CS 698L: Parallel Patterns

Swarnendu Biswas

Semester 2019-2020-1
CSE, lIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Parallel Programming Patterns

 Patterns codify best practices

(remember the Gang of Four
book!)

* Parallel pattern

e Recurring combination of task
distribution and data access that
solves a problem in parallel
algorithm design

CS 698L Swarnendu Biswas

Design Patterns

Elements of Reusable
Object-Oriented Softvya_re

Erich Gamma'
Richard Helm
Ralph Johnson
John Vlissides

>

>
g
=)
@
O
=
=
m
o
L
m
—<
=
o)
O
=
m
v
v
O
7
>
~
Q
@)
Z
)
(=
b=
Z
O
w
m
-~
m
W

Control Pattern: Fork-Join

* Forks control flow into multiple
para|IE| flOWS and jOinS |ater Parallel Task | Parallel Task Il Parallel Task Il

« OpenMP’s parallel construct /H“ e

o aster Thread
* Cilk Plus-style spawn and sync -

. f’arallel Task\l‘ ﬁarallel Task II pé.,-a||e| Task Il
ToY : e o
* Is a join and a barrier same? —

CS 698L Swarnendu Biswas

Control Pattern: Fork-Join

* Forks control flow into multiple
parallel flows and joins later
* OpenMP’s parallel construct
* Cilk Plus-style spawn and sync

e Barriers are different

* Operates on threads, and all
threads continue after the barrier

* Only one thread continues after a
join

Parallel Task | Parallel Task Il Parallel Task IlI

o

Master Thread

Parallel Task | Parallel Task Il Parallel Task IlI
Master Thread . _ I .
e)

CS 698L Swarnendu Biswas

Control Pattern: Map

* A function is applied to all ()
elements of a collection, usually OO0 D O]
producing a new collection with

the same shape as the input - - - - - - - -
* Loop bodies are independent ’[] [] [] [] D U [] [j

* Loop count is known in advance /

 Elemental function must not
have side-effects (i.e., pure)

CS 698L Swarnendu Biswas

Control Pattern: Map

>>> a = [1, 2, 3, 4, 5, 6]
>>> print(list(map(lambda x: x*x, a)))
[1, 4, 9, 16, 25, 36]

e Similar in flavour to SIMD model

CS 698L Swarnendu Biswas

Linear Algebra Operations

* SAXPY operationy = Ax + 7y
 Similarly DAXPY, CAXPY, ZAXPY
* Very frequently used in linear algebra such as Gaussian elimination

Control Pattern: Stencil

* Elemental function can access
more than one element

* |s stencil and map similar?

ooocoocDoe
ooocooDoc
mﬂﬂ1%§66
0000000 e
DooooDee
000000 0C
0000000 E
00000000

Control Pattern: Stencil

* Elemental function can access
more than one element

* Generalization of map

* A convolution uses the stencil
pattern but combines elements
linearly using a set of weights

ooocoocDoe
ooocooDoc
mﬂﬂ1%§66
0000000 e
DooooDee
000000 0C
0000000 E
00000000

Control Pattern: Reduction

 Combines every elementin a

collection into a single element using
an associative combiner function

* Many different orderings are
possible

double add_reduce(const double a[], size t n) {
double r = 0.0; // initialize with identity

for (int 1 = 0; 1 < n; ++1) {
r += al[i];
return r;

}

CS 698L

Swarnendu Biswas

Control Pattern: Reduction

 Several choices for parallel

reduction 00000000

* Tree reduction

* Could have local workers perform i i i i
serial reduction, and then have a -
shallow tree to reduce results from
workers

o

CS 698L Swarnendu Biswas

Fusing Map and Reduce

CCCCCC

C

J 0 C

J L

J

[

) O (

) (

I

Swarnendu Biswas

Control Pattern: Scan

* Scan computes all partial
reductions of a collection

* For every output position, a
reduction of the input up to that
point is computed

void add_iscan(const float al[l],
float b[], size t n) {
if (n>0)
b[0] = a[0];
for (int i = 1; 1 < n; ++1i)
bli] = b[i-1] + al[il;

CS 698L Swarnendu Biswas

O0C00C0000

Control Pattern: Scan

CS 698L Swarnendu Biswas

sum arr = f(arr)

(

.

int arr([8] = {10, 1, 4, 2, 9, 5, 7, 8}

(

.

int sum arr[8] = {10, 11, 15, 17, 26, 31, 38, 46}

\

J

Definition of Inclusive Prefix Scan

operator

binary associativeJ

AR
1/

[[X@r X1y KXoy ey Xn—l]J

array of n
elements

r

.

[Xg, (Xg ®X1), (Xg DX, D Xy)y vy (XgBX, B .. ®X,)]

~\

J

Exclusive Prefix Scan

[[x@, X1p Xop wey Xo_ql J D Iﬁ IdentityJ

[Ir X@r (X@ @Xl)r e 9 (XQ@Xl@m@XnQ)]

A Problem

* Assume we have a 100-inch sandwich to feed ten people

* We know how many inches each person wants

(3,5,2,7,28 4,3,0,8, 1]

* How do we cut the sandwich quickly and distribute?

Solution to the Problem

 Method 1: Cut the sandwich sequentially starting from say left

 Method 2: Calculate prefix sum and cut in parallel

[3, 3, 10, 1/, 45, 49, 52, 52, 60, 61]

Sequential Inclusive Prefix Scan

output[0] = arr[0]

for (int 1 = 1; 1 < n; i++) {
output[i] = output[i-1] + arr[i];

}

How can Inclusive Prefix Scan be Parallelized?

output[0] = arr[0]
for (int 1 = 1; 1 < n; i++) {
output[i] = output[i-1] + arr[il;
o

}
0

loop-carried
dependence

A Naive Parallel Prefix Sum

* Use one thread to compute each output element
* The thread adds up all the previous elements needed for the output

Yo = Xp
Vi = Xp T X4
Vo, = Xo + Xq + X,

Analysis of Parallel Algorithms

* T, = Execution time of a parallel program with p processors
* Work

* Total number of computation operations performed by the p processors
* Time to run on a single processor (T,)

* Span
* Length of the longest series of sequential operations or the critical path
* Time taken to run on infinite processors (T.,)

Work-Span Model

CS 698L Swarnendu Biswas

Analysis of Parallel Algorithms

* Cost

* Total time spent by all processors in computation (pr)

(

Cost = Work
pTl, =T,

\

(

Execution time = Span
L=

\

Analysis of Parallel Algorithms

* Speedup (S,)

* Total time spent by all processors in computation (pr)

Speedup = % < TT—
_ p 0
Speedup —T—1S D

Speedup

CS 698L

Speedup

Superlinear

Sublinear

Processors

Swarnendu Biswas

Other Metrics

* Efficiency
S T
« Speedup per processor —£ = -~
p pTy

* Parallelism

Ty

* Maximum possible speedup given any number of processors —

0.0)

Sequential Inclusive Prefix Scan

N

output[0] = arr[0] Asymptotic

for (int 1 = 1; i < n; i++) { complexity O(n)
output[1] = output[i-A] + arr[i]; g

}

~
Work = O(n)

g Span = O(n) ,

A Naive Parallel Prefix Sum

* Use one thread to compute each output element
* The thread adds up all the previous elements needed for the output

Yo = Xp
Vi = Xp T X4
Vo, = Xo + Xq + X,

nn+1)

eWork =14+24+3+4+ ...+ n= >

= O (n?) operations

Parallel Inclusive Prefix Sum

10 1 4 2 9 5 7/ 3

threads: p
(here p == n, and n = 8§)

Iteration 1,
Distance 1

|

10 1 9 5 / 3
D D P b B
10 11 11 14 12 15

o P 3 |-P+
~ P+ S =P Q
n P I P S
NFNPENP
~N P o P
4ev5l@vﬁ
@ ot o
o2 — 2

in,%

Ilteration 1
Distance 1

[r

lteration 2
Distance 2

[

[

Iteration 1,
Distance 1

[

Iteration 2,
Distance 2

[

Iteration 3,
Distance 4

TR

10 1 4 2 9 5 7 3
| @& & o o 9 & &
10 11 5 6 11 14 12 15
| | & & ¢ ¢ ¢ ¢
10 11 15 17 16 20 23 29
LT T ¢ ¢ ¢ ¢
10 11 15 17 26 31 38 46

Algorithm Efficiency

 # of iterations: log n

* First iteration: (n-1) additions

* Second iteration: (n-2) additions
* Third iteration: (n-4) additions

e Last iteration: (n — n/2) additions

* Total additions=(n—-1)+(n—-2)+(n—4)+ ..+ (n — g)

=nlogn —(1+2+4+---+g)

=nlogn —(n—1) =0 (nlogn)

Algorithm Efficiency

* Work = O (nlogn)

« Remember Work for the sequential algorithm was O(n)
* For large n, logn can be a non-trivial factor %nd Steele]

to [log n-1]| do

-

-

Asymptotic
complexity O(log n)

[3

!
]

1 to n-1 in parallel do
= A[j] + A[j-21]

Algorithm With Improved Work-Efficiency

[Guy Bleﬂé:j

10 1 4 2 9 5 7/ 3

Binary tree @
ksum(n) = sum(n.lc) + sum(n.rc)

Binary tree @
ksum(n) = sum(n.lc) + sum(n.rc)

‘I:l') 1 4 2 9 5 7 ('I:I’

for 1 = 0 to log n-1 do
for j = @ to n-1 by 2*1 in parallel do
alj+2+*1-1] = a[j+2+-1] + a[j+23+1-1]

46

29

14

15

14

17

14

17

11

10

11

10

11

10

A A A

10

=0

Bi

Swarne

CS 698L

()
At the end of @

the first round
_ y,

for 1 = log n-1 down to 0@ do
for j = @ to n-1 by 2*1 in parallel do

tmp = al[j+21-1]
alj+21-1] = a[j+21+1-1]

0 ' alj+21*1-1] = temp + al[j+21+1-1]
N N N N

=0

I
(MY

1=2

CS 698L

10 11 4 17 9 14 7/ 0
10 11 4 0 9 14 7 17
10 0 4 11 9 17 7/ 31

10

17

31

[)
After second round °

. J

Algorithm Efficiency

-

-

Asymptotic
complexity O(log n)

for 1 = @ to log n-1 do
for j = 0 to n-1 by 2'+1 in parallel do
alj+2+*1-1] = a[j+21-1] + al[j+21+1-1]
for 1 = log n-1 down to 0 do
for j = 0 to n-1 by 2*1 in parallel do

tmp = a[j+21-1]
alj+21-1] = a[j+21+1-1]
a[j+21*1-1] = temp + a[j+21*1-1]

Algorithm Efficiency

* # of iterations: log n in each pass

* Number of addition operations in first pass: g + % +--+24+1

* Number of addition operations in second pass: 1 + 2 + --- +§
* Total additions=(n—1)+ (n—1) =2(n—1)
=0 (n)

Benefits from parallelism can overcome the
constant factor increase in computation

Data Management Pattern: Pack

* Eliminate unused data

e Helps in reducing required

-

memory bandwidth Ao EeE i et
e Retained elements are moved to | Y v
make them contiguous in memory X X X

* Used in register masks

CS 698L Swarnendu Biswas

Data Management Pattern: Pipeline

* Connects tasks respecting a
producer-consumer relationship

e Used in video encoding for
processing incoming frames

CS 698L Swarnendu Biswas

Data Management Pattern: Gather

e Collect data based on information from another collection and set of
indices

 Left and right shifts are an example of gather operation

o 1 2 3 4 &5 6 7

00| e eeeea)

CS 698L Swarnendu Biswas

Shift Operation

elalelelale]ela]e %CQDQCJQQQ
(00000000 OO0)
foooo000 @ooooood
{PO000000 OOOOOODOx
€0000000 (©00008090

00000000 ©o0Do00D

CS 698L Swarnendu Biswas

/Z1p Operation

CCCCCC

Swarnendu Biswas

Data Management Pattern: Scatter

* Inverse of gather, data elements are output

EEEIGE
OAXOEE DD][[......]]

012345

CS 698L Swarnendu Biswas

References

M. McCool et al. Structured Parallel Programming: Patterns for Efficient Computation.
Yong Cao. Parallel Prefix Sum — Scan.
G. Blelloch. Prefix Sums and Their Applications.

Th. Ottmann. Parallel Prefix Computation.

