CS 698L: Parallel Patterns

Swarnendu Biswas

Semester 2019-2020-I
CSE, IIT Kanpur

Parallel Programming Patterns

- Patterns codify best practices (remember the Gang of Four book!)
- Parallel pattern
- Recurring combination of task distribution and data access that solves a problem in parallel algorithm design

Control Pattern: Fork-Join

- Forks control flow into multiple parallel flows and joins later
- OpenMP's parallel construct
- Cilk Plus-style spawn and sync

Master Thread

Control Pattern: Fork-Join

- Forks control flow into multiple parallel flows and joins later
- OpenMP's parallel construct
- Cilk Plus-style spawn and sync

- Barriers are different
- Operates on threads, and all threads continue after the barrier
- Only one thread continues after a join

Control Pattern: Map

- A function is applied to all elements of a collection, usually producing a new collection with the same shape as the input
- Loop bodies are independent
- Loop count is known in advance

- Elemental function must not have side-effects (i.e., pure)

Control Pattern: Map

```
>>> a = [1, 2, 3, 4, 5, 6]
>>> print(list(map(lambda x: x*x, a)))
[1, 4, 9, 16, 25, 36]
```

- Similar in flavour to SIMD model

Linear Algebra Operations

- SAXPY operation $y=A x+y$
- Similarly DAXPY, CAXPY, ZAXPY
- Very frequently used in linear algebra such as Gaussian elimination

Control Pattern: Stencil

- Elemental function can access more than one element
- Is stencil and map similar?

Control Pattern: Stencil

- Elemental function can access more than one element
- Generalization of map
- A convolution uses the stencil pattern but combines elements linearly using a set of weights

Control Pattern: Reduction

- Combines every element in a collection into a single element using an associative combiner function
- Many different orderings are possible

```
double add_reduce(const double a[], size_t n ) {
    double r = 0.0; // initialize with identity
    for (int i = 0; i < n; ++i) {
        r += a[i];
    return r;
}
```


Control Pattern: Reduction

- Several choices for parallel reduction
- Tree reduction
- Could have local workers perform serial reduction, and then have a shallow tree to reduce results from workers

Fusing Map and Reduce

Control Pattern: Scan

- Scan computes all partial reductions of a collection
- For every output position, a reduction of the input up to that point is computed

```
void add_iscan(const float a[],
            float b[], size_t n) {
    if (n>0)
        b[0] = a[0];
    for (int i = 1; i < n; ++i)
        b[i] = b[i-1] + a[i];
}
```


Control Pattern: Scan

sum_arr = f(arr)
int $\operatorname{arr}[8]=\{10,1,4,2,9,5,7,8\}$
int sum_arr[8] $=\{10,11,15,17,26,31,38,46\}$

Definition of Inclusive Prefix Scan

Exclusive Prefix Scan

$\left[x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}\right]$
$\left[I, x_{0}, \quad\left(\mathrm{x}_{0} \oplus \mathrm{x}_{1}\right), \ldots,\left(\mathrm{x}_{0} \oplus \mathrm{x}_{1} \oplus \ldots \oplus \mathrm{x}_{\mathrm{n}-2}\right)\right]$

A Problem

- Assume we have a 100 -inch sandwich to feed ten people
- We know how many inches each person wants

$$
3,5,2,7,28,4,3,0,8,1
$$

- How do we cut the sandwich quickly and distribute?

Solution to the Problem

- Method 1: Cut the sandwich sequentially starting from say left
- Method 2: Calculate prefix sum and cut in parallel

$$
3,8,10,17,45,49,52,52,60,61
$$

Sequential Inclusive Prefix Scan

```
output[0] = arr[0]
for (int i = 1; i < n; i++) {
    output[i] = output[i-1] + arr[i];
}
```


How can Inclusive Prefix Scan be Parallelized?

A Naïve Parallel Prefix Sum

- Use one thread to compute each output element
- The thread adds up all the previous elements needed for the output

$$
\begin{aligned}
& y_{0}=x_{0} \\
& y_{1}=x_{0}+x_{1} \\
& y_{2}=x_{0}+x_{1}+x_{2}
\end{aligned}
$$

Analysis of Parallel Algorithms

- $T_{p}=$ Execution time of a parallel program with p processors
- Work
- Total number of computation operations performed by the p processors
- Time to run on a single processor $\left(T_{1}\right)$
- Span
- Length of the longest series of sequential operations or the critical path
- Time taken to run on infinite processors (T_{∞})

Work-Span Model

Analysis of Parallel Algorithms

- Cost
- Total time spent by all processors in computation ($\mathrm{p} \mathrm{T}_{\mathrm{p}}$)

> Cost \geq Work $p T_{p} \geq \mathrm{T}_{1}$

> Execution time \geq Span $$
T_{p} \geq T_{\infty}
$$

Analysis of Parallel Algorithms

- Speedup (S_{p})
- Total time spent by all processors in computation ($\mathrm{p} \mathrm{T}_{\mathrm{p}}$)

$$
\text { Speedup }=\frac{T_{1}}{T_{p}} \leq \frac{T_{1}}{T_{\infty}}
$$

Speedup $=\frac{T_{1}}{T_{p}} \leq p$

Speedup

Other Metrics

- Efficiency
- Speedup per processor $\frac{S_{p}}{p}=\frac{T_{1}}{p T_{p}}$
- Parallelism
- Maximum possible speedup given any number of processors $\frac{T_{1}}{T_{\infty}}$

Sequential Inclusive Prefix Scan

$$
\begin{aligned}
& \text { output[0]=arr[0] } \\
& \text { for (int } i=1 ; i<n ; i++)\{ \\
& \text { output[i] }=\operatorname{output}[i-1]+\operatorname{arr}[i] ; \\
& \begin{array}{l}
\text { Work }=O(n) \\
\text { Span }=O(n)
\end{array}
\end{aligned}
$$

A Naïve Parallel Prefix Sum

- Use one thread to compute each output element
- The thread adds up all the previous elements needed for the output

$$
\begin{aligned}
& y_{0}=x_{0} \\
& y_{1}=x_{0}+x_{1} \\
& y_{2}=x_{0}+x_{1}+x_{2}
\end{aligned}
$$

- Work $=1+2+3+\ldots+n=\frac{n(n+1)}{2}$

$$
=\mathrm{O}\left(n^{2}\right) \text { operations }
$$

Parallel Inclusive Prefix Sum

10	1	4	2	9	5	7	8

\# threads: p
(here $\mathrm{p}=\mathrm{=} \mathrm{n}$, and $\mathrm{n}=8$)

Algorithm Efficiency

- \# of iterations: $\log \mathrm{n}$
- First iteration: ($\mathrm{n}-1$) additions
- Second iteration: ($\mathrm{n}-2$) additions
- Third iteration: ($n-4$) additions
- Last iteration: $(\mathrm{n}-\mathrm{n} / 2)$ additions
- Total additions $=(n-1)+(n-2)+(n-4)+\ldots+\left(n-\frac{n}{2}\right)$

$$
\begin{aligned}
& =n \log n-\left(1+2+4+\cdots+\frac{\mathrm{n}}{2}\right) \\
& =n \log n-(n-1)=\mathrm{O}(n \log n)
\end{aligned}
$$

Algorithm Efficiency

- Work $=\mathbf{O}(n \log n)$
- Remember Work for the sequential algorithm was $\mathrm{O}(\mathrm{n})$
- For large $n, \log n$ can be a non-trivial factor
for $i=0$ to $\lceil\log n-1\rceil$ do for $j=2^{i}$ to $n-1$ in parallel do $A[j]=A[j]+A\left[j-2^{i}\right]$

Algorithm With Improved Work-Efficiency

10	1	4	2	9	5	7	8

Algorithm Efficiency

Algorithm Efficiency

- \# of iterations: $\log \mathrm{n}$ in each pass
- Number of addition operations in first pass: $\frac{n}{2}+\frac{n}{4}+\cdots+2+1$
- Number of addition operations in second pass: $1+2+\cdots+\frac{n}{2}$
- Total additions $=(n-1)+(n-1)=2(n-1)$

$$
=\mathrm{O}(n)
$$

Benefits from parallelism can overcome the constant factor increase in computation

Data Management Pattern: Pack

- Eliminate unused data
- Helps in reducing required memory bandwidth
- Retained elements are moved to make them contiguous in memory
- Used in register masks

Data Management Pattern: Pipeline

- Connects tasks respecting a producer-consumer relationship
- Used in video encoding for processing incoming frames

Data Management Pattern: Gather

- Collect data based on information from another collection and set of indices
- Left and right shifts are an example of gather operation

Shift Operation

Zip Operation

Data Management Pattern: Scatter

- Inverse of gather, data elements are output

References

- M. McCool et al. Structured Parallel Programming: Patterns for Efficient Computation.
- Yong Cao. Parallel Prefix Sum - Scan.
- G. Blelloch. Prefix Sums and Their Applications.
- Th. Ottmann. Parallel Prefix Computation.

