its own private memory
* Physically separated memory address space

* Processor must communicate to access non-local data
* Also called message passing architecture

* Requires interconnection network for communication

* Interconnection network topology is a key design factor, determines how the
system scales

* Need high bandwidth for communication

MNETYORK HUB

Wikipedia.

CS 698L

Swarnendu Biswas

Advantages of Distributed Memory

* Memory scales with the number of processors
* Can quickly access your own memory without the need for

global coherence
* (Can use off-the-shelf components

Be clear with uses!

@

e Multiple tasks in a program cooperate to solve a problem efficiently

Parallel computing

Concurrent programming

e Multiple tasks in a program can be in progress at the same time

Distributed computing

e A program needs to cooperate with other programs to solve a problem

Yonghong Yan.

CS 698L Swarnendu Biswas

Parallel Programming Models

Parallel Programming Models

* An abstraction of parallel computer architectures
* Building block to design algorithms and write programs

* Dimensions
* Performance — how efficiently can programs run
* Productivity — how easy is it to develop programs

Parallel Programming Models

Shared-memory
Distributed memory
Data parallel (PGAS)

Single program multiple data (SPMD)

Multiple program multiple data (MPMD)

Hybrid

CS 698L Swarnendu Biswas

Shared Memory without Threads

* Processes share a common
address space

* Notion of ownership of data is PIOEESS \\Memow

missing, complicating matters

* Unix-like systems provide oy
support via functions like process * E
shm_open(), shmget(), and

shmct1()

process \

CS 698L Swarnendu Biswas

Shared Memory with Threads

* A single process can be composed
of multiple worker threads

* Threads are software analog of

cores
e Each thread has its own PC, SP,
registers, etc

* All threads share the process heap
and the global data structures

CS 698L Swarnendu Biswas

a.out

call sub1() — T2

call sub2() —

doi=1,n
A[i)=fnc(i**2)
B(i=A(l)psi

end do

call sub3()

call subd{) —

)
S\ T

T3
T4

w1

/“'_"'} -

a.out
Memory
1T 8
= AW |
ﬂ' n:y"""“_“|

Shared Memory with Threads

* All threads access the shared address space
* Threads also have a private memory

* Synchronization is required to access shared resources
* Can otherwise lead to pernicious bugs

* Runtime system schedules threads to cores

* Concurrent units of execution

* |If there are more threads than cores, the runtime will time-slice threads on to
the cores

Distributed Memory

* The problem size may not fit on a single machine
e Graph analytics
* Obvious step: Go distributed!

* Distributed computing model
* Launch multiple processes on multiple systems
* Processes carry out work
* Processes may communicate through message passing
* Processes coordinate either through message passing or synchronization

Distributed Memory

* Also called message passing
programming model

e Set of tasks that use local
memory for computation

* Exchange data via communication

* MPI is a popular runtime

CS 698L

Machine A

task 0

Machine B

task 1

Swarnendu Biswas

network

recv()

task 3
| dem

send()

Challenges with Distributed Memory

(Often, communication turns out to be the primary bottleneck
e How do you partition the data between different nodes?
 Network topology is very important for scalability

. ° Non-uniform memory access

Since communication is explicit, therefore it excludes race

conditions
C Programmer’s responsibility to synchronize between tasks

Shared Memory vs Distributed Memory
Programming

Shared Memory Distributed Memory

e Communication is implicit Communication via explicit messages

Explicit synchronization Synchronization implicit via messages

e Requires hardware support for Requires support for in-node
coherence coherence and network
communication

* Lower development effort to begin Higher development effort to begin

Data Parallel

* Also known as the partitioned
global address space (PGAS)

* Address space is global, and
partitioned for tasks

» Tasks operate on their own
partition

e Can have locality of reference

* Implementations
e Unified Parallel C (UPC)
e X10 from IBM
* Chapel

CS 698L Swarnendu Biswas

task 1

do i=26,50
A(i)=B(i)*delta
end do

task 2

du i=m,n
A(i)=B(i)*delta
end do

task n

Data Parallel

* No library calls for
communication

* Variables can name memory
locations on other machines

* Assume y points to a remote
location

* The following is equivalent to a
send/receive

oxz*y

CS 698L Swarnendu Biswas

task 1

do i=26,50
A(i)=B(i)*delta
end do

task 2

task n

Single Program Multiple Data (SPMD)

* Tasks execute the same copy of
the program on different data

D rallel
ata paralle task 1 task2 task3 .. taskn
e Can be threads or message

passing interface

CS 698L Swarnendu Biswas

Multiple Program Multiple Data (MPMD)

* Tasks may execute different
programs with different data

task 1 task2 task 3 ... taskn

CS 698L Swarnen du Biswas

Hybrid

e Combine more than one of the
other models

* Examples

* Combine shared-memory on local
nodes, and exchange data over
networks

* Use GPUs for compute kernels
with CUDA for exchange between E E
host and device, and MPI for inter-
node communication

CS 698L Swarnendu Biswas

References

* James Demmel and Katherine Yelick — CS 267: Shared Memory Programming: Threads and OpenMP
* Keshav Pingali — CS 377P: Programming Shared-memory Machines, UT Austin.

* Blaise Barney, LLNL. Introduction to Parallel Computing, https://computing.linl.gov/tutorials/parallel comp/

CS 698L Swarnendu Biswas

https://computing.llnl.gov/tutorials/parallel_comp/

