
CS 698L: Parallel Patterns
Swarnendu Biswas

Semester 2019-2020-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Parallel Programming Patterns

• Patterns codify best practices
(remember the Gang of Four
book!)

• Parallel pattern
• Recurring combination of task

distribution and data access that
solves a problem in parallel
algorithm design

CS 698L Swarnendu Biswas

Control Pattern: Fork-Join

• Forks control flow into multiple
parallel flows and joins later
• OpenMP’s parallel construct

• Cilk Plus-style spawn and sync

• Is a join and a barrier same?

CS 698L Swarnendu Biswas

Control Pattern: Fork-Join

• Forks control flow into multiple
parallel flows and joins later
• OpenMP’s parallel construct

• Cilk Plus-style spawn and sync

• Barriers are different
• Operates on threads, and all

threads continue after the barrier

• Only one thread continues after a
join

CS 698L Swarnendu Biswas

Control Pattern: Map

• A function is applied to all
elements of a collection, usually
producing a new collection with
the same shape as the input

• Loop bodies are independent

• Loop count is known in advance

• Elemental function must not
have side-effects (i.e., pure)

CS 698L Swarnendu Biswas

Control Pattern: Map

• Similar in flavour to SIMD model

>>> a = [1, 2, 3, 4, 5, 6]
>>> print(list(map(lambda x: x*x, a)))
[1, 4, 9, 16, 25, 36]

CS 698L Swarnendu Biswas

Linear Algebra Operations

• SAXPY operation 𝑦 = 𝐴𝑥 + 𝑦

• Similarly DAXPY, CAXPY, ZAXPY

• Very frequently used in linear algebra such as Gaussian elimination

CS 698L Swarnendu Biswas

Control Pattern: Stencil

• Elemental function can access
more than one element

• Is stencil and map similar?

CS 698L Swarnendu Biswas

Control Pattern: Stencil

• Elemental function can access
more than one element
• Generalization of map

• A convolution uses the stencil
pattern but combines elements
linearly using a set of weights

CS 698L Swarnendu Biswas

Control Pattern: Reduction

• Combines every element in a
collection into a single element using
an associative combiner function

• Many different orderings are
possible

double add_reduce(const double a[], size_t n) {

double r = 0.0; // initialize with identity

for (int i = 0; i < n; ++i) {

r += a[i];

return r;

}

CS 698L Swarnendu Biswas

Control Pattern: Reduction

• Several choices for parallel
reduction
• Tree reduction

• Could have local workers perform
serial reduction, and then have a
shallow tree to reduce results from
workers

CS 698L Swarnendu Biswas

Fusing Map and Reduce

CS 698L Swarnendu Biswas

Control Pattern: Scan

• Scan computes all partial
reductions of a collection

• For every output position, a
reduction of the input up to that
point is computed

void add_iscan(const float a[],
float b[], size_t n) {

if (n>0)
b[0] = a[0];

for (int i = 1; i < n; ++i)
b[i] = b[i-1] + a[i];

}

CS 698L Swarnendu Biswas

Control Pattern: Scan

CS 698L Swarnendu Biswas

sum_arr = f(arr)

CS 698L Swarnendu Biswas

int arr[8] = {10, 1, 4, 2, 9, 5, 7, 8}

int sum_arr[8] = {10, 11, 15, 17, 26, 31, 38, 46}

Definition of Inclusive Prefix Scan

CS 698L Swarnendu Biswas

[x0, x1, x2, …, xn-1] ⊕

[x0, (x0 ⊕ x1), (x0 ⊕ x1 ⊕ x2), …, (x0 ⊕ x1 ⊕ … ⊕ xn-1)]

array of n
elements

binary associative
operator

Exclusive Prefix Scan

CS 698L Swarnendu Biswas

[x0, x1, x2, …, xn-1] ⊕

[I, x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-2)]

Identity
I

A Problem

• Assume we have a 100-inch sandwich to feed ten people

• We know how many inches each person wants

• How do we cut the sandwich quickly and distribute?

CS 698L Swarnendu Biswas

3, 5, 2, 7, 28, 4, 3, 0, 8, 1

Solution to the Problem

• Method 1: Cut the sandwich sequentially starting from say left

• Method 2: Calculate prefix sum and cut in parallel

CS 698L Swarnendu Biswas

3, 8, 10, 17, 45, 49, 52, 52, 60, 61

Sequential Inclusive Prefix Scan

CS 698L Swarnendu Biswas

output[0] = arr[0]
for (int i = 1; i < n; i++) {

output[i] = output[i-1] + arr[i];
}

How can Inclusive Prefix Scan be Parallelized?

CS 698L Swarnendu Biswas

output[0] = arr[0]
for (int i = 1; i < n; i++) {

output[i] = output[i-1] + arr[i];
}

loop-carried
dependence

A Naïve Parallel Prefix Sum

• Use one thread to compute each output element
• The thread adds up all the previous elements needed for the output

CS 698L Swarnendu Biswas

y0 = x0
y1 = x0 + x1
y2 = x0 + x1 + x2
…

Analysis of Parallel Algorithms

• Tp = Execution time of a parallel program with p processors

• Work
• Total number of computation operations performed by the p processors

• Time to run on a single processor (T1)

• Span
• Length of the longest series of sequential operations or the critical path

• Time taken to run on infinite processors (T∞)

CS 698L Swarnendu Biswas

Work-Span Model

CS 698L Swarnendu Biswas

Analysis of Parallel Algorithms

• Cost
• Total time spent by all processors in computation (pTp)

CS 698L Swarnendu Biswas

Cost ≥ Work
pTp ≥ T1

Execution time ≥ Span
Tp ≥ T ∞

Analysis of Parallel Algorithms

• Speedup (Sp)
• Total time spent by all processors in computation (pTp)

CS 698L Swarnendu Biswas

Speedup =
𝑇

1

𝑇
𝑝

≤ 𝑝

Speedup =
𝑇1

𝑇𝑝
≤

𝑇1

𝑇∞

Speedup

CS 698L Swarnendu Biswas

Other Metrics

• Efficiency

• Speedup per processor
𝑆

𝑝

𝑝
=

𝑇1

𝑝𝑇𝑝

• Parallelism

• Maximum possible speedup given any number of processors
𝑇1

𝑇∞

CS 698L Swarnendu Biswas

Sequential Inclusive Prefix Scan

CS 698L Swarnendu Biswas

output[0] = arr[0]
for (int i = 1; i < n; i++) {

output[i] = output[i-1] + arr[i];
}

Work = O(n)

Span = O(n)

Asymptotic

complexity O(n)

A Naïve Parallel Prefix Sum

• Use one thread to compute each output element
• The thread adds up all the previous elements needed for the output

• Work

CS 698L Swarnendu Biswas

y0 = x0
y1 = x0 + x1
y2 = x0 + x1 + x2
…

= 1 + 2 + 3 + … + 𝑛 =
𝑛 𝑛 + 1

2
= O (𝑛2) operations

Parallel Inclusive Prefix Sum

CS 698L Swarnendu Biswas

10 1 4 2 9 5 7 8

threads: p
(here p == n, and n = 8)

CS 698L Swarnendu Biswas

10 1 4 2 9 5 7 8

10 11 5 6 11 14 12 15

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕Iteration 1,
Distance 1

CS 698L Swarnendu Biswas

10 1 4 2 9 5 7 8

10 11 5 6 11 14 12 15

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

10 11 15 17 16 20 23 29

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Iteration 1,
Distance 1

Iteration 2,
Distance 2

CS 698L Swarnendu Biswas

10 1 4 2 9 5 7 8

10 11 5 6 11 14 12 15

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

10 11 15 17 16 20 23 29

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

10 11 15 17 26 31 38 46

⊕ ⊕ ⊕ ⊕

Iteration 1,
Distance 1

Iteration 2,
Distance 2

Iteration 3,
Distance 4

Algorithm Efficiency

• # of iterations: log n

• First iteration: (n-1) additions

• Second iteration: (n-2) additions

• Third iteration: (n-4) additions

• Last iteration: (n – n/2) additions

• Total additions = 𝑛 − 1 + 𝑛 − 2 + 𝑛 − 4 + … + 𝑛 −
𝑛

2

CS 698L Swarnendu Biswas

= 𝑛 log 𝑛 − 1 + 2 + 4 + ⋯ +
n

2
= 𝑛 log 𝑛 − (𝑛 − 1) = O (𝑛 log 𝑛)

Algorithm Efficiency

• Work = O (𝑛 log 𝑛)

• Remember Work for the sequential algorithm was O(n)

• For large 𝑛, log 𝑛 can be a non-trivial factor

CS 698L Swarnendu Biswas

for i = 0 to ⌈log n-1⌉ do
for j = 2i to n-1 in parallel do

A [j] = A[j] + A[j-2i]

Hillis and Steele

Asymptotic

complexity O(log n)

Algorithm With Improved Work-Efficiency

CS 698L Swarnendu Biswas

10 1 4 2 9 5 7 8

Guy Blelloch

CS 698L Swarnendu Biswas

1 810 4 2 9 5 7

611 14 15

2917

46
Binary tree

sum(n) = sum(n.lc) + sum(n.rc)

CS 698L Swarnendu Biswas

1 810 4 2 9 5 7

611 14 15

2917

46
Binary tree

sum(n) = sum(n.lc) + sum(n.rc)

for i = 0 to log n-1 do
for j = 0 to n-1 by 2i+1 in parallel do

a[j+2i+1-1] = a[j+2i-1] + a[j+2i+1-1]

CS 698L Swarnendu Biswas

10 1 4 2 9 5 7 8

10 11 4 6 9 14 7 15

10 11 4 17 9 14 7 29

10 11 4 17 9 14 7 46

i=0

i=1

i=2

CS 698L Swarnendu Biswas

1 810 4 2 9 5 7

611 14 15

2917

46At the end of
the first round

CS 698L Swarnendu Biswas

1 810 4 2 9 5 7

611 14 15

2917

0

CS 698L Swarnendu Biswas

1 810 4 2 9 5 7

611 14 15

170

0

CS 698L Swarnendu Biswas

10 380 11 15 17 26 31

110 17 31

170

0

CS 698L Swarnendu Biswas

10 380 11 15 17 26 31

110 17 31

170

0

for i = log n-1 down to 0 do
for j = 0 to n-1 by 2i+1 in parallel do

tmp = a[j+2i-1]
a[j+2i-1] = a[j+2i+1-1]
a[j+2i+1-1] = temp + a[j+2i+1-1]

CS 698L Swarnendu Biswas

10 11 4 17 9 14 7 0

i=2

i=1

i=0 10 11 4 0 9 14 7 17

10 0 4 11 9 17 7 31

0 10 11 15 17 26 31 38

CS 698L Swarnendu Biswas

10 380 11 15 17 26 31

110 17 31

170

0After second round

Algorithm Efficiency

CS 698L Swarnendu Biswas

Asymptotic

complexity O(log n)

for i = 0 to log n-1 do
for j = 0 to n-1 by 2i+1 in parallel do

a[j+2i+1-1] = a[j+2i-1] + a[j+2i+1-1]

for i = log n-1 down to 0 do
for j = 0 to n-1 by 2i+1 in parallel do

tmp = a[j+2i-1]
a[j+2i-1] = a[j+2i+1-1]
a[j+2i+1-1] = temp + a[j+2i+1-1]

Algorithm Efficiency

• # of iterations: log n in each pass

• Number of addition operations in first pass:
𝑛

2
+

𝑛

4
+ ⋯ + 2 + 1

• Number of addition operations in second pass: 1 + 2 + ⋯ +
𝑛

2

• Total additions = n − 1 + n − 1 = 𝟐(n − 1)

CS 698L Swarnendu Biswas

= O (𝑛)

Benefits from parallelism can overcome the
constant factor increase in computation

Data Management Pattern: Pack

• Eliminate unused data
• Helps in reducing required

memory bandwidth

• Retained elements are moved to
make them contiguous in memory

• Used in register masks

CS 698L Swarnendu Biswas

Data Management Pattern: Pipeline

• Connects tasks respecting a
producer-consumer relationship

• Used in video encoding for
processing incoming frames

CS 698L Swarnendu Biswas

Data Management Pattern: Gather

• Collect data based on information from another collection and set of
indices

• Left and right shifts are an example of gather operation

CS 698L Swarnendu Biswas

Shift Operation

CS 698L Swarnendu Biswas

Zip Operation

CS 698L Swarnendu Biswas

Data Management Pattern: Scatter

• Inverse of gather, data elements are output

CS 698L Swarnendu Biswas

References

• M. McCool et al. Structured Parallel Programming: Patterns for Efficient Computation.

• Yong Cao. Parallel Prefix Sum – Scan.

• G. Blelloch. Prefix Sums and Their Applications.

• Th. Ottmann. Parallel Prefix Computation.

CS 698L Swarnendu Biswas

