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What is OpenMP?

• OpenMP (Open Multi-Processing) is a popular shared-memory 
programming API

• OpenMP supports C/C++ and Fortran on a wide variety of 
architectures

• OpenMP is supported by popular C/C++ compilers, for e.g., 
LLVM/Clang, GNU GCC, Intel ICC, and IBM XLC
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What is OpenMP?

• A directive based parallel programming model
• OpenMP program is essentially a sequential program augmented with 

compiler directives to specify parallelism

• Eases conversion of existing sequential programs

• Standardizes established SMP practice + vectorization and 
heterogeneous device programming
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Key Concepts in OpenMP

• Parallel regions where parallel execution occurs via multiple 
concurrently executing threads
• Each thread has its own program counter and executes one instruction at a 

time, similar to sequential program execution

• Shared and private data: shared variables are the means of 
communicating data between threads

• Synchronization: fundamental means of coordinating execution of 
concurrent threads

• Mechanism for automated work distribution across threads
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Goals of OpenMP

• Standardization
• Provide a standard among a variety of shared memory 

architectures/platforms 
• Jointly defined and endorsed by a group of major computer hardware and 

software vendors 

• Ease of use
• Provide capability to incrementally parallelize a serial program, unlike 

message-passing libraries which typically require an all or nothing approach 
• Provide the capability to implement both coarse-grain and fine-grain 

parallelism 

• Portability
• Most major platforms and compilers have OpenMP support
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Fork-Join Model of Parallel Execution
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Other Key Features

• Scope of data
• Most data within a parallel region is shared by default

• Programmers can control scope of access to data by different threads

• Nested parallelism
• You can invoke a parallel region within another parallel region

• Dynamic threads and scheduling
• The runtime can dynamically alter the number of parallel threads and also 

control the scheduling of work among threads
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The OpenMP API

• Compiler directives
• #pragma omp parallel
• Comments, ignored unless instructed not to

• Runtime library routines
• int omp_get_num_threads(void);

• Environment variables
• export OMP_NUM_THREADS=8
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OpenMP Solution Stack 



General Code Structure

#include <omp.h>

…

int main() {

…

// serial code, master thread  

…

// begin parallel section, 

// fork a team of threads

#pragma omp parallel …

{

// parallel region executed by 

// all threads

// other logic 

…

// all parallel threads join

// master thread

}

// resume serial code 

…

}
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OpenMP Core Syntax

• Most common constructs in OpenMP are compiler directives
• #pragma omp directive [clause [clause]…] newline
• Example

• #pragma omp parallel num_threads(4)

• Function prototypes and types in the file: #include <omp.h>

• Most OpenMP constructs apply to a structured block
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Structured Block

• Structured block is a block of one or more statements surrounded by 
“{ }”, with one point of entry at the top and one point of exit at the 
bottom

• It is okay to have an exit within the structured block

• Disallows code that branches into or out of the middle of the 
structured block
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Format of Compiler Directives

• #pragma omp
• Required for all OpenMP C/C++ directives

• directive-name
• A valid OpenMP directive. Must appear after the pragma and before any 

clauses
• Scope extends to the the structured block following a directive, does not span 

multiple routines or code files

• [clause, ...]
• Optional. Clauses can be in any order, and repeated as necessary unless 

otherwise restricted

• newline
• Required. Precedes the structured block which is enclosed by this directive.
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Compiling an OpenMP Program

• Linux and GNU GCC
• g++ –fopenmp hello-world.cpp

• Linux and Clang/LLVM
• clang++ -fopenmp hello-world.cpp

• Can use the preprocessor macro _OPENMP to check for compiler 
support
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Hello World with OpenMP!
#include <iostream>

#include <omp.h>

using namespace std;

int main() {

cout << "This is serial code\n";

#pragma omp parallel

{

int num_threads = omp_get_num_threads();

int tid = omp_get_thread_num();

if (tid == 0) {

cout << num_threads << "\n";

}

cout << "Hello World: " << tid << "\n";

}

cout << "This is serial code\n";

#pragma omp parallel num_threads(2)

{

int tid = omp_get_thread_num();

cout << "Hello World: " << tid << "\n";

}

cout << "This is serial code\n";

omp_set_num_threads(3);

#pragma omp parallel

{

int tid = omp_get_thread_num();

cout << "Hello World: " << tid << "\n";

}

}



Hello World with OpenMP!

• Each thread has a unique integer “id”; master thread has “id” 0, and 
other threads have “id” 1, 2, …

• OpenMP runtime function omp_get_thread_num() returns a thread’s 
unique “id”

• The function omp_get_num_threads() returns the total number of 
executing threads

• The function omp_set_num_threads(x) asks for “x” threads to 
execute in the next parallel region (must be set outside region)
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Types of Parallelism with OpenMP

Coarse-grained

• Task parallelism
• Split the work among threads that 

execute in parallel 

• Implicit join at the end of the 
segment, or explicit 
synchronization points

Fine-grained

• Loop parallelism
• Execute independent iterations of 

for-loops in parallel 

• Several choices in splitting the 
work
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Types of Parallelism with OpenMP

Task parallelism Loop parallelism

CS 698L Swarnendu Biswas



The Essence of OpenMP

• Create threads that execute in a shared address space
• The only way to create threads is with the parallel construct
• Once created, all threads execute the code inside the construct

• Split up the work between threads by one of two means
• SPMD (Single Program Multiple Data) – all threads execute the same code and you use the 

thread ID to assign work to a thread
• Workshare constructs split up loops and tasks between threads

• Manage data environment to avoid data access conflicts
• Synchronization so correct results are produced regardless of how threads are scheduled
• Carefully manage which data can be private (local to each thread) and shared
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OpenMP Constructs

• A construct consists of an 
executable directive and the 
associated loop, statement, or 
structured block

#pragma omp parallel

{

// inside parallel construct 

subroutine ( );

}

void subroutine (void) {

// outside parallel construct 

}
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OpenMP Regions

• A region consists of all code 
encountered during a specific 
instance of the execution of a 
given construct. Also includes 
implicit code introduced by the 
OpenMP implementation.

#pragma omp parallel

{

// inside parallel region

subroutine ( );

}

void subroutine (void) {

// inside parallel region

}

CS 698L Swarnendu Biswas



Parallel Region Construct

• Block of code that will be executed by multiple threads
• #pragma omp parallel [clause …] 

structured_block

• Example of clauses
• private (list)
• shared (list)
• default (shared | none)
• firstprivate (list)
• reduction (operator: list)
• num_threads (integer-expression)
• …
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Parallel Region Construct

• When a thread reaches a parallel directive, it creates a team of 
threads and becomes the master of the team
• By default OpenMP creates as many thread as many cores available in the 

system

• The master is a member of that team and has thread number 0 within 
that team

• The code is duplicated and all threads will execute that code

• There is an implied barrier at the end of a parallel section

• Only the master thread continues execution past this point
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Threading in OpenMP

#pragma omp parallel 
num_threads(4)
{

foobar ();
}

• OpenMP implementations use a 
thread pool so full cost of threads 
creation and destruction is not 
incurred for reach parallel region

• Only three threads are created 
excluding the parent thread

void thunk () {
foobar ();

}

pthread_t tid[4];

for (int i = 1; i < 4; ++i)
pthread_create (&tid[i],0,thunk, 

0);

for (int i = 1; i < 4; ++i)
pthread_join (tid[i]);
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Thread Pool

• Software design pattern

• Maintains a pool of threads 
waiting for work 

• Advantageous when work is 
short-lived
• Avoid the overhead of frequent 

thread creation and destruction

• Excess threads can degrade 
performance
• Memory, context-switch, and 

other resource overhead

CS 698L Swarnendu Biswas



Specifying Number of Threads

• Desired number of threads can 
be specified in many ways
• Setting environmental variable 
OMP_NUM_THREADS

• Runtime OpenMP function 
omp_set_num_threads(4)

• Clause in #pragma for parallel 
region

double A[1000];

#pragma omp parallel num_threads(4)

{

int t_id = omp_get_thread_num();

int nthrs = omp_get_num_threads();

for (int i = t_id; i < 1000; i += nthrs) {

A[i] = foo(i);

}

}
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Specifying Number of Threads

• Three ways
• OMP_NUM_THREADS
• omp_set_num_threads(…)
• #pragma omp parallel num_threads(…)

• OMP_NUM_THREADS (if present) specifies initially the number of threads

• Calls to omp_set_num_threads() override the value of OMP_NUM_THREADS

• Presence of the num_threads clause overrides both other values
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Distributing Work

• Threads can perform disjoint work division using their thread 
ids and knowledge of total # threads

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
for (int i = t_id; i < 1000; i += omp_get_num_threads()) {
A[i]= foo(i);

}
}
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Distributing Work

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
int num_thrs = omp_get_num_threads();
int b_size = 1000 / num_thrs;
for (int i = t_id*b_size; i < (t_id+1)*b_size; i += num_thrs) {
A[i]= foo(i);

}
}
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Cyclic vs Block Distribution of Work

• Say I have a computation like 

for (int i = 0; i < N; i++) {

A[i] =  B[i] + C[i];

}
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Other Subtle Issues about parallel Construct

• If a thread in a team executing a parallel region encounters another 
parallel directive, it creates a new team

• If execution of a thread terminates while inside a parallel region, 
execution of all threads in all teams terminates. The order of 
termination of threads is unspecified.
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Nested Parallelism 

• Allows to create parallel region 
within a parallel region itself

• Nested parallelism can help scale 
to large parallel computations

• Usually turned off by default
• Can lead to oversubscription by 

creating lots of threads

• Set OMP_NESTED as TRUE or call 
omp_set_nested()
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Recurring Example of Numerical Integration

• Mathematically

න
0

1 4

(1 + 𝑥2)
𝑑𝑥 = 𝜋

• We can approximate the integral as 
the sum of the rectangles



𝑖=0

𝑁

𝐹 𝑥𝑖 ∆𝑥 ≈ 𝜋

where each rectangle has width 
∆𝑥 and height 𝐹 𝑥𝑖 at the middle of 
interval i
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Serial Pi Program

double seq_pi() {

int i;

double x, pi, sum = 0.0;

double step = 1.0 / (double)NUM_STEPS;

for (i = 0; i < NUM_STEPS; i++) {

x = (i + 0.5) * step;

sum += 4.0 / (1.0 + x * x);

}

pi = step * sum;

return pi;

}

$ g++ -fopenmp compute-pi.cpp

$ ./a.out

3.14159
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Computing Pi with OpenMP

double omp_pi_with_fs() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS] = {0.0};

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

// Parallel region with worker threads

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i] * step);

}

return pi;

}
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Computing Pi with OpenMP

double omp_pi_with_fs() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS] = {0.0};

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

// Parallel region with worker threads

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i] * step);

}

return pi;

}
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Avoid False Sharing 

• Array sum[] is a shared array, with each thread accessing exactly on 
element

• Cache line holding multiple elements of sum will be locally cached by 
each processor in its private L1 cache

• When a thread writes into into an index in sum, the entire cache line 
becomes “dirty” and causes invalidation of that line in all other 
processor’s caches

• Cache thrashing due to this “false sharing” causes performance 
degradation
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Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs1() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS][8];

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid][0] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i][0] * step);

}

return pi;

}
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Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs1() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS][8];

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid][0] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i][0] * step);

}

return pi;

}

CS 698L Swarnendu Biswas
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Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs1() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS][8];

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid][0] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i][0] * step);

}

return pi;

}
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Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

pi += (sum * step);

} // end #pragma omp parallel

return pi;

}
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Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

pi += (sum * step);

} // end #pragma omp parallel

return pi;

}
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Synchronization Constructs



critical Construct

• Only one thread can enter 
critical section at a time; others 
are held at entry to critical 
section

• Prevents any race conditions in 
updating “res”

float res;

#pragma omp parallel

{

float B;

int id = omp_get_thread_num();

int nthrds = omp_get_num_threads();

for (int i = id; i < MAX; i += nthrds) {

B = big_job(i);

#pragma omp critical

consume (B, res);

}

}
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critical Construct

• Works by acquiring a lock

• If your code has multiple critical sections, they are all mutually 
exclusive

• You can avoid this by naming critical sections
• #pragma omp critical (optional_name)
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Correct Pi Program: Fix the Data Race

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0, step = 1.0 / (double)NUM_ST
EPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

#pragma omp critical // Mutual exclusion

pi += (sum * step);

} // end #pragma omp parallel

return pi;

}
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Evaluate the Pi Program Variants

• Sequential computation of pi

• Parallel computation with false sharing

• Parallel computation with padding

• Parallel computation with thread-local sum
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atomic Construct

• Atomic is an efficient critical 
section for simple reduction 
operations 

• Applies only to the update of a 
memory location

• Uses hardware atomic 
instructions for implementation; 
much lower overhead than using 
critical section

float res;

#pragma omp parallel

{

float B;

int id = omp_get_thread_num();

int nthrds = omp_get_num_threads();

for (int i = id; i < MAX; i += nthrds) {

B = big_job(i);

#pragma omp atomic

res += B;

}

}
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atomic Construct

• Expression operation can be of 
type
• x binop= expr

• x is a scalar type

• binop can be +, *, -, /, &, ^, |, <<, or 
>>

• x++

• ++x

• x--

• --x

float res;

#pragma omp parallel

{

float B;

int id = omp_get_thread_num();

int nthrds = omp_get_num_threads();

for (int i = id; i < MAX; i += nthrds) {

B = big_job(i);

#pragma omp atomic

res += B;

}

}
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critical vs atomic

critical

• Locks code segments

• Serializes all unnamed critical 
sections

• Less efficient than atomic

• More general

atomic

• Locks data variables

• Serializes operations on the 
same shared data

• Makes use of hardware 
instructions to provide atomicity

• Less general
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Is atomic is always the way to go?

int sum = 0, m_val = 0;

#pragma omp parallel for 

for (int i = 0; i < N; i++) {

#pragma omp atomic

sum += getVal();

}

int getVal() {

return ++m_val;

}
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Barrier Synchronization

#pragma omp parallel private(id)

{

int id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

B[id] = big_calc2(id);

}

• Each thread waits until all 
threads arrive
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Barrier Synchronization

#pragma omp parallel private(id)
{
int id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for
for (i=0;i<N;i++) {
B[i]=big_calc2(i,A);

}

#pragma omp for nowait
for (i=0;i<N;i++) {
C[i]=big_calc2(B, i);

}

A[id] = big_calc4(id);
}
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explicit barrier

implicit barrier

no implicit barrier, nowait
cancels barrier creation



Use of nowait clause

# pragma omp for nowait

for ( /* ... */ ) {

// .. first loop ..

}

# pragma omp for

for ( /* ... */ ) {

// .. second loop ..

}

# pragma omp for nowait

for (int i=0; i<N; i++ ) {

a[i] = b[i] + c[i];

}

# pragma omp for

for (int i=0; i<N; i++) {

d[i] = a[i] + b[i];

}
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Can be useful if the two 
loops are independent



Clause ordered

• Specifies that iterations of the 
enclosed loop will be executed 
in the same order as if they were 
executed on a serial processor

• It must appear within the extent 
of omp for or omp parallel for

• Should be used in two stages

omp_set_num_threads(4);

#pragma omp parallel

{

#pragma omp for ordered

for (int i=0; i<N; i++) {

tmp = func1(i);

#pragma omp ordered
cout << tmp << “\n”;

}

}
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Synchronization Constructs

High-level

• critical
• atomic
• barrier
• ordered

Low-level

• locks
• flush
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Synchronization with Locks

• More flexible than critical 
sections (can use multiple locks)

• critical locks a code segment, 
while locks lock data

• More error-prone 
• For example, deadlock if a thread 

does not unset a lock after 
acquiring it

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel
{
do_many_things();
omp_set_lock(&lck);
// critical section
omp_unset_lock(&lck);
do_many_other_things ();

}
omp_destroy_lock(&lck);
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Synchronization with Locks

• Nested locks can be acquired if it 
is available or owned by the 
same thread

• omp_init_lock() 

• omp_set_lock()

• omp_unset_lock()

• omp_test_lock()

• omp_destroy_lock()

• omp_init_nest_lock()

• omp_set_nest_lock()

• omp_unset_nest_lock()

• omp_test_nest_lock()

• omp_destroy_nest_lock()
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Synchronization Construct: flush

• #pragma omp flush (list)

• Identifies a point at which a thread is guaranteed to see a consistent 
view of memory with respect to the variables in “list”
• Flush forces data to be updated in memory so other threads see the most 

recent value

• In the absence of a list, all shared objects are synchronized
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Synchronization Construct: flush

• If list contains a pointer, the pointer is flushed, not the object 
referred to by the pointer

• It is recommended not to use flushes, excepting certain cases where 
you want to implement say your own spin lock

• Flushes are expensive, since they require compilers to generate 
memory fences
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Clause master

#pragma omp parallel

{

do_many_things();

#pragma omp master

{

reset_boundaries();

}

do_many_other_things();

}
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multiple threads 
of control

only master thread executes this 
region, other threads just skip it, 

no barrier is implied

multiple threads 
of control



Clause single

#pragma omp parallel
{
do_many_things();

#pragma omp single
{
reset_boundaries();

}

do_many_other_things();
}
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multiple threads 
of control

a single thread executes 
this region, may not be 

the master thread

multiple threads 
of control

implicit barrier, all other threads 
wait; can remove with nowait clause



Simplify Control Flow: Use single

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0, step = 1.0 / (double)NUM_ST
EPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

#pragma omp single 

num_thrs = nthrds;

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

#pragma omp critical // Mutual exclusion

pi += (sum * step);

}

return pi;

}
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Reductions in OpenMP

• Reductions are common patterns
• True dependence that cannot be 

removed

• OpenMP provides special support 
via reduction clause
• OpenMP compiler automatically 

creates local variables for each 
thread, and divides work to form 
partial reductions, and code to 
combine the partial reductions

• Predefined set of associative
operators can be used with 
reduction clause,
• For e.g., +, *, -, min, max

double sum = 0.0;

omp_set_num_threads(N);
#pragma omp parallel 

double my_sum = 0.0;
my_sum = func(omp_get_thread_num());

#pragma omp critical
sum += my_sum;
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Reductions in OpenMP

• Reductions clause specifies an 
operator and a list of reduction 
variables (must be shared variables)

• OpenMP compiler creates a local copy 
for each reduction variable, initialized 
to operator’s identity (e.g., 0 for +; 1 
for *)

• After work-shared loop completes, 
contents of local variables are 
combined with the “entry” value of 
the shared variable

• Final result is placed in shared variable

double sum = 0.0;

omp_set_num_threads(N);

#pragma omp parallel reduction(+ : sum)

sum += func(omp_get_thread_num());
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Reduction Operators and Initial Values

Operator Initial value

+ 0

* 1

- 0

Min Largest positive number

Max Smallest negative number

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0
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Computing Pi with OpenMP
double omp_pi_with_fs() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS] = {0.0};

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

// Parallel region with worker threads

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

#pragma omp single 

num_thrs = nthrds;

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel 

#pragma omp parallel for reduction(+ : pi)

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i] * step);

}

return pi;

}
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Data Sharing



Understanding Scope of Shared Data

• As with any shared-memory programming model, it is important to 
identify shared data 
• Multiple child threads may read and update the shared data

• Need to coordinate communication among the team by proper initialization 
and assignment to variables

• Scope of a variable refers to the set of threads that can access the 
thread in a parallel block
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Data Scope

• Variables (declared outside the scope of a parallel region) are shared 
among threads unless explicitly made private

• A variable in a parallel region can be either shared or private
• Variables declared within parallel region scope are private 

• Stack variables declared in functions called from within a parallel region are 
private
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Implicit Rules

int n = 10, a = 7;

#pragma omp parallel 

{

…

int b = a + n;

b++;

…

}

• n and a are shared variables

• b is a private variable
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Data Sharing: shared Clause

• shared (list)
• Shared by all threads, all threads access the same storage area for shared 

variables

• #pragma omp parallel shared(x)

• Responsibility for synchronizing accesses is on the programmer
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Data Sharing: private Clause

• private (list)
• A new object is declared for each thread in the team

• Variables declared private should be assumed to be uninitialized for each 
thread

• #pragma omp parallel private(x)
• Each thread receives its own uninitialized variable x

• Variable x falls out-of-scope after the parallel region

• A global variable with the same name is unaffected (v3.0 and later)
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Understanding the private clause

int p = 0;

#pragma omp parallel private(p)

{

// value of p is undefined

p = omp_get_thread_num();

// value of p is defined

… 

}

// value of p is undefined
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Clause firstprivate

• firstprivate (list)
• Variables in list are private, and are initialized according to the value of their 

original objects prior to entry into the parallel construct

• #pragma omp parallel firstprivate(x)
• x must be a global-scope variable

• Each thread receives a by-value copy of x

• The local x’s fall out-of-scope after the parallel region

• The base global variable with the same name is unaffected
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Clause firstprivate

incr = 0;

#pragma omp parallel firstprivate(incr)

{

... 

for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;

}

}
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Each thread gets its own copy
of incr with an initial value of 0



Clause lastprivate

• lastprivate (list)

• Variables in list are private, the 

values from the last (sequential)

iteration or section is copied back 

to the original objects

void sq2(int n, double *lastterm) {

double x; int i;

#pragma omp parallel for lastprivate(x)

for (i = 0; i < n; i++) {

x = a[i]*a[i] + b[i]*b[i];

b[i] = sqrt(x);

}

*lastterm = x;

}
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“x” has the value it held for the 
“last sequential” iteration, i.e., 
for i=(n-1)



Clause default

• default (shared | none)
• Specify a default scope for all 

variables in the lexical extent of 
any parallel region

int a, b, c, n;

#pragma omp parallel for 
default(shared), private(a, b)

for (int i = 0; i < n; i++) {

// a and b are private variables

// c and n are shared variables

}
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Clause default

int n = 10; 

std::vector<int> vector(n);

int a = 10;

#pragma omp parallel for default(none) shared(n, vector)

for (int i = 0; i < n; i++) {

vector[i] = i*a;

}
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Is this snippet correct?



Data Sharing Example

A = 1,B = 1, C = 1

#pragma omp parallel private(B) firstprivate(C)

• What can we say about the scope of A, B, and C, and their values?
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Data Sharing Example

A = 1,B = 1, C = 1
#pragma omp parallel private(B) firstprivate(C)

• What can we say about the scope of A, B, and C, and their values?

• Inside the parallel region
• “A” is shared by all threads; equals 1
• “B” and “C” are local to each thread.

• B’s initial value is undefined
• C’s initial value equals 1

• Following the parallel region
• B and C revert to their original values of 1
• A is either 1 or the value it was set to inside the parallel region
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Data Sharing Example

double A[10];
int main() {

int index[10];
#pragma omp parallel

work(index);
printf(“%d\n”, index[0]);;

}

void work(int *index) {
double temp[10];
static int count;
...

}
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A, index and count are shared 
by all threads

temp is local to each thread



Threadprivate Variables

• A threadprivate variable provides one instance of a variable for each 
thread

• The variable refers to a unique storage block in each thread

• Enables persistent private variables, not limited in lifetime to one 
parallel region

int a, b;

# pragma omp threadprivate (a, b)

// a and b are thread-private 
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private vs threadprivate

private

• Local to a parallel region

• Mostly allocated on the stack

• Value is assumed to be 
undefined on entry and exit 
from a parallel region

threadprivate

• Persists across parallel regions

• Mostly allocated on the heap on 
thread-local storage

• Value is undefined on entry to 
the first parallel region

CS 698L Swarnendu Biswas



Clause copyin

• Used to initialize threadprivate data upon entry to a parallel region
• Specifies that the master thread’s value of a threadprivate variable 

should be copied to the corresponding variables in the other threads

int a, b;
…
# pragma omp threadprivate (a, b)
// .. code ..

# pragma omp parallel copyin (a, b)
{
// a and b copied from master thread 

}
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Summary of Data Sharing Rules

• Variables are shared by default

• Variables declared within parallel blocks and subroutines called from 
within a parallel region are private (reside on a stack private to each 
thread), unless scoped otherwise

• Default scoping rule can be changed with default clause

• Recommended
• Always use the default(none) clause

• Declare private variables in the parallel region
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Runtime Routines and 
Environment Variables



Runtime Library Routines

• omp_set_num_threads()

• omp_get_num_threads()

• omp_get_thread_num()

• omp_get_max_threads()

• omp_in_parallel()

• omp_set_dynamic()

• omp_get_dynamic()

• omp_num_procs()

• …
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Environment Variables

• Set the default number of threads to use
• OMP_NUM_THREADS int_literal

• Control the size of child threads’ stack
• OMP_STACKSIZE

• Hint to runtime how to treat idle threads
• OMP_WAIT_POLICY
• ACTIVE keep threads alive at barriers/locks
• PASSIVE try to release processor at barriers/locks

• Process binding is enabled if this variable is true, the runtime will not move 
threads around between processors
• OMP_PROC_BIND true | false

• ... 
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Worksharing Construct



Worksharing Construct

• Loop structure in parallel region is 
same as sequential code

• No explicit thread-id based work 
division; instead system 
automatically divides loop iterations 
among threads

• User can control work division: block, 
cyclic, block-cyclic, etc., via 
“schedule” clause in pragma

float res;

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < MAX; i++) {

B = big_job(i);

}

}
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Worksharing Construct

#pragma omp parallel

{

#pragma omp for

for (int i=0; i<N; i++) {

func1(i);

}

}
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Variable i is made “private” to each thread by 
default. You could also do this explicitly with 
a “private(i)” clause.

If the team consists of only one thread then 
the worksharing region is not executed in 
parallel.



Worksharing Construct

for(i=0;i< N;i++) { 

a[i] = a[i] + b[i];

}

#pragma omp parallel

#pragma omp for

for(i=0;i<N;i++) { 

a[i] = a[i] + b[i];

}

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1) iend = N;

for(i=istart;i<iend;i++) { 

a[i] = a[i] + b[i];

}

}
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sequential code

work sharing 
construct

OpenMP parallel 
region



Combined Worksharing Construct

float res;

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < MAX; i++) {

B = big_job(i);

#pragma omp critical

consume (B, res);

}

}

float res;

#pragma omp parallel for

for (int i = 0; i < MAX; i++) {

B = big_job(i);

#pragma omp critical

consume (B, res);

}
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Often a parallel region has a single 
work-shared loop



Limitations on the Loop Structure

• Loops need to be in the 
canonical form
• Cannot use while or do-while

• Loop variable must have integer 
or pointer type

• Cannot use a loop where the trip 
count cannot be determined

• for (index = start; index < end; 
index++)

• for (index = start; index >= end; 
index = index - incr)
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Take Care with the Worksharing Construct
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OpenMP compiler will not check for dependences



Take Care when Sharing Data

#pragma omp parallel for

{

for(i=0; i<n; i++) {

tmp = 2.0*a[i];

a[i] = tmp;

b[i] = c[i]/tmp;

}

}

#pragma omp parallel for 
private(tmp)

{

for(i=0; i<n; i++) {

tmp = 2.0*a[i];

a[i] = tmp;

b[i] = c[i]/tmp;

}

}
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Take Care when Sharing Data

int i = 0, n = 10, a = 7;

#pragma omp parallel for

for (i = 0; i< n; i++) {

int b = a + i;

}

• n and a are shared variables

• b is a private variable

• A loop iteration variable is 
private by default
• So i is private
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Our Refined Pi Implementation

double omp_pi() {

double x, pi, sum = 0.0;

double step = 1.0 / (double)NUM_STEPS;

#pragma omp parallel for private(x) reduction(+ : sum) num_threads(NUM_THRS)

for (int i = 0; i < NUM_STEPS; i++) {

x = (i + 0.5) * step;

sum += 4.0 / (1.0 + x * x);

}

pi = step * sum;

return pi;

}
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Evaluate the Pi Program Variants

• Sequential computation of pi

• Parallel computation with false sharing

• Parallel computation with padding

• Parallel computation with thread-local sum

• Worksharing construct
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Finer Control on Work Distribution

• The schedule clause determines how loop iterators are mapped 
onto threads
• Most implementations use block partitioning

• #pragma omp parallel for schedule [, <chunksize>]

• Good assignment of iterations to threads can have a significant 
impact on performance
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Finer Control on Work Distribution

• #pragma omp parallel for schedule(static[,chunk])
• Fixed-sized chunks (or as equal as possible) assigned (alternating) to 

num_threads

• Typical default is: chunk = iterations/num_threads

• Set chunk = 1 for cyclic distribution

• #pragma omp parallel for schedule(dynamic[,chunk] )
• Run-time scheduling (has overhead)

• Each thread grabs “chunk” iterations off queue until all iterations have been 
scheduled, default is 1

• Good load-balancing for uneven workloads
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Finer Control on Work Distribution

• schedule(static)
• OpenMP guarantees that if you have two separate loops with the same 

number of iterations and execute them with the same number of threads 
using static scheduling, then each thread will receive exactly the same 
iteration range(s) in both parallel regions

• Beneficial for NUMA systems: if you touch some memory in the first loop, it 
will reside on the NUMA node where the executing thread was. Then in the 
second loop the same thread could access the same memory location faster 
since it will reside on the same NUMA node.
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Finer Control on Work Distribution

• #pragma omp parallel for schedule(guided[,chunk])
• Threads dynamically grab blocks of iterations

• Chunk size starts relatively large, to get all threads busy with good 
amortization of overhead

• Subsequently, chunk size is reduced to “chunk” to produce good workload 
balance

• By default, initial size is iterations/num_threads
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Example of guided Schedule with Two Threads
Thread Chunk Chunk Size Remaining Iterations

0 1-5000 5000 5000

1 5001-7500 2500 2500

1 7501-8750 1250 1250

1 8751-9375 625 625

0 9376-9688 313 312

1 9689-9844 156 156

0 9845-9922 78 78

1 9923-9961 39 39

0 9962-9981 20 19

1 9982-9991 10 9

0 9992-9996 5 4

0 9997-9998 2 2

0 9999 1 1

1 10000 1 0



Finer Control on Work Distribution

• #pragma omp parallel for schedule(runtime)
• Decision deferred till run-time

• Schedule and chunk size taken from OMP_SCHEDULE environment variable or 
from runtime library routines
• $ export OMP_SCHEDULE=“static,1”

• #pragma omp parallel for schedule(auto)
• Schedule is left to the compiler runtime to choose (need not be any of the 

above)

• Any possible mapping of iterations to threads in the team can be chosen
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Understanding the schedule clause

Schedule clause When to use?

static Predetermined and predictable by the 
programmer; low overhead at run-time, 
scheduling is done at compile-time

dynamic Unpredictable, highly variable work per iteration; 
greater overhead at run-time, more complex 
scheduling logic

guided Special case of dynamic to reduce scheduling 
overhead

auto When the runtime can learn from previous 
executions of the same loop
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Nested Loops

• For perfectly nested rectangular loops we can parallelize multiple 
loops in the nest with the collapse clause

#pragma omp parallel for collapse(2)
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
}

}

• Will form a single loop of length NxM and then parallelize that
• Useful when there are more than N threads
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j is implicitly private 
with the collapse clause



Nested Loops

• collapse works with square 
loops, not with triangular loops

int i, j;

#pragma omp parallel for num_threads(2) 
collapse(2) private(j)

for (i = 0; i < 4; i++)

for (j = 0; j <= i; j++)

cout << i << j << 
omp_get_thread_num()) << “\n”;

int i, j; 

#pragma omp parallel for num_threads(2) 
collapse(2) private(j)

for (i = 0; i < 4; i++)

for (j = 0; j < 100; j++)

cout << i << j << 
omp_get_thread_num()) << “\n”;
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Does not compile 
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Data Sharing with Work Sharing

#include <omp.h>

int main() {

int i, j=5; 

double x=1.0, y=42.0;

#pragma omp parallel for default(none)
reduction(*:x)

for (i=0;i<N;i++) {

for (j=0;j<3;j++)

x += foobar(i, j, y);

}

printf(“ x is %f\n”,(float)x);

}

#include <omp.h>

int main() {

int i, j=5; 

double x=1.0, y=42.0;

#pragma omp parallel for default(none)
reduction(*:x) shared(y) collapse(2)

for (i=0;i<N;i++) {

for (j=0;j<3;j++)

x += foobar(i, j, y);

}

printf(“ x is %f\n”,(float)x);

}
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What is going 
to happen?



OpenMP Sections

• Noniterative worksharing
construct

• Worksharing for function-level
parallelism; complementary to 
“omp for” loops

• The sections construct gives a 
different structured block to 
each thread

#pragma omp parallel

{

…

#pragma omp sections

{

#pragma omp section

x_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

} // implicit barrier

…

}

CS 698L Swarnendu Biswas



Explicit Tasks



Explicit Task Constructs in OpenMP

• Not all programs have simple 
loops OpenMP can parallelize

• OpenMP can only parallelize 
loops in a basic standard form 
with loop counts known at 
runtime

• Consider a program to traverse a 
linked list

p=head;

while (p) {

dowork(p);

p = p->next;

}
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One Potential Solution

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for (i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

dowork(parr[i]);

}

CS 698L Swarnendu Biswas

1

2

3



One Potential Solution

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for (i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

dowork(parr[i]);

}
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This works, but is inelegant (had to use a vector or 
array as an intermediate) and is inefficient 
(requires multiple passes over the data)



Tasks in OpenMP

• Explicit tasks were introduced in 
OpenMP 3.0

• Tasks are independent units of work

• Tasks are composed of
• code to execute
• data to compute with
• control variables

• Threads are assigned to perform the 
work of each task

• The runtime system decides when 
tasks are executed
• Tasks may be deferred
• Tasks may be executed immediately
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The Tasking Concept in OpenMP

CS 698L Swarnendu Biswas

Thread
Generate 
tasks

Ex
ec

u
te

 t
as

ks

Thread

Thread

Thread



Tasks in OpenMP

• The task construct includes a 
structured block of code

• Inside a parallel region, a thread 
encountering a task construct 
will package up the code block 
and its data for execution

• Tasks can be nested: i.e. a task 
may itself generate tasks
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Task Directive

#pragma omp parallel
{

#pragma omp master
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp task
billy();

}
}
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Task 0 packages data

Tasks executed by some 
thread in some order

All tasks complete 
before this barrier ends



Task Completion

• You can use a barrier

• #pragma omp taskwait
• Wait for child tasks to complete
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Example of Tasks

#pragma omp parallel

{

#pragma omp single

{

cout << “A ”;

#pragma omp task

cout << “race “;

#pragma omp task 

cout << “car “;

cout << “is fun to watch!”;

}

}

#pragma omp parallel

{

#pragma omp single

{

cout << “A ”;

#pragma omp task

cout << “race “;

#pragma omp task 

cout << “car “;

#pragma omp taskwait

cout << “is fun to watch!”;

}

}
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SIMD Programming 



SPMD Programming

• Single Program Multiple Data
• Each thread runs same program

• Selection of data, or branching conditions, based on thread id
• General and common parallel programming paradigm

• In OpenMP implementations
• Perform work division in parallel loops

• Query thread_id and num_threads

• Partition work among threads
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How about SIMD support?

• Support in older versions of OpenMP required vendor-specific 
extensions
• Programming models (e.g., Intel Cilk Plus)

• Compiler pragmas (e.g., #pragma vector)

• Low-level constructs or intrinsics (e.g., _mm_add_pd())
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#pragma omp parallel for 
#pragma vector always
#pragma ivdep
for (int i = 0; i < N; i++) {

a[i] = b[i] + 10;
}



simd Construct

• #pragma omp simd …
• Can be applied to a loop to indicate that the loop can be transformed to a 

SIMD loop

• Use SIMD instructions

• Partition loop into chunks that fit a SIMD vector register

• Does not parallelize the loop body

• #pragma omp declare simd
• Applied to a function to enable creation of one or more versions to allow for 

SIMD processing
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simd Worksharing Construct

• #pragma omp for simd …

• Parallelize and vectorize a loop nest
• Distribute a loop’s iteration space across a thread team

• Subdivide loop chunks to fit a SIMD vector register
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SIMD Function Vectorization

• Declare one or more functions to be compiled for calls from a SIMD-
parallel loop

#pragma omp declare simd …
function-definition-or-declaration
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#pragma omp declare simd
float min(float a, float b) {

return a < b ? a : b;
}

// Vector version
vec8 min_v(vec8 a, vec8 b) {

return a < b ? a : b;
}



OpenMP Memory Model



Correctness of Shared-memory Programs
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“To write correct and efficient shared memory programs, 
programmers need a precise notion of how memory behaves with 
respect to read and write operations from multiple processors”

S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. WRL Research Report, 1995.



Busy-Wait Paradigm

X = new Object();
done = true;

Thread T1

while (!done) {}
if (X != null)
X.compute();

Thread T2

Object X = null;
boolean done= false;



done = true;

X = new Object();

while (!done) {} 
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {} 

Thread T1 Thread T2

Infinite loop



What Value Can a Read Return?

Core C1

S1: store X, 10

S2: store done, 1

Core C2

L1: load r1, done

B1: if (r1 != 1) goto L1

L2: load r2, X

X = 0
done = 0



Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

CS636 Swarnendu Biswas 136

Different 
addresses!



Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load
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Different 
addresses!

Correct in a single-threaded context

Non-trivial in a multithreaded context



What values can a load return? 

Return the “last” write

Uniprocessor: program order

Multiprocessor: ?
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Memory Consistency Model

Set of rules that govern how systems process memory operation 
requests from multiple processors

• Determines the order in which memory operations appear to execute

Specifies the allowed behaviors  of multithreaded programs executing 
with shared memory

• Both at the hardware-level and at the programming-language-level

• There can be multiple correct behaviors
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Importance of Memory Consistency Models

Determines what optimizations are correct

Contract between the programmer and the hardware

Influences ease of programming and program 
performance

Impacts program portability
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Dekker’s Algorithm

Core C1

S1: store flag1, 1

L1: load r1, flag2

Core C2

S2: store flag2, 1

L2: load r2, flag1

flag1 = 0
flag2 = 0

Can both r1 and r2 be set to zero?



Sequential Consistency
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A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program.

Leslie Lamport



Interleavings with SC
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Interleavings with SC
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SC Formalism

Every load gets its value from the last store before it 
(in global memory order) to the same address
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SC Rules

Suppose we 
have two 

addresses a 
and b

• a == b or a!= b

Constraints

• if L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b) 
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End-to-end SC

Simple memory model that can be implemented both 
in hardware and in languages

Performance can take a hit

• Naive hardware

• Maintain program order - expensive for a write
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Existing Memory Consistency Models

Hardware

• Sequential Consistency (SC)

• Total Store Order (TSO)

• Partial Store Order (PSO)

• Weak Ordering (WO)

• …

Programming Languages

• Java

• C++ and OpenMP

• …
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Cache Coherence

Single writer multiple readers (SWMR)

Memory updates are passed correctly, cached copies always contain the most 
recent data

Virtually a synonym for SC, but for a single memory location

Alternate definition based on relaxed ordering

• A write is eventually made visible to all processors

• Writes to the same location appear to be seen in the same order by all processors (serialization)

• SC - *all*
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Memory Consistency vs Cache Coherence

Memory Consistency

• Defines shared memory behavior

• Related to all shared-memory locations

• Policy on when new value is propagated to 
other cores

• Memory consistency implementations can 
use cache coherence as a “black box”

Cache Coherence

• Does not define shared memory behavior

• Specific to a single shared-memory location

• Propagate new value to other cached copies
• Invalidation-based or update-based
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Total Store Order

Allows reordering stores to loads

Can read own write early, not other’s writes

Conjecture: widely-used x86 memory model is 
equivalent to TSO

CS636 Swarnendu Biswas 151



TSO Rules

• If L(a) <p L(b) ⇒ L(a) <m L(b) 

• If L(a) <p S(b) ⇒ L(a) <m S(b) 

• If S(a) <p S(b) ⇒ S(a) <m S(b) 

• If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables FIFO Write Buffer */

a == b or a != b

Every load gets its value from the last store before it 
to the same address
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Support for FENCE Operations in TSO

If L(a) <p FENCE ⇒ L(a) <m FENCE 

If S(a) <p FENCE ⇒ S(a) <m FENCE 

If FENCE <p FENCE ⇒ FENCE <m FENCE 

If FENCE <p L(a) ⇒ FENCE <m L(a) 

If FENCE <p S(a) ⇒ FENCE <m S(a) 

If S(a) <p FENCE ⇒ S(a) <m FENCE 

If FENCE <p L(a) ⇒ FENCE <m L(a) 
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Possible Outcomes with TSO
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Possible Outcomes with TSO
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Partial Store Order (PSO)

• Allows reordering of store to loads and stores to stores

• Writes to different locations from the same processor can be 
pipelined or overlapped and are allowed to reach memory or other 
cached copies out of program order

• Can read own write early, not other’s writes
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Opportunities to Reorder Memory Operations
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Reorder Operations Within a Synchronization 
Block
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Optimization Opportunities

Non-FIFO coalescing write buffer

Support non-blocking reads

• Hide latency of reads

• Use lockup-free caches and speculative execution

Simpler support for speculation

• Need not compare addresses of loads to coherence requests

• For SC, need support to check whether the speculation is correct
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Desirable Properties of a Memory Model

Hard to 
satisfy all 

three 
properties

• Programmability

• Performance 

• Portability Pros
• Intuitive

• Serializability of instructions

Cons

• No atomicity of regions

• Inhibits compiler 
transformations

• Almost all recent 
architectures violate SC
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Think of SC



Relaxed Consistency Memory Model

• OpenMP supports a relaxed consistency shared memory model
• Closely related to the weak ordering model

• Threads can maintain a temporary view of shared memory that is not 
consistent with other threads

• These temporary views are made consistent only at certain points in 
the program

• The operation that enforces consistency is called the flush operation
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Semantics of the flush Operation

• A flush is a sequence point at which a thread is guaranteed to see a 
consistent view of memory
• All previous read/writes by this thread have completed and are visible to 

other threads

• No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared memory 
APIs

CS 698L Swarnendu Biswas



Potential Benefits with Relaxed Consistency

• Relaxed memory model allows 
flexibility to OpenMP 
implementations

• Write to A 
• May complete immediately

• May complete after the execution 
marked “…”

A = 1

…

…

#pragma omp flush(A)
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Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations
• at entry/exit of parallel, critical, and ordered regions

• at implicit and explicit barriers

• at entry/exit of parallel worksharing regions

• during lock APIs

• ….
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Flush and Synchronization

• This means if you are mixing reads and writes of a variable across 
multiple threads, you cannot assume the reading threads see the 
results of the writes unless:
• The writing threads follow the writes with a construct that implies a flush.

• The reading threads precede the reads with a construct that implies a flush
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Reordering Example

1. a = …; 

2. b = …;

3. c = …;

4. #pragma omp flush(c)

5. #pragma omp flush(a, b)

6. …= a…b…;

7. …c…;

• 1 and 2 may not be moved after 
5

• 4 and 5 maybe interchanged at 
will

• 6 may not be moved before 5
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OpenMP Example
#pragma omp parallel sections

{

// Producer

#pragma omp section 

{

// produce data 

flag = 1;

}

// Consumer

#pragma omp section

{

while (flag == 0 ) {}

// consume data

}

}

#pragma omp parallel sections

{

#pragma omp section 

{

// produce data 

#pragma omp flush

#pragma omp write

flag = 1;

#pragma omp flush(flag)

}

#pragma omp section

{

while (1) {

#pragma omp flush(flag)

#pragma omp atomic read

flag_read = flag

if (flag_read) break;

}

#pragma omp flush

// consume data

}

}



OpenMP Optimizing Compiler

• Can reorder operations freely inside a parallel region
• No guarantees about the ordering of operations during a parallel region 

excepting around flush operations

• Parallel region contains implicit flushes

• Cannot move operations outside of the parallel region or around 
synchronization operations 

• Presence of flush operations make the OpenMP memory model a variant of 
weak ordering
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More Rules

• If the intersection of the flush-sets of two flushes performed by two 
different threads is non-empty, then the two flushes must be 
completed as if in some sequential order, seen by all threads

• If the intersection of the flush-sets of two flushes performed by one 
thread is non-empty, then the two flushes must appear to be 
completed in that thread’s program order

• If the intersection of the flush-sets of two flushes is empty, then the 
threads can observe these flushes in any order
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