CS 698L: Parallel Patterns

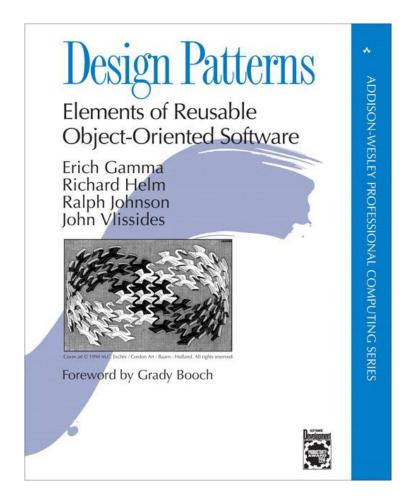
Swarnendu Biswas

Semester 2019-2020-I CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

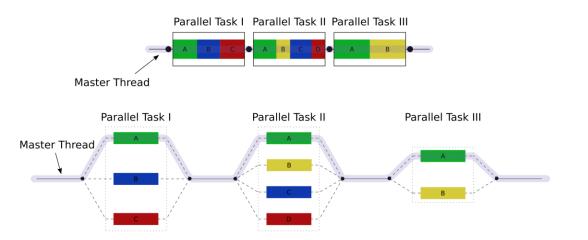
Parallel Programming Patterns

- Patterns codify best practices (remember the Gang of Four book!)
- Parallel pattern
 - Recurring combination of task distribution and data access that solves a problem in parallel algorithm design



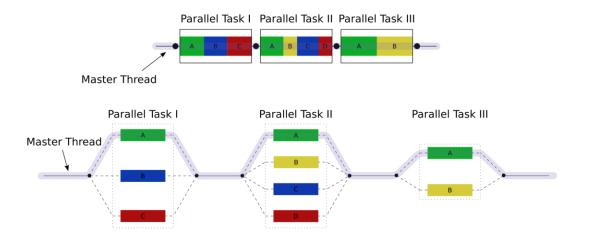
Control Pattern: Fork-Join

- Forks control flow into multiple parallel flows and joins later
 - OpenMP's parallel construct
 - Cilk Plus-style spawn and sync
- Is a join and a barrier same?



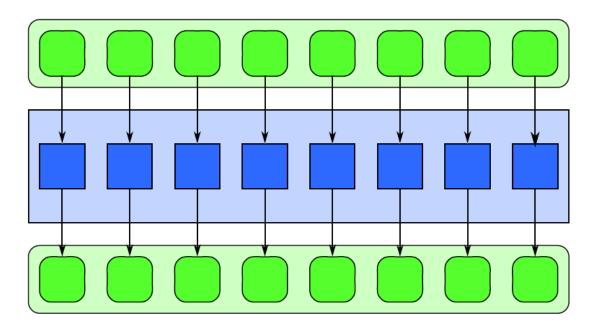
Control Pattern: Fork-Join

- Forks control flow into multiple parallel flows and joins later
 - OpenMP's parallel construct
 - Cilk Plus-style spawn and sync
- Barriers are different
 - Operates on threads, and all threads continue after the barrier
 - Only one thread continues after a join



Control Pattern: Map

- A function is applied to all elements of a collection, usually producing a new collection with the same shape as the input
- Loop bodies are independent
- Loop count is known in advance
- Elemental function must not have side-effects (i.e., pure)



Control Pattern: Map

```
>>> a = [1, 2, 3, 4, 5, 6]
>>> print(list(map(lambda x: x*x, a)))
[1, 4, 9, 16, 25, 36]
```

• Similar in flavour to SIMD model

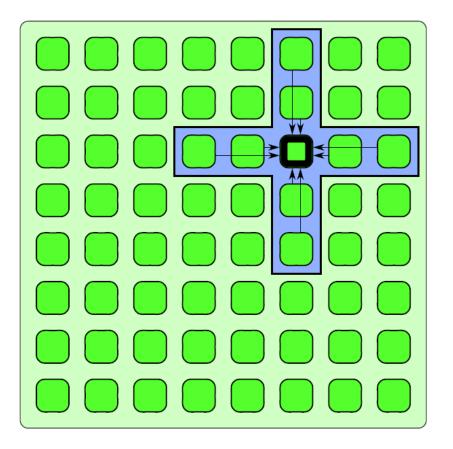
Linear Algebra Operations

- SAXPY operation y = Ax + y
- Similarly DAXPY, CAXPY, ZAXPY
- Very frequently used in linear algebra such as Gaussian elimination

Control Pattern: Stencil

• Elemental function can access more than one element

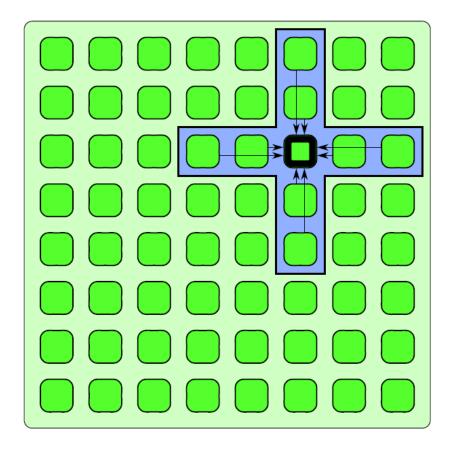
• Is stencil and map similar?



Control Pattern: Stencil

- Elemental function can access more than one element
 - Generalization of map

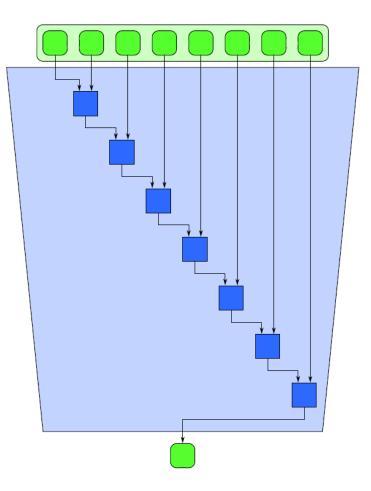
• A **convolution** uses the stencil pattern but combines elements linearly using a set of weights



Control Pattern: Reduction

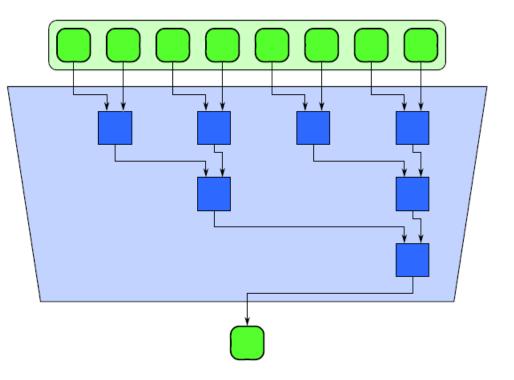
- Combines every element in a collection into a single element using an associative combiner function
- Many different orderings are possible

```
double add_reduce(const double a[], size_t n ) {
  double r = 0.0; // initialize with identity
  for (int i = 0; i < n; ++i) {
    r += a[i];
  return r;
}</pre>
```

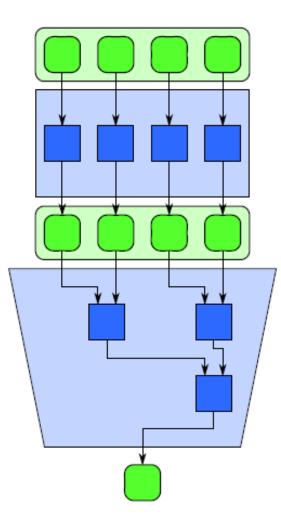


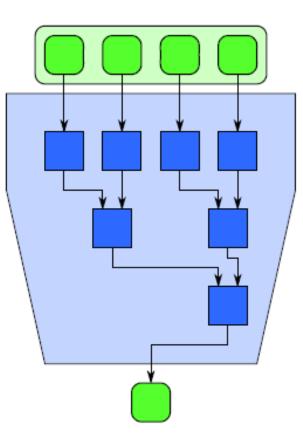
Control Pattern: Reduction

- Several choices for parallel reduction
 - Tree reduction
 - Could have local workers perform serial reduction, and then have a shallow tree to reduce results from workers



Fusing Map and Reduce

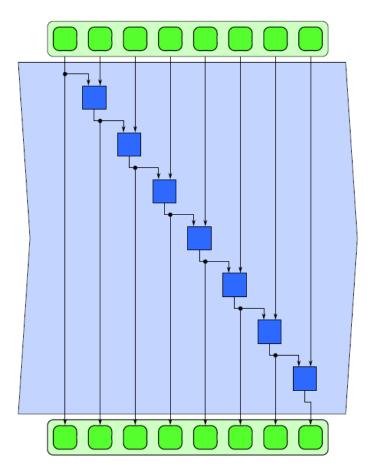




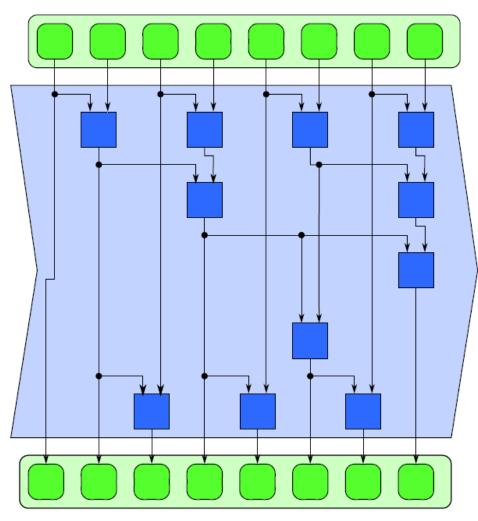
Control Pattern: Scan

- Scan computes all partial reductions of a collection
- For every output position, a reduction of the input up to that point is computed

```
void add_iscan(const float a[],
                             float b[], size_t n) {
                 if (n>0)
                 b[0] = a[0];
                 for (int i = 1; i < n; ++i)
                       b[i] = b[i-1] + a[i];
}</pre>
```



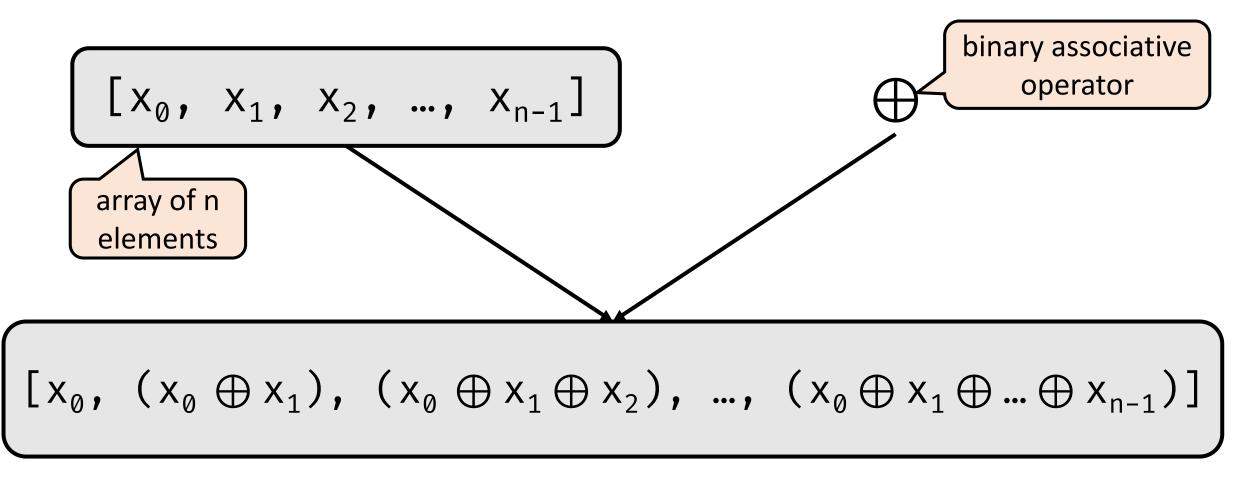
Control Pattern: Scan

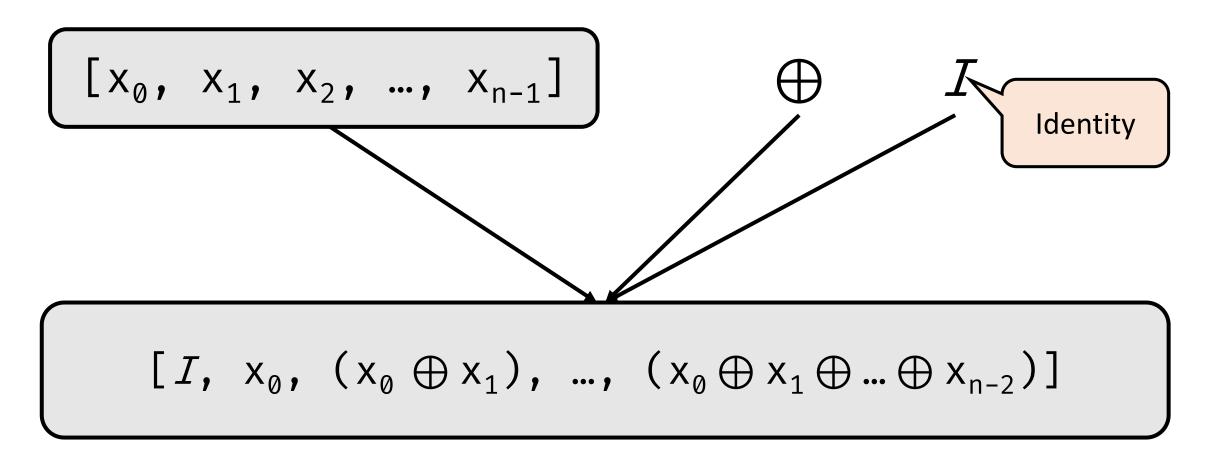


int arr
$$[8] = \{10, 1, 4, 2, 9, 5, 7, 8\}$$

int sum_arr[8] = $\{10, 11, 15, 17, 26, 31, 38, 46\}$

Definition of Inclusive Prefix Scan





A Problem

- Assume we have a 100-inch sandwich to feed ten people
- We know how many inches each person wants

• How do we cut the sandwich quickly and distribute?

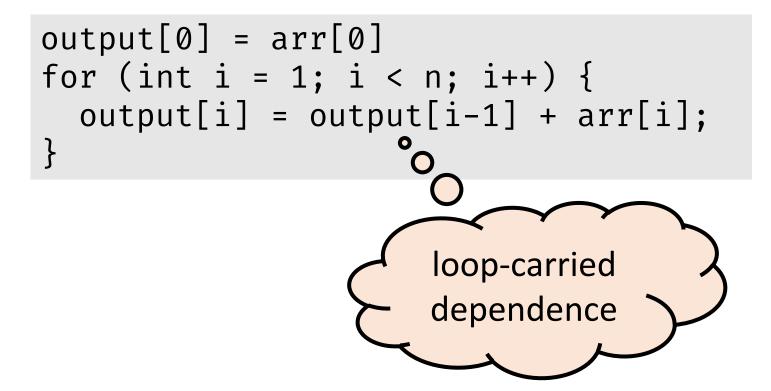
Solution to the Problem

- Method 1: Cut the sandwich sequentially starting from say left
- Method 2: Calculate prefix sum and cut in parallel

Sequential Inclusive Prefix Scan

```
output[0] = arr[0]
for (int i = 1; i < n; i++) {
    output[i] = output[i-1] + arr[i];
}</pre>
```

How can Inclusive Prefix Scan be Parallelized?



A Naïve Parallel Prefix Sum

- Use one thread to compute each output element
 - The thread adds up all the previous elements needed for the output

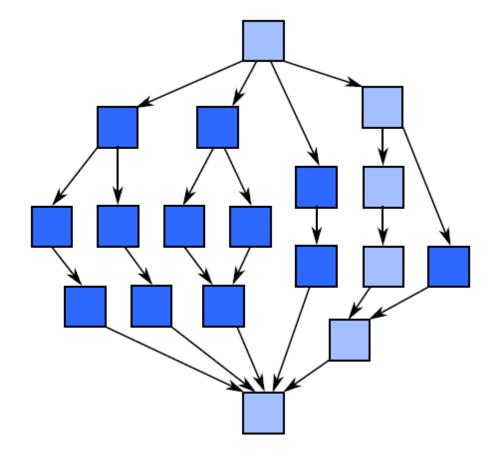
$$y_0 = x_0$$

 $y_1 = x_0 + x_1$
 $y_2 = x_0 + x_1 + x_2$
...

Analysis of Parallel Algorithms

- T_p = Execution time of a parallel program with p processors
- Work
 - Total number of computation operations performed by the p processors
 - Time to run on a single processor (T_1)
- Span
 - Length of the longest series of sequential operations or the critical path
 - Time taken to run on infinite processors (T_{∞})

Work-Span Model



Analysis of Parallel Algorithms

• Cost

• Total time spent by **all** processors in computation (pT_p)

\bigcap	$Cost \ge Work$	
	$pT_p \ge T_1$	

Execution time \geq Span $T_n \ge T_\infty$

Analysis of Parallel Algorithms

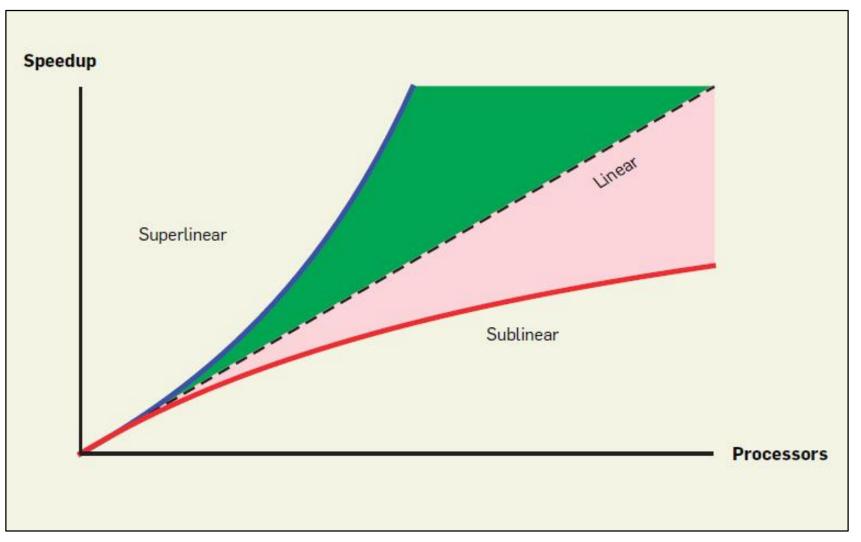
• Speedup (S_p)

• Total time spent by all processors in computation (pT_p)

Speedup
$$= \frac{T_1}{T_p} \le \frac{T_1}{T_{\infty}}$$

Speedup =
$$\frac{T_1}{T_p} \le p$$

Speedup



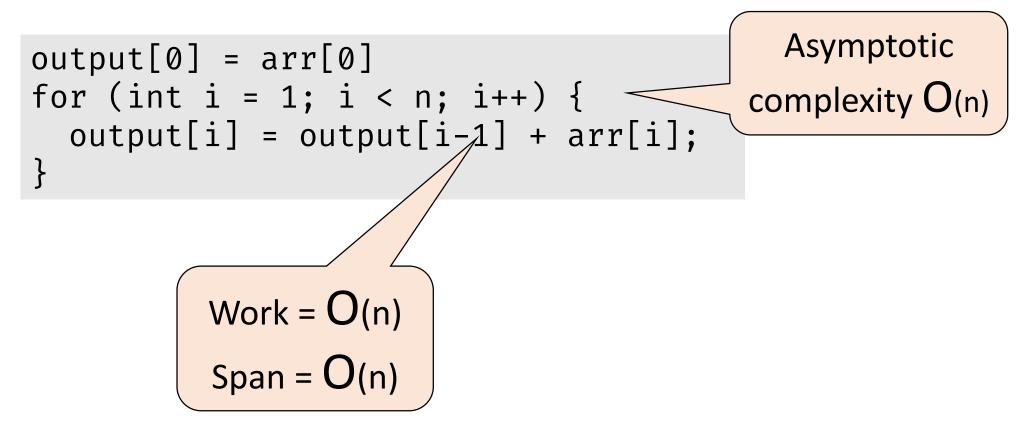
Other Metrics

• Efficiency

• Speedup per processor
$$\frac{S_p}{p} = \frac{T_1}{pT_p}$$

- Parallelism
 - Maximum possible speedup given any number of processors $\frac{T_1}{T_{\infty}}$

Sequential Inclusive Prefix Scan



A Naïve Parallel Prefix Sum

- Use one thread to compute each output element
 - The thread adds up all the previous elements needed for the output

$$y_0 = x_0$$

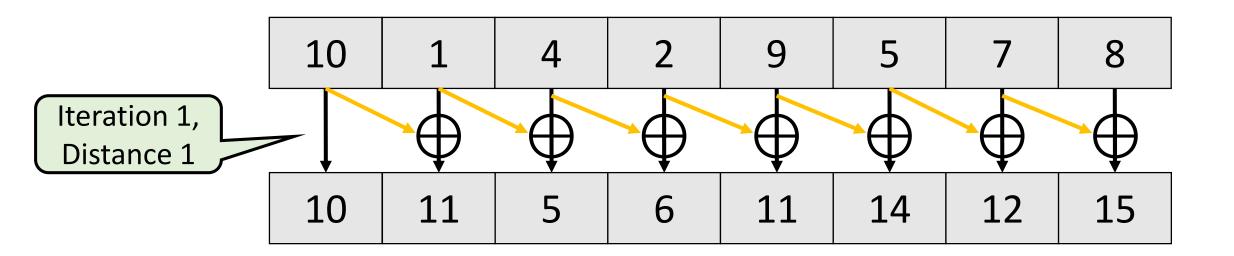
 $y_1 = x_0 + x_1$
 $y_2 = x_0 + x_1 + x_2$

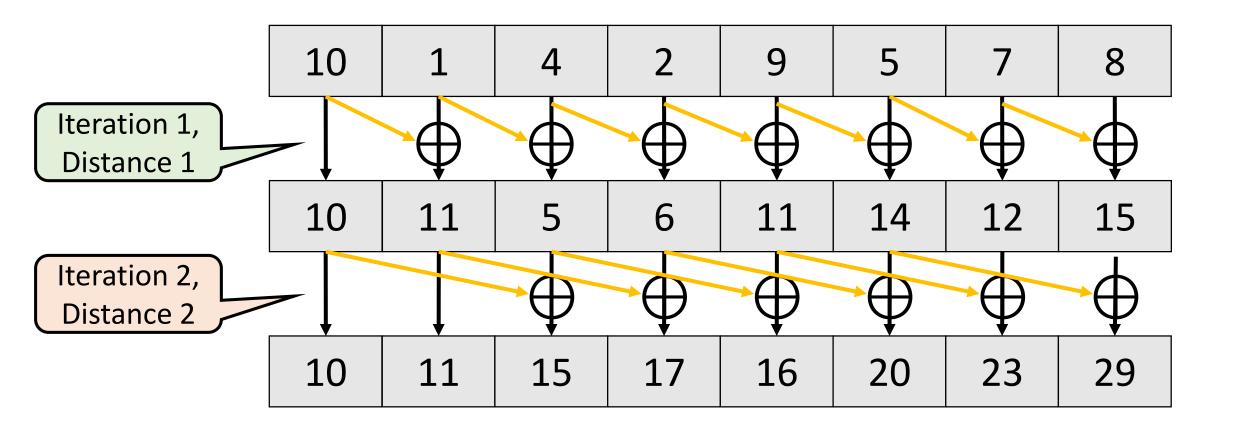
• Work =
$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$$

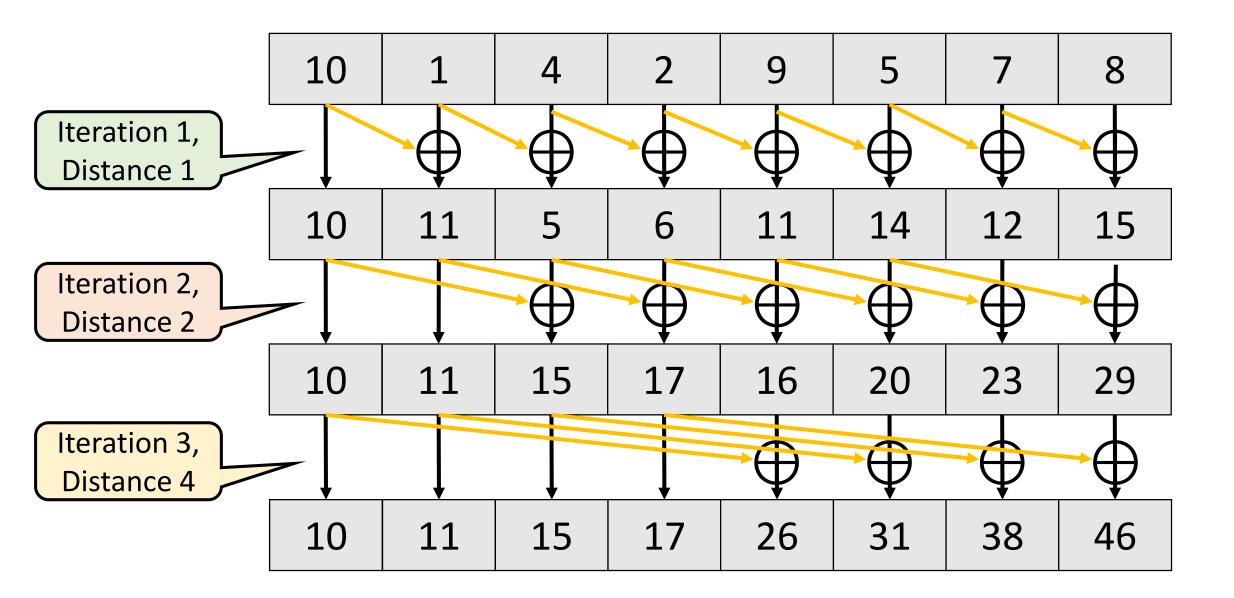
= $O(n^2)$ operations

Parallel Inclusive Prefix Sum

threads: p
(here p == n, and n = 8)







Algorithm Efficiency

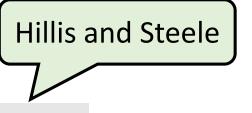
- # of iterations: log n
- First iteration: (n-1) additions
- Second iteration: (n-2) additions
- Third iteration: (n-4) additions
- Last iteration: (n n/2) additions

• Total additions =
$$(n - 1) + (n - 2) + (n - 4) + ... + \left(n - \frac{n}{2}\right)$$

= $n \log n - \left(1 + 2 + 4 + \dots + \frac{n}{2}\right)$
= $n \log n - (n - 1) = O(n \log n)$

Algorithm Efficiency

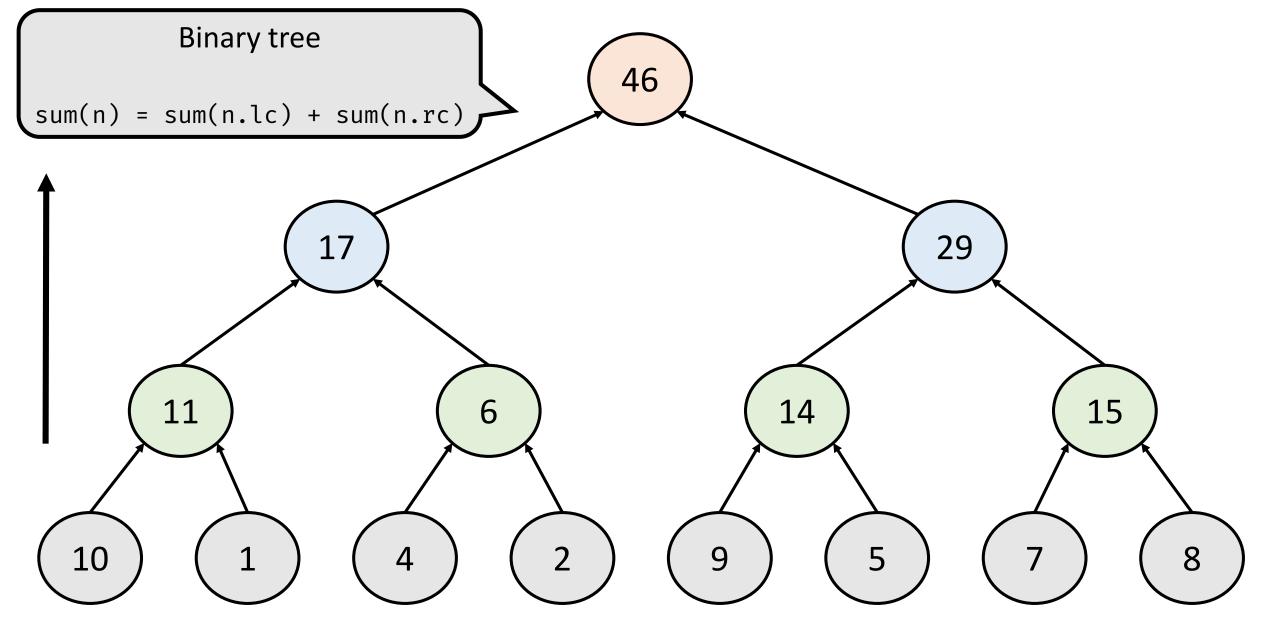
- Work = $O(n \log n)$
 - Remember Work for the sequential algorithm was O(n)
 - For large *n*, log *n* can be a non-trivial factor

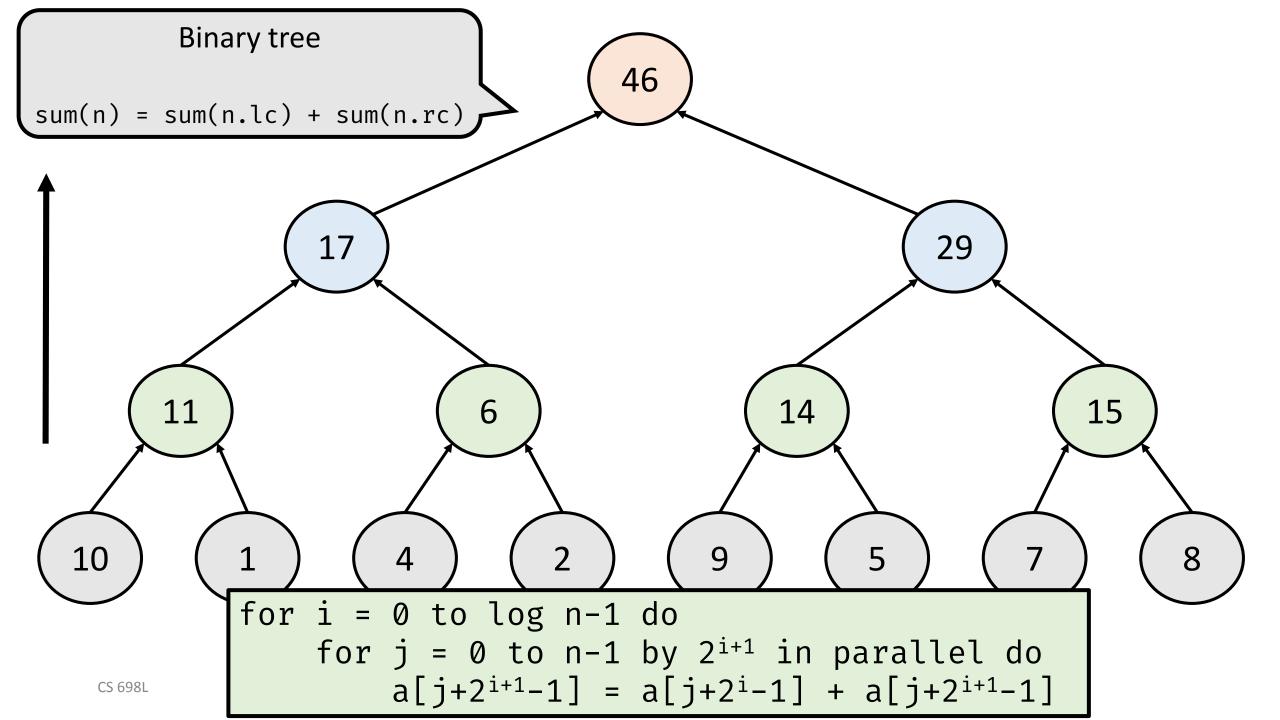


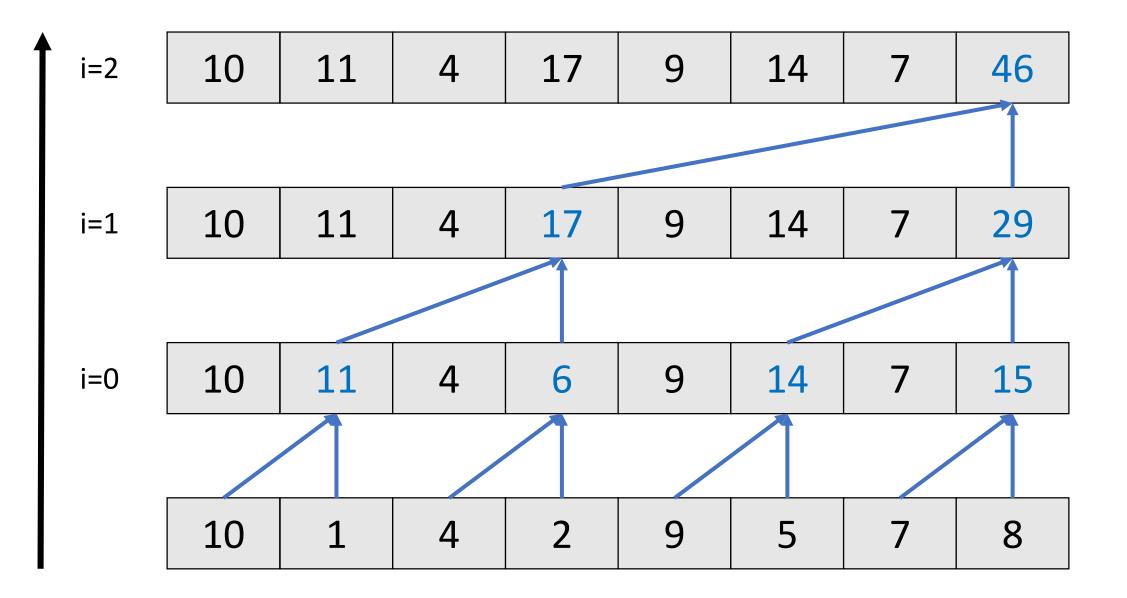
for
$$i = 0$$
 to $\lceil \log n - 1 \rceil$ do
for $j = 2^{i}$ to $n - 1$ **in parallel** do
 $A [j] = A[j] + A[j - 2^{i}]$

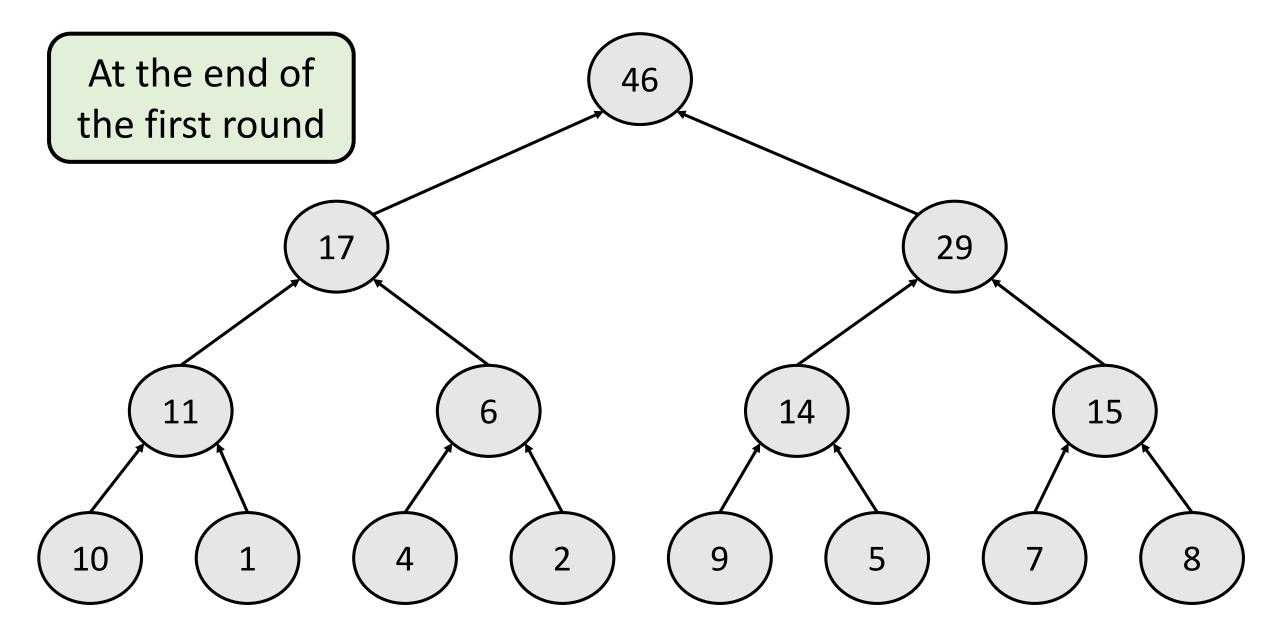
Algorithm With Improved Work-Efficiency

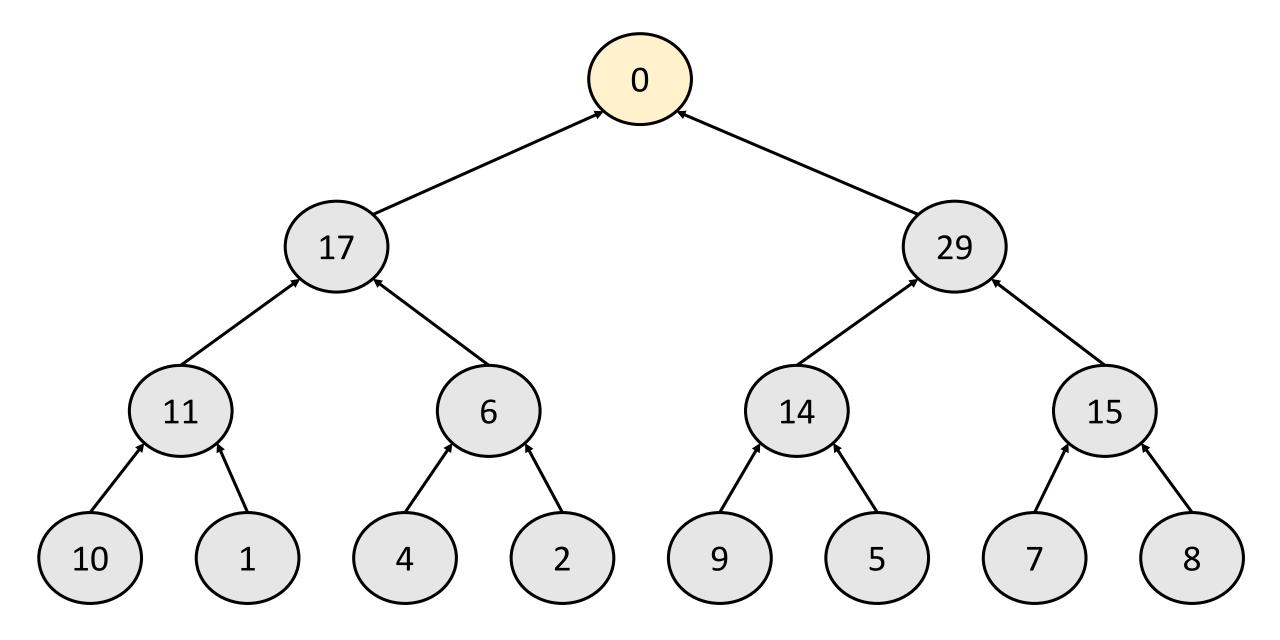
10	1	4	2	9	5	7	8

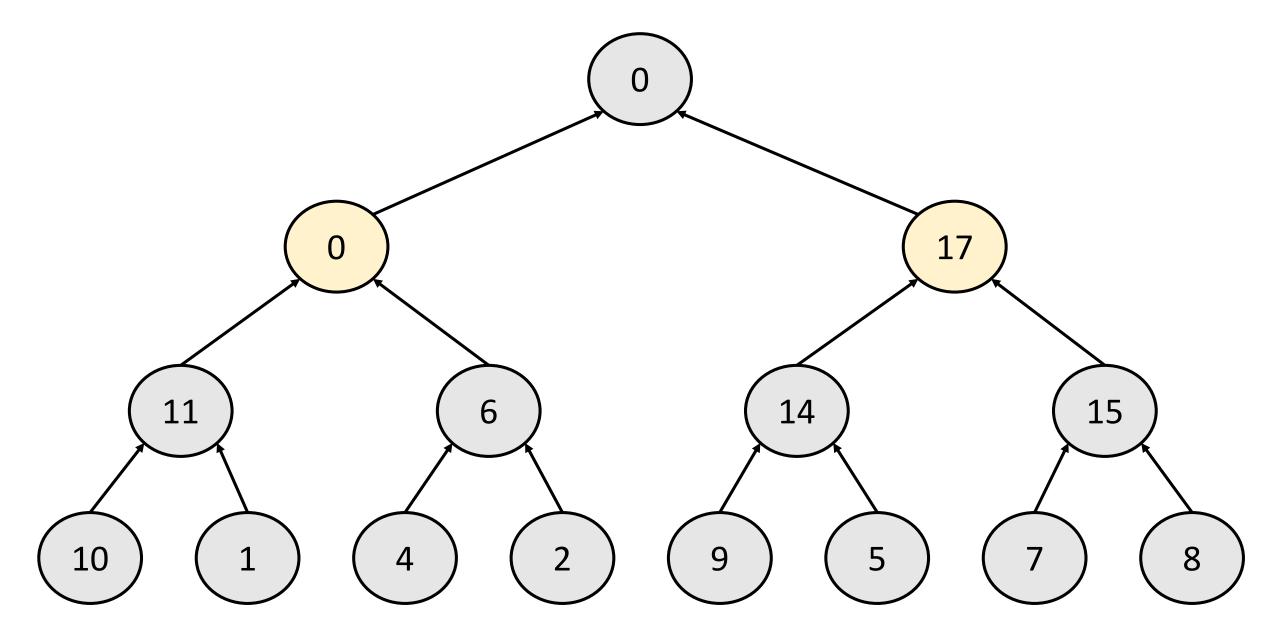


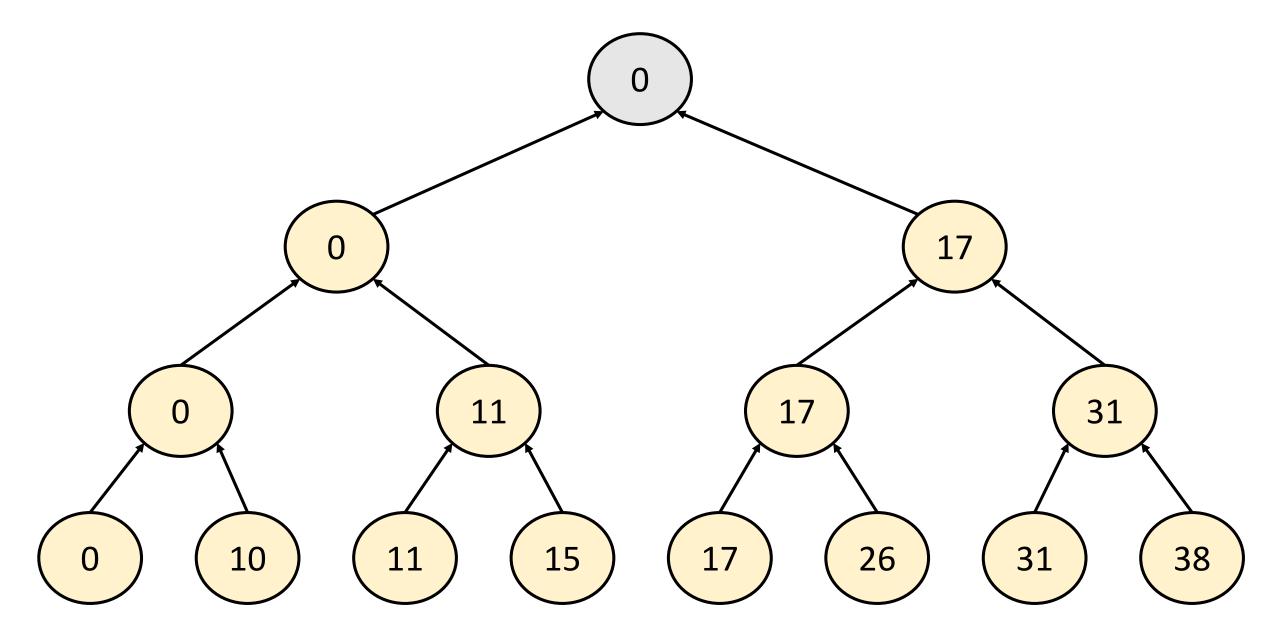


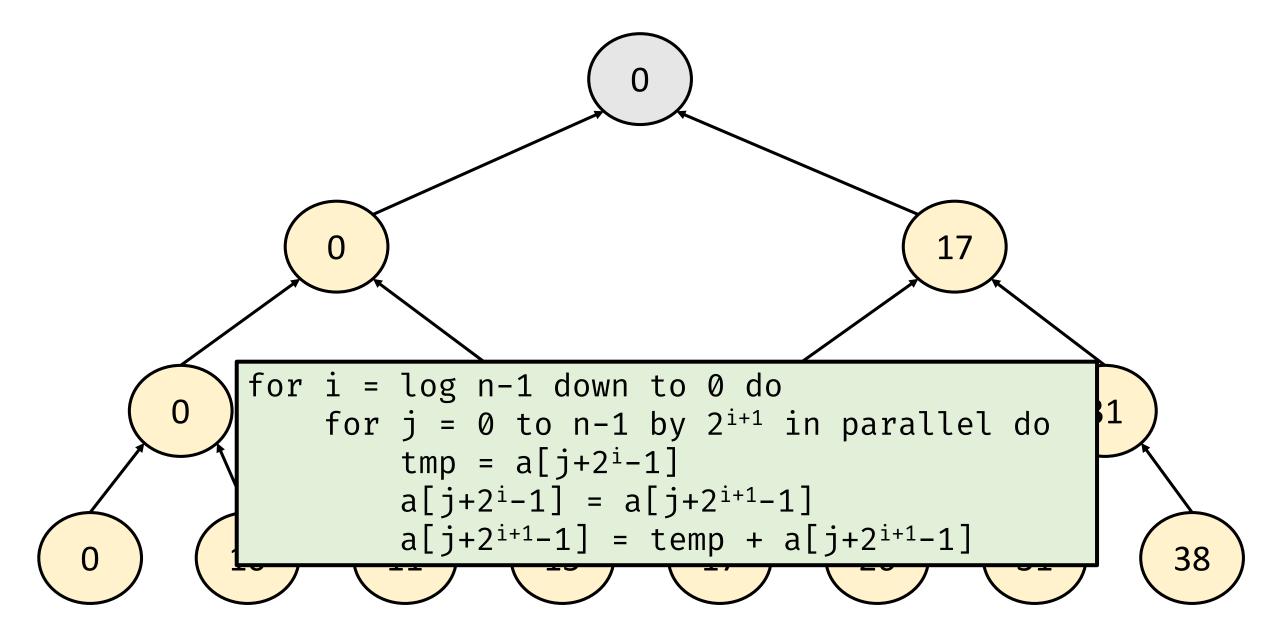


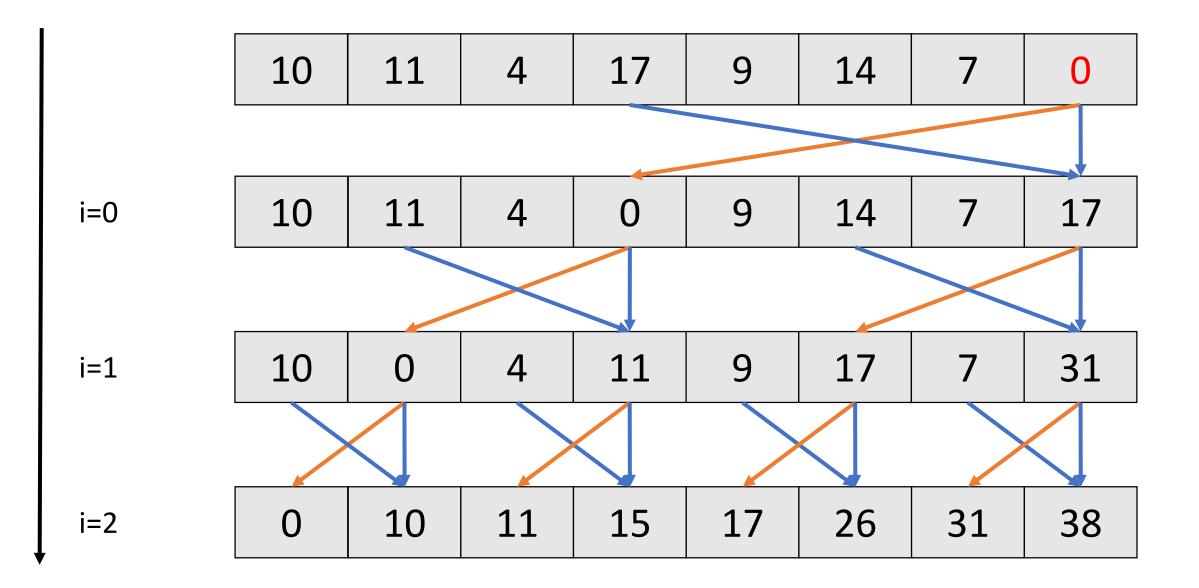


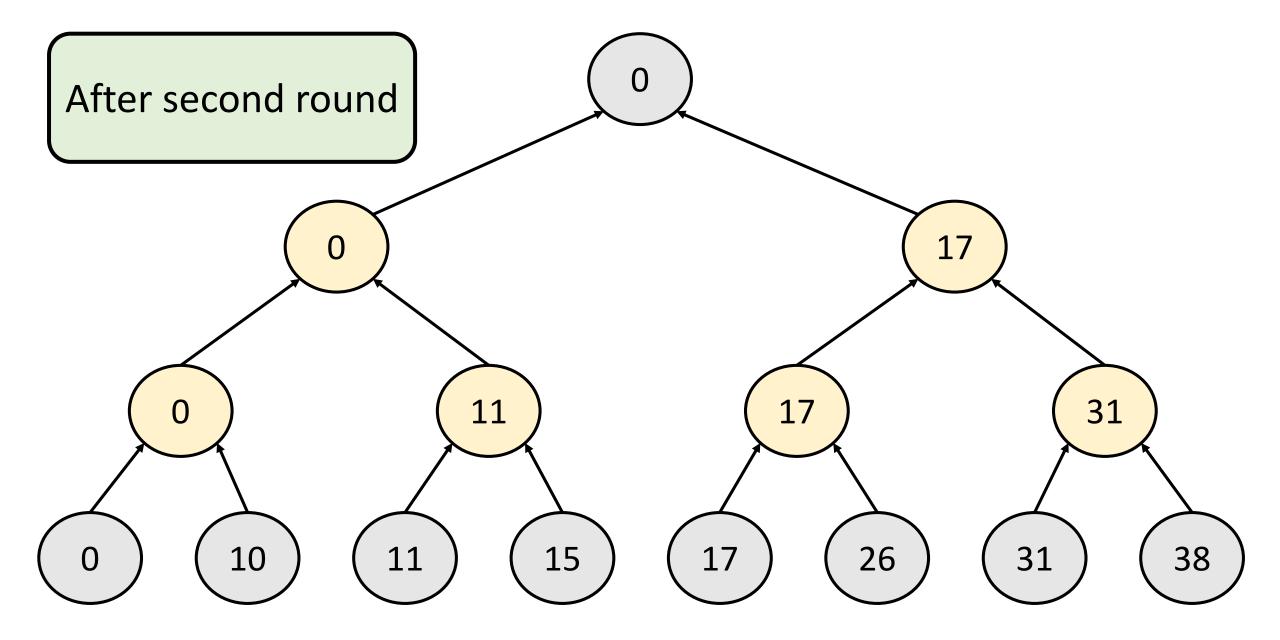




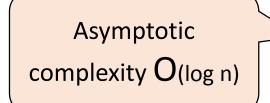








Algorithm Efficiency



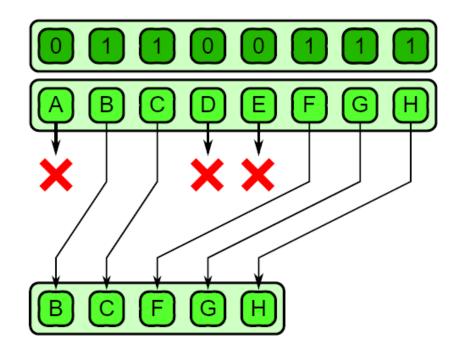
Algorithm Efficiency

- # of iterations: log n in each pass
- Number of addition operations in first pass: $\frac{n}{2} + \frac{n}{4} + \dots + 2 + 1$
- Number of addition operations in second pass: $1 + 2 + \dots + \frac{n}{2}$
- Total additions = (n 1) + (n 1) = 2(n 1)= O(n)

Benefits from parallelism can overcome the constant factor increase in computation

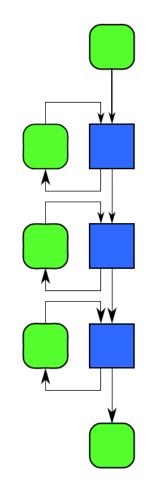
Data Management Pattern: Pack

- Eliminate unused data
 - Helps in reducing required memory bandwidth
 - Retained elements are moved to make them contiguous in memory
- Used in register masks



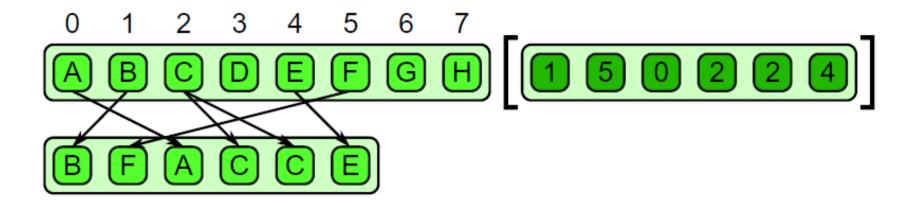
Data Management Pattern: Pipeline

- Connects tasks respecting a producer-consumer relationship
- Used in video encoding for processing incoming frames

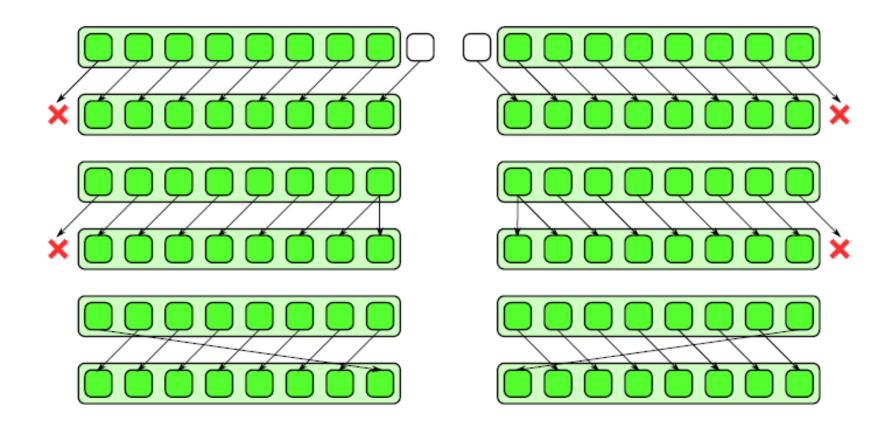


Data Management Pattern: Gather

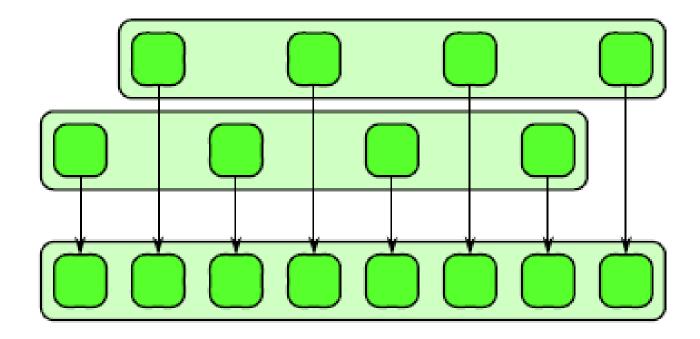
- Collect data based on information from another collection and set of indices
- Left and right shifts are an example of gather operation



Shift Operation

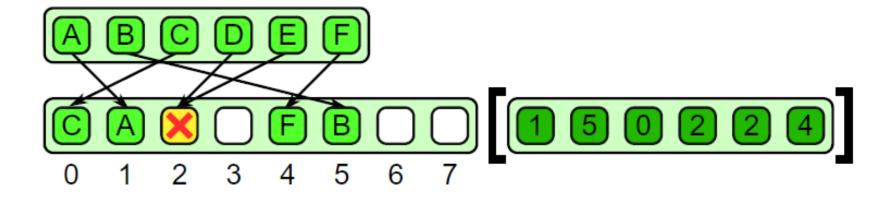


Zip Operation



Data Management Pattern: Scatter

• Inverse of gather, data elements are output



References

- M. McCool et al. Structured Parallel Programming: Patterns for Efficient Computation.
- Yong Cao. Parallel Prefix Sum Scan.
- G. Blelloch. Prefix Sums and Their Applications.
- Th. Ottmann. Parallel Prefix Computation.