
CS 698L: OpenMP
Swarnendu Biswas

Semester 2019-2020-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Material adapted from

• Several tutorials by Tim Mattson et al.

• P. Sadayappan, Ohio State, CS 5441

• Blaise Barney, OpenMP Tutorial, LLNL

What is OpenMP?

• OpenMP (Open Multi-Processing) is a popular shared-memory
programming API

• OpenMP supports C/C++ and Fortran on a wide variety of
architectures

• OpenMP is supported by popular C/C++ compilers, for e.g.,
LLVM/Clang, GNU GCC, Intel ICC, and IBM XLC

CS 698L Swarnendu Biswas

What is OpenMP?

• A directive based parallel programming model
• OpenMP program is essentially a sequential program augmented with

compiler directives to specify parallelism

• Eases conversion of existing sequential programs

• Standardizes established SMP practice + vectorization and
heterogeneous device programming

CS 698L Swarnendu Biswas

Key Concepts in OpenMP

• Parallel regions where parallel execution occurs via multiple
concurrently executing threads
• Each thread has its own program counter and executes one instruction at a

time, similar to sequential program execution

• Shared and private data: shared variables are the means of
communicating data between threads

• Synchronization: fundamental means of coordinating execution of
concurrent threads

• Mechanism for automated work distribution across threads

CS 698L Swarnendu Biswas

Goals of OpenMP

• Standardization
• Provide a standard among a variety of shared memory

architectures/platforms
• Jointly defined and endorsed by a group of major computer hardware and

software vendors

• Ease of use
• Provide capability to incrementally parallelize a serial program, unlike

message-passing libraries which typically require an all or nothing approach
• Provide the capability to implement both coarse-grain and fine-grain

parallelism

• Portability
• Most major platforms and compilers have OpenMP support

CS 698L Swarnendu Biswas

Fork-Join Model of Parallel Execution

CS 698L Swarnendu Biswas

Other Key Features

• Scope of data
• Most data within a parallel region is shared by default

• Programmers can control scope of access to data by different threads

• Nested parallelism
• You can invoke a parallel region within another parallel region

• Dynamic threads and scheduling
• The runtime can dynamically alter the number of parallel threads and also

control the scheduling of work among threads

CS 698L Swarnendu Biswas

The OpenMP API

• Compiler directives
• #pragma omp parallel
• Comments, ignored unless instructed not to

• Runtime library routines
• int omp_get_num_threads(void);

• Environment variables
• export OMP_NUM_THREADS=8

CS 698L Swarnendu Biswas

OpenMP Solution Stack

General Code Structure

#include <omp.h>

…

int main() {

…

// serial code, master thread

…

// begin parallel section,

// fork a team of threads

#pragma omp parallel …

{

// parallel region executed by

// all threads

// other logic

…

// all parallel threads join

// master thread

}

// resume serial code

…

}

CS 698L Swarnendu Biswas

OpenMP Core Syntax

• Most common constructs in OpenMP are compiler directives
• #pragma omp directive [clause [clause]…] newline
• Example

• #pragma omp parallel num_threads(4)

• Function prototypes and types in the file: #include <omp.h>

• Most OpenMP constructs apply to a structured block

CS 698L Swarnendu Biswas

Structured Block

• Structured block is a block of one or more statements surrounded by
“{ }”, with one point of entry at the top and one point of exit at the
bottom

• It is okay to have an exit within the structured block

• Disallows code that branches into or out of the middle of the
structured block

CS 698L Swarnendu Biswas

Format of Compiler Directives

• #pragma omp
• Required for all OpenMP C/C++ directives

• directive-name
• A valid OpenMP directive. Must appear after the pragma and before any

clauses
• Scope extends to the the structured block following a directive, does not span

multiple routines or code files

• [clause, ...]
• Optional. Clauses can be in any order, and repeated as necessary unless

otherwise restricted

• newline
• Required. Precedes the structured block which is enclosed by this directive.

CS 698L Swarnendu Biswas

Compiling an OpenMP Program

• Linux and GNU GCC
• g++ –fopenmp hello-world.cpp

• Linux and Clang/LLVM
• clang++ -fopenmp hello-world.cpp

• Can use the preprocessor macro _OPENMP to check for compiler
support

CS 698L Swarnendu Biswas

Hello World with OpenMP!
#include <iostream>

#include <omp.h>

using namespace std;

int main() {

cout << "This is serial code\n";

#pragma omp parallel

{

int num_threads = omp_get_num_threads();

int tid = omp_get_thread_num();

if (tid == 0) {

cout << num_threads << "\n";

}

cout << "Hello World: " << tid << "\n";

}

cout << "This is serial code\n";

#pragma omp parallel num_threads(2)

{

int tid = omp_get_thread_num();

cout << "Hello World: " << tid << "\n";

}

cout << "This is serial code\n";

omp_set_num_threads(3);

#pragma omp parallel

{

int tid = omp_get_thread_num();

cout << "Hello World: " << tid << "\n";

}

}

Hello World with OpenMP!

• Each thread has a unique integer “id”; master thread has “id” 0, and
other threads have “id” 1, 2, …

• OpenMP runtime function omp_get_thread_num() returns a thread’s
unique “id”

• The function omp_get_num_threads() returns the total number of
executing threads

• The function omp_set_num_threads(x) asks for “x” threads to
execute in the next parallel region (must be set outside region)

CS 698L Swarnendu Biswas

Types of Parallelism with OpenMP

Coarse-grained

• Task parallelism
• Split the work among threads that

execute in parallel

• Implicit join at the end of the
segment, or explicit
synchronization points

Fine-grained

• Loop parallelism
• Execute independent iterations of

for-loops in parallel

• Several choices in splitting the
work

CS 698L Swarnendu Biswas

Types of Parallelism with OpenMP

Task parallelism Loop parallelism

CS 698L Swarnendu Biswas

The Essence of OpenMP

• Create threads that execute in a shared address space
• The only way to create threads is with the parallel construct
• Once created, all threads execute the code inside the construct

• Split up the work between threads by one of two means
• SPMD (Single Program Multiple Data) – all threads execute the same code and you use the

thread ID to assign work to a thread
• Workshare constructs split up loops and tasks between threads

• Manage data environment to avoid data access conflicts
• Synchronization so correct results are produced regardless of how threads are scheduled
• Carefully manage which data can be private (local to each thread) and shared

CS 698L Swarnendu Biswas

OpenMP Constructs

• A construct consists of an
executable directive and the
associated loop, statement, or
structured block

#pragma omp parallel

{

// inside parallel construct

subroutine ();

}

void subroutine (void) {

// outside parallel construct

}

CS 698L Swarnendu Biswas

OpenMP Regions

• A region consists of all code
encountered during a specific
instance of the execution of a
given construct. Also includes
implicit code introduced by the
OpenMP implementation.

#pragma omp parallel

{

// inside parallel region

subroutine ();

}

void subroutine (void) {

// inside parallel region

}

CS 698L Swarnendu Biswas

Parallel Region Construct

• Block of code that will be executed by multiple threads
• #pragma omp parallel [clause …]

structured_block

• Example of clauses
• private (list)
• shared (list)
• default (shared | none)
• firstprivate (list)
• reduction (operator: list)
• num_threads (integer-expression)
• …

CS 698L Swarnendu Biswas

Parallel Region Construct

• When a thread reaches a parallel directive, it creates a team of
threads and becomes the master of the team
• By default OpenMP creates as many thread as many cores available in the

system

• The master is a member of that team and has thread number 0 within
that team

• The code is duplicated and all threads will execute that code

• There is an implied barrier at the end of a parallel section

• Only the master thread continues execution past this point

CS 698L Swarnendu Biswas

Threading in OpenMP

#pragma omp parallel
num_threads(4)
{

foobar ();
}

• OpenMP implementations use a
thread pool so full cost of threads
creation and destruction is not
incurred for reach parallel region

• Only three threads are created
excluding the parent thread

void thunk () {
foobar ();

}

pthread_t tid[4];

for (int i = 1; i < 4; ++i)
pthread_create (&tid[i],0,thunk,

0);

for (int i = 1; i < 4; ++i)
pthread_join (tid[i]);

CS 698L Swarnendu Biswas

Thread Pool

• Software design pattern

• Maintains a pool of threads
waiting for work

• Advantageous when work is
short-lived
• Avoid the overhead of frequent

thread creation and destruction

• Excess threads can degrade
performance
• Memory, context-switch, and

other resource overhead

CS 698L Swarnendu Biswas

Specifying Number of Threads

• Desired number of threads can
be specified in many ways
• Setting environmental variable
OMP_NUM_THREADS

• Runtime OpenMP function
omp_set_num_threads(4)

• Clause in #pragma for parallel
region

double A[1000];

#pragma omp parallel num_threads(4)

{

int t_id = omp_get_thread_num();

int nthrs = omp_get_num_threads();

for (int i = t_id; i < 1000; i += nthrs) {

A[i] = foo(i);

}

}

CS 698L Swarnendu Biswas

Specifying Number of Threads

• Three ways
• OMP_NUM_THREADS
• omp_set_num_threads(…)
• #pragma omp parallel num_threads(…)

• OMP_NUM_THREADS (if present) specifies initially the number of threads

• Calls to omp_set_num_threads() override the value of OMP_NUM_THREADS

• Presence of the num_threads clause overrides both other values

CS 698L Swarnendu Biswas

Distributing Work

• Threads can perform disjoint work division using their thread
ids and knowledge of total # threads

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
for (int i = t_id; i < 1000; i += omp_get_num_threads()) {
A[i]= foo(i);

}
}

CS 698L Swarnendu Biswas

Cyclic distribution
of work

Distributing Work

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{
int t_id = omp_get_thread_num();
int num_thrs = omp_get_num_threads();
int b_size = 1000 / num_thrs;
for (int i = t_id*b_size; i < (t_id+1)*b_size; i += num_thrs) {
A[i]= foo(i);

}
}

CS 698L Swarnendu Biswas

Block distribution
of work

Cyclic vs Block Distribution of Work

• Say I have a computation like

for (int i = 0; i < N; i++) {

A[i] = B[i] + C[i];

}

CS 698L Swarnendu Biswas

Would you prefer cyclic
distribution or block distribution?

Other Subtle Issues about parallel Construct

• If a thread in a team executing a parallel region encounters another
parallel directive, it creates a new team

• If execution of a thread terminates while inside a parallel region,
execution of all threads in all teams terminates. The order of
termination of threads is unspecified.

CS 698L Swarnendu Biswas

Nested Parallelism

• Allows to create parallel region
within a parallel region itself

• Nested parallelism can help scale
to large parallel computations

• Usually turned off by default
• Can lead to oversubscription by

creating lots of threads

• Set OMP_NESTED as TRUE or call
omp_set_nested()

CS 698L Swarnendu Biswas

Recurring Example of Numerical Integration

• Mathematically

න
0

1 4

(1 + 𝑥2)
𝑑𝑥 = 𝜋

• We can approximate the integral as
the sum of the rectangles

𝑖=0

𝑁

𝐹 𝑥𝑖 ∆𝑥 ≈ 𝜋

where each rectangle has width
∆𝑥 and height 𝐹 𝑥𝑖 at the middle of
interval i

CS 698L Swarnendu Biswas

4.

0

2.

0

1.

0X
0.

0

Serial Pi Program

double seq_pi() {

int i;

double x, pi, sum = 0.0;

double step = 1.0 / (double)NUM_STEPS;

for (i = 0; i < NUM_STEPS; i++) {

x = (i + 0.5) * step;

sum += 4.0 / (1.0 + x * x);

}

pi = step * sum;

return pi;

}

$ g++ -fopenmp compute-pi.cpp

$./a.out

3.14159

CS 698L Swarnendu Biswas

Computing Pi with OpenMP

double omp_pi_with_fs() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS] = {0.0};

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

// Parallel region with worker threads

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i] * step);

}

return pi;

}

CS 698L Swarnendu Biswas

Computing Pi with OpenMP

double omp_pi_with_fs() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS] = {0.0};

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

// Parallel region with worker threads

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i] * step);

}

return pi;

}

CS 698L Swarnendu Biswas

Great! This is a correct implementation, but…

Is there any problem with this code?

Avoid False Sharing

• Array sum[] is a shared array, with each thread accessing exactly on
element

• Cache line holding multiple elements of sum will be locally cached by
each processor in its private L1 cache

• When a thread writes into into an index in sum, the entire cache line
becomes “dirty” and causes invalidation of that line in all other
processor’s caches

• Cache thrashing due to this “false sharing” causes performance
degradation

CS 698L Swarnendu Biswas

Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs1() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS][8];

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid][0] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i][0] * step);

}

return pi;

}

CS 698L Swarnendu Biswas

Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs1() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS][8];

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid][0] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i][0] * step);

}

return pi;

}

CS 698L Swarnendu Biswas

How did we decide that PADDING has
to be 8?

Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs1() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS][8];

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid][0] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i][0] * step);

}

return pi;

}

CS 698L Swarnendu Biswas

How did we decide that PADDING has to be 8?
• Depends on the cache line size and the data type

• This is not portable, since it may not work across different
cache configurations, architectures, and data types.

Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

pi += (sum * step);

} // end #pragma omp parallel

return pi;

}

CS 698L Swarnendu Biswas

Optimize the Pi Program: Avoid False Sharing

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

pi += (sum * step);

} // end #pragma omp parallel

return pi;

}

CS 698L Swarnendu Biswas

This program is now wrong! Why?

Synchronization Constructs

critical Construct

• Only one thread can enter
critical section at a time; others
are held at entry to critical
section

• Prevents any race conditions in
updating “res”

float res;

#pragma omp parallel

{

float B;

int id = omp_get_thread_num();

int nthrds = omp_get_num_threads();

for (int i = id; i < MAX; i += nthrds) {

B = big_job(i);

#pragma omp critical

consume (B, res);

}

}

CS 698L Swarnendu Biswas

critical Construct

• Works by acquiring a lock

• If your code has multiple critical sections, they are all mutually
exclusive

• You can avoid this by naming critical sections
• #pragma omp critical (optional_name)

CS 698L Swarnendu Biswas

Correct Pi Program: Fix the Data Race

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0, step = 1.0 / (double)NUM_ST
EPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

if (tid == 0) {

num_thrs = nthrds;

}

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

#pragma omp critical // Mutual exclusion

pi += (sum * step);

} // end #pragma omp parallel

return pi;

}

CS 698L Swarnendu Biswas

Evaluate the Pi Program Variants

• Sequential computation of pi

• Parallel computation with false sharing

• Parallel computation with padding

• Parallel computation with thread-local sum

CS 698L Swarnendu Biswas

atomic Construct

• Atomic is an efficient critical
section for simple reduction
operations

• Applies only to the update of a
memory location

• Uses hardware atomic
instructions for implementation;
much lower overhead than using
critical section

float res;

#pragma omp parallel

{

float B;

int id = omp_get_thread_num();

int nthrds = omp_get_num_threads();

for (int i = id; i < MAX; i += nthrds) {

B = big_job(i);

#pragma omp atomic

res += B;

}

}

CS 698L Swarnendu Biswas

atomic Construct

• Expression operation can be of
type
• x binop= expr

• x is a scalar type

• binop can be +, *, -, /, &, ^, |, <<, or
>>

• x++

• ++x

• x--

• --x

float res;

#pragma omp parallel

{

float B;

int id = omp_get_thread_num();

int nthrds = omp_get_num_threads();

for (int i = id; i < MAX; i += nthrds) {

B = big_job(i);

#pragma omp atomic

res += B;

}

}

CS 698L Swarnendu Biswas

critical vs atomic

critical

• Locks code segments

• Serializes all unnamed critical
sections

• Less efficient than atomic

• More general

atomic

• Locks data variables

• Serializes operations on the
same shared data

• Makes use of hardware
instructions to provide atomicity

• Less general

CS 698L Swarnendu Biswas

Is atomic is always the way to go?

int sum = 0, m_val = 0;

#pragma omp parallel for

for (int i = 0; i < N; i++) {

#pragma omp atomic

sum += getVal();

}

int getVal() {

return ++m_val;

}

CS 698L Swarnendu Biswas

Barrier Synchronization

#pragma omp parallel private(id)

{

int id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

B[id] = big_calc2(id);

}

• Each thread waits until all
threads arrive

CS 698L Swarnendu Biswas

explicit barrier

Barrier Synchronization

#pragma omp parallel private(id)
{
int id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for
for (i=0;i<N;i++) {
B[i]=big_calc2(i,A);

}

#pragma omp for nowait
for (i=0;i<N;i++) {
C[i]=big_calc2(B, i);

}

A[id] = big_calc4(id);
}

CS 698L Swarnendu Biswas

explicit barrier

implicit barrier

no implicit barrier, nowait
cancels barrier creation

Use of nowait clause

pragma omp for nowait

for (/* ... */) {

// .. first loop ..

}

pragma omp for

for (/* ... */) {

// .. second loop ..

}

pragma omp for nowait

for (int i=0; i<N; i++) {

a[i] = b[i] + c[i];

}

pragma omp for

for (int i=0; i<N; i++) {

d[i] = a[i] + b[i];

}

CS 698L Swarnendu Biswas

Can be useful if the two
loops are independent

Clause ordered

• Specifies that iterations of the
enclosed loop will be executed
in the same order as if they were
executed on a serial processor

• It must appear within the extent
of omp for or omp parallel for

• Should be used in two stages

omp_set_num_threads(4);

#pragma omp parallel

{

#pragma omp for ordered

for (int i=0; i<N; i++) {

tmp = func1(i);

#pragma omp ordered
cout << tmp << “\n”;

}

}

CS 698L Swarnendu Biswas

Synchronization Constructs

High-level

• critical
• atomic
• barrier
• ordered

Low-level

• locks
• flush

CS 698L Swarnendu Biswas

Synchronization with Locks

• More flexible than critical
sections (can use multiple locks)

• critical locks a code segment,
while locks lock data

• More error-prone
• For example, deadlock if a thread

does not unset a lock after
acquiring it

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel
{
do_many_things();
omp_set_lock(&lck);
// critical section
omp_unset_lock(&lck);
do_many_other_things ();

}
omp_destroy_lock(&lck);

CS 698L Swarnendu Biswas

Synchronization with Locks

• Nested locks can be acquired if it
is available or owned by the
same thread

• omp_init_lock()

• omp_set_lock()

• omp_unset_lock()

• omp_test_lock()

• omp_destroy_lock()

• omp_init_nest_lock()

• omp_set_nest_lock()

• omp_unset_nest_lock()

• omp_test_nest_lock()

• omp_destroy_nest_lock()

CS 698L Swarnendu Biswas

Synchronization Construct: flush

• #pragma omp flush (list)

• Identifies a point at which a thread is guaranteed to see a consistent
view of memory with respect to the variables in “list”
• Flush forces data to be updated in memory so other threads see the most

recent value

• In the absence of a list, all shared objects are synchronized

CS 698L Swarnendu Biswas

Synchronization Construct: flush

• If list contains a pointer, the pointer is flushed, not the object
referred to by the pointer

• It is recommended not to use flushes, excepting certain cases where
you want to implement say your own spin lock

• Flushes are expensive, since they require compilers to generate
memory fences

CS 698L Swarnendu Biswas

Clause master

#pragma omp parallel

{

do_many_things();

#pragma omp master

{

reset_boundaries();

}

do_many_other_things();

}

CS 698L Swarnendu Biswas

multiple threads
of control

only master thread executes this
region, other threads just skip it,

no barrier is implied

multiple threads
of control

Clause single

#pragma omp parallel
{
do_many_things();

#pragma omp single
{
reset_boundaries();

}

do_many_other_things();
}

CS 698L Swarnendu Biswas

multiple threads
of control

a single thread executes
this region, may not be

the master thread

multiple threads
of control

implicit barrier, all other threads
wait; can remove with nowait clause

Simplify Control Flow: Use single

double omp_pi_without_fs2() {

omp_set_num_threads(NUM_THRS);

double pi = 0.0, step = 1.0 / (double)NUM_ST
EPS;

uint16_t num_thrs;

#pragma omp parallel

{

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

#pragma omp single

num_thrs = nthrds;

double x, sum;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

// Scalar variable sum is

// thread-private, so no false sharing

sum += 4.0 / (1.0 + x * x);

}

#pragma omp critical // Mutual exclusion

pi += (sum * step);

}

return pi;

}

CS 698L Swarnendu Biswas

Reductions in OpenMP

• Reductions are common patterns
• True dependence that cannot be

removed

• OpenMP provides special support
via reduction clause
• OpenMP compiler automatically

creates local variables for each
thread, and divides work to form
partial reductions, and code to
combine the partial reductions

• Predefined set of associative
operators can be used with
reduction clause,
• For e.g., +, *, -, min, max

double sum = 0.0;

omp_set_num_threads(N);
#pragma omp parallel

double my_sum = 0.0;
my_sum = func(omp_get_thread_num());

#pragma omp critical
sum += my_sum;

CS 698L Swarnendu Biswas

Reductions in OpenMP

• Reductions clause specifies an
operator and a list of reduction
variables (must be shared variables)

• OpenMP compiler creates a local copy
for each reduction variable, initialized
to operator’s identity (e.g., 0 for +; 1
for *)

• After work-shared loop completes,
contents of local variables are
combined with the “entry” value of
the shared variable

• Final result is placed in shared variable

double sum = 0.0;

omp_set_num_threads(N);

#pragma omp parallel reduction(+ : sum)

sum += func(omp_get_thread_num());

CS 698L Swarnendu Biswas

Reduction Operators and Initial Values

Operator Initial value

+ 0

* 1

- 0

Min Largest positive number

Max Smallest negative number

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

CS 698L Swarnendu Biswas

C/C++
only

Computing Pi with OpenMP
double omp_pi_with_fs() {

omp_set_num_threads(NUM_THRS);

double sum[NUM_THRS] = {0.0};

double pi = 0.0;

double step = 1.0 / (double)NUM_STEPS;

uint16_t num_thrs;

#pragma omp parallel

{

// Parallel region with worker threads

uint16_t tid = omp_get_thread_num();

uint16_t nthrds = omp_get_num_threads();

#pragma omp single

num_thrs = nthrds;

double x;

for (int i = tid; i < NUM_STEPS; i += nthrds) {

x = (i + 0.5) * step;

sum[tid] += 4.0 / (1.0 + x * x);

}

} // end #pragma omp parallel

#pragma omp parallel for reduction(+ : pi)

for (int i = 0; i < num_thrs; i++) {

pi += (sum[i] * step);

}

return pi;

}

CS 698L Swarnendu Biswas

Data Sharing

Understanding Scope of Shared Data

• As with any shared-memory programming model, it is important to
identify shared data
• Multiple child threads may read and update the shared data

• Need to coordinate communication among the team by proper initialization
and assignment to variables

• Scope of a variable refers to the set of threads that can access the
thread in a parallel block

CS 698L Swarnendu Biswas

Data Scope

• Variables (declared outside the scope of a parallel region) are shared
among threads unless explicitly made private

• A variable in a parallel region can be either shared or private
• Variables declared within parallel region scope are private

• Stack variables declared in functions called from within a parallel region are
private

CS 698L Swarnendu Biswas

Implicit Rules

int n = 10, a = 7;

#pragma omp parallel

{

…

int b = a + n;

b++;

…

}

• n and a are shared variables

• b is a private variable

CS 698L Swarnendu Biswas

Data Sharing: shared Clause

• shared (list)
• Shared by all threads, all threads access the same storage area for shared

variables

• #pragma omp parallel shared(x)

• Responsibility for synchronizing accesses is on the programmer

CS 698L Swarnendu Biswas

Data Sharing: private Clause

• private (list)
• A new object is declared for each thread in the team

• Variables declared private should be assumed to be uninitialized for each
thread

• #pragma omp parallel private(x)
• Each thread receives its own uninitialized variable x

• Variable x falls out-of-scope after the parallel region

• A global variable with the same name is unaffected (v3.0 and later)

CS 698L Swarnendu Biswas

Understanding the private clause

int p = 0;

#pragma omp parallel private(p)

{

// value of p is undefined

p = omp_get_thread_num();

// value of p is defined

…

}

// value of p is undefined

CS 698L Swarnendu Biswas

Clause firstprivate

• firstprivate (list)
• Variables in list are private, and are initialized according to the value of their

original objects prior to entry into the parallel construct

• #pragma omp parallel firstprivate(x)
• x must be a global-scope variable

• Each thread receives a by-value copy of x

• The local x’s fall out-of-scope after the parallel region

• The base global variable with the same name is unaffected

CS 698L Swarnendu Biswas

Clause firstprivate

incr = 0;

#pragma omp parallel firstprivate(incr)

{

...

for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;

}

}

CS 698L Swarnendu Biswas

Each thread gets its own copy
of incr with an initial value of 0

Clause lastprivate

• lastprivate (list)

• Variables in list are private, the

values from the last (sequential)

iteration or section is copied back

to the original objects

void sq2(int n, double *lastterm) {

double x; int i;

#pragma omp parallel for lastprivate(x)

for (i = 0; i < n; i++) {

x = a[i]*a[i] + b[i]*b[i];

b[i] = sqrt(x);

}

*lastterm = x;

}

CS 698L Swarnendu Biswas

“x” has the value it held for the
“last sequential” iteration, i.e.,
for i=(n-1)

Clause default

• default (shared | none)
• Specify a default scope for all

variables in the lexical extent of
any parallel region

int a, b, c, n;

#pragma omp parallel for
default(shared), private(a, b)

for (int i = 0; i < n; i++) {

// a and b are private variables

// c and n are shared variables

}

CS 698L Swarnendu Biswas

Clause default

int n = 10;

std::vector<int> vector(n);

int a = 10;

#pragma omp parallel for default(none) shared(n, vector)

for (int i = 0; i < n; i++) {

vector[i] = i*a;

}

CS 698L Swarnendu Biswas

Is this snippet correct?

Data Sharing Example

A = 1,B = 1, C = 1

#pragma omp parallel private(B) firstprivate(C)

• What can we say about the scope of A, B, and C, and their values?

CS 698L Swarnendu Biswas

Data Sharing Example

A = 1,B = 1, C = 1
#pragma omp parallel private(B) firstprivate(C)

• What can we say about the scope of A, B, and C, and their values?

• Inside the parallel region
• “A” is shared by all threads; equals 1
• “B” and “C” are local to each thread.

• B’s initial value is undefined
• C’s initial value equals 1

• Following the parallel region
• B and C revert to their original values of 1
• A is either 1 or the value it was set to inside the parallel region

CS 698L Swarnendu Biswas

Data Sharing Example

double A[10];
int main() {

int index[10];
#pragma omp parallel

work(index);
printf(“%d\n”, index[0]);;

}

void work(int *index) {
double temp[10];
static int count;
...

}

CS 698L Swarnendu Biswas

A, index and count are shared
by all threads

temp is local to each thread

Threadprivate Variables

• A threadprivate variable provides one instance of a variable for each
thread

• The variable refers to a unique storage block in each thread

• Enables persistent private variables, not limited in lifetime to one
parallel region

int a, b;

pragma omp threadprivate (a, b)

// a and b are thread-private

CS 698L Swarnendu Biswas

private vs threadprivate

private

• Local to a parallel region

• Mostly allocated on the stack

• Value is assumed to be
undefined on entry and exit
from a parallel region

threadprivate

• Persists across parallel regions

• Mostly allocated on the heap on
thread-local storage

• Value is undefined on entry to
the first parallel region

CS 698L Swarnendu Biswas

Clause copyin

• Used to initialize threadprivate data upon entry to a parallel region
• Specifies that the master thread’s value of a threadprivate variable

should be copied to the corresponding variables in the other threads

int a, b;
…
pragma omp threadprivate (a, b)
// .. code ..

pragma omp parallel copyin (a, b)
{
// a and b copied from master thread

}

CS 698L Swarnendu Biswas

Summary of Data Sharing Rules

• Variables are shared by default

• Variables declared within parallel blocks and subroutines called from
within a parallel region are private (reside on a stack private to each
thread), unless scoped otherwise

• Default scoping rule can be changed with default clause

• Recommended
• Always use the default(none) clause

• Declare private variables in the parallel region

CS 698L Swarnendu Biswas

Runtime Routines and
Environment Variables

Runtime Library Routines

• omp_set_num_threads()

• omp_get_num_threads()

• omp_get_thread_num()

• omp_get_max_threads()

• omp_in_parallel()

• omp_set_dynamic()

• omp_get_dynamic()

• omp_num_procs()

• …

CS 698L Swarnendu Biswas

Environment Variables

• Set the default number of threads to use
• OMP_NUM_THREADS int_literal

• Control the size of child threads’ stack
• OMP_STACKSIZE

• Hint to runtime how to treat idle threads
• OMP_WAIT_POLICY
• ACTIVE keep threads alive at barriers/locks
• PASSIVE try to release processor at barriers/locks

• Process binding is enabled if this variable is true, the runtime will not move
threads around between processors
• OMP_PROC_BIND true | false

• ...

CS 698L Swarnendu Biswas

Worksharing Construct

Worksharing Construct

• Loop structure in parallel region is
same as sequential code

• No explicit thread-id based work
division; instead system
automatically divides loop iterations
among threads

• User can control work division: block,
cyclic, block-cyclic, etc., via
“schedule” clause in pragma

float res;

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < MAX; i++) {

B = big_job(i);

}

}

CS 698L Swarnendu Biswas

Worksharing Construct

#pragma omp parallel

{

#pragma omp for

for (int i=0; i<N; i++) {

func1(i);

}

}

CS 698L Swarnendu Biswas

Variable i is made “private” to each thread by
default. You could also do this explicitly with
a “private(i)” clause.

If the team consists of only one thread then
the worksharing region is not executed in
parallel.

Worksharing Construct

for(i=0;i< N;i++) {

a[i] = a[i] + b[i];

}

#pragma omp parallel

#pragma omp for

for(i=0;i<N;i++) {

a[i] = a[i] + b[i];

}

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1) iend = N;

for(i=istart;i<iend;i++) {

a[i] = a[i] + b[i];

}

}

CS 698L Swarnendu Biswas

sequential code

work sharing
construct

OpenMP parallel
region

Combined Worksharing Construct

float res;

#pragma omp parallel

{

#pragma omp for

for (int i = 0; i < MAX; i++) {

B = big_job(i);

#pragma omp critical

consume (B, res);

}

}

float res;

#pragma omp parallel for

for (int i = 0; i < MAX; i++) {

B = big_job(i);

#pragma omp critical

consume (B, res);

}

CS 698L Swarnendu Biswas

Often a parallel region has a single
work-shared loop

Limitations on the Loop Structure

• Loops need to be in the
canonical form
• Cannot use while or do-while

• Loop variable must have integer
or pointer type

• Cannot use a loop where the trip
count cannot be determined

• for (index = start; index < end;
index++)

• for (index = start; index >= end;
index = index - incr)

CS 698L Swarnendu Biswas

Take Care with the Worksharing Construct

CS 698L Swarnendu Biswas

OpenMP compiler will not check for dependences

Take Care when Sharing Data

#pragma omp parallel for

{

for(i=0; i<n; i++) {

tmp = 2.0*a[i];

a[i] = tmp;

b[i] = c[i]/tmp;

}

}

#pragma omp parallel for
private(tmp)

{

for(i=0; i<n; i++) {

tmp = 2.0*a[i];

a[i] = tmp;

b[i] = c[i]/tmp;

}

}

CS 698L Swarnendu Biswas

Take Care when Sharing Data

int i = 0, n = 10, a = 7;

#pragma omp parallel for

for (i = 0; i< n; i++) {

int b = a + i;

}

• n and a are shared variables

• b is a private variable

• A loop iteration variable is
private by default
• So i is private

CS 698L Swarnendu Biswas

Our Refined Pi Implementation

double omp_pi() {

double x, pi, sum = 0.0;

double step = 1.0 / (double)NUM_STEPS;

#pragma omp parallel for private(x) reduction(+ : sum) num_threads(NUM_THRS)

for (int i = 0; i < NUM_STEPS; i++) {

x = (i + 0.5) * step;

sum += 4.0 / (1.0 + x * x);

}

pi = step * sum;

return pi;

}

CS 698L Swarnendu Biswas

Evaluate the Pi Program Variants

• Sequential computation of pi

• Parallel computation with false sharing

• Parallel computation with padding

• Parallel computation with thread-local sum

• Worksharing construct

CS 698L Swarnendu Biswas

Finer Control on Work Distribution

• The schedule clause determines how loop iterators are mapped
onto threads
• Most implementations use block partitioning

• #pragma omp parallel for schedule [, <chunksize>]

• Good assignment of iterations to threads can have a significant
impact on performance

CS 698L Swarnendu Biswas

Finer Control on Work Distribution

• #pragma omp parallel for schedule(static[,chunk])
• Fixed-sized chunks (or as equal as possible) assigned (alternating) to

num_threads

• Typical default is: chunk = iterations/num_threads

• Set chunk = 1 for cyclic distribution

• #pragma omp parallel for schedule(dynamic[,chunk])
• Run-time scheduling (has overhead)

• Each thread grabs “chunk” iterations off queue until all iterations have been
scheduled, default is 1

• Good load-balancing for uneven workloads

CS 698L Swarnendu Biswas

Finer Control on Work Distribution

• schedule(static)
• OpenMP guarantees that if you have two separate loops with the same

number of iterations and execute them with the same number of threads
using static scheduling, then each thread will receive exactly the same
iteration range(s) in both parallel regions

• Beneficial for NUMA systems: if you touch some memory in the first loop, it
will reside on the NUMA node where the executing thread was. Then in the
second loop the same thread could access the same memory location faster
since it will reside on the same NUMA node.

CS 698L Swarnendu Biswas

https://stackoverflow.com/questions/10850155/whats-the-difference-between-static-and-dynamic-schedule-in-openmp

Finer Control on Work Distribution

• #pragma omp parallel for schedule(guided[,chunk])
• Threads dynamically grab blocks of iterations

• Chunk size starts relatively large, to get all threads busy with good
amortization of overhead

• Subsequently, chunk size is reduced to “chunk” to produce good workload
balance

• By default, initial size is iterations/num_threads

CS 698L Swarnendu Biswas

Example of guided Schedule with Two Threads
Thread Chunk Chunk Size Remaining Iterations

0 1-5000 5000 5000

1 5001-7500 2500 2500

1 7501-8750 1250 1250

1 8751-9375 625 625

0 9376-9688 313 312

1 9689-9844 156 156

0 9845-9922 78 78

1 9923-9961 39 39

0 9962-9981 20 19

1 9982-9991 10 9

0 9992-9996 5 4

0 9997-9998 2 2

0 9999 1 1

1 10000 1 0

Finer Control on Work Distribution

• #pragma omp parallel for schedule(runtime)
• Decision deferred till run-time

• Schedule and chunk size taken from OMP_SCHEDULE environment variable or
from runtime library routines
• $ export OMP_SCHEDULE=“static,1”

• #pragma omp parallel for schedule(auto)
• Schedule is left to the compiler runtime to choose (need not be any of the

above)

• Any possible mapping of iterations to threads in the team can be chosen

CS 698L Swarnendu Biswas

Understanding the schedule clause

Schedule clause When to use?

static Predetermined and predictable by the
programmer; low overhead at run-time,
scheduling is done at compile-time

dynamic Unpredictable, highly variable work per iteration;
greater overhead at run-time, more complex
scheduling logic

guided Special case of dynamic to reduce scheduling
overhead

auto When the runtime can learn from previous
executions of the same loop

CS 698L Swarnendu Biswas

Nested Loops

• For perfectly nested rectangular loops we can parallelize multiple
loops in the nest with the collapse clause

#pragma omp parallel for collapse(2)
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
}

}

• Will form a single loop of length NxM and then parallelize that
• Useful when there are more than N threads

CS 698L Swarnendu Biswas

j is implicitly private
with the collapse clause

Nested Loops

• collapse works with square
loops, not with triangular loops

int i, j;

#pragma omp parallel for num_threads(2)
collapse(2) private(j)

for (i = 0; i < 4; i++)

for (j = 0; j <= i; j++)

cout << i << j <<
omp_get_thread_num()) << “\n”;

int i, j;

#pragma omp parallel for num_threads(2)
collapse(2) private(j)

for (i = 0; i < 4; i++)

for (j = 0; j < 100; j++)

cout << i << j <<
omp_get_thread_num()) << “\n”;

CS 698L Swarnendu Biswas

Does not compile
on GCC 7.4

Data Sharing with Work Sharing

#include <omp.h>

int main() {

int i, j=5;

double x=1.0, y=42.0;

#pragma omp parallel for default(none)
reduction(*:x)

for (i=0;i<N;i++) {

for (j=0;j<3;j++)

x += foobar(i, j, y);

}

printf(“ x is %f\n”,(float)x);

}

#include <omp.h>

int main() {

int i, j=5;

double x=1.0, y=42.0;

#pragma omp parallel for default(none)
reduction(*:x) shared(y) collapse(2)

for (i=0;i<N;i++) {

for (j=0;j<3;j++)

x += foobar(i, j, y);

}

printf(“ x is %f\n”,(float)x);

}

CS 698L Swarnendu Biswas

What is going
to happen?

OpenMP Sections

• Noniterative worksharing
construct

• Worksharing for function-level
parallelism; complementary to
“omp for” loops

• The sections construct gives a
different structured block to
each thread

#pragma omp parallel

{

…

#pragma omp sections

{

#pragma omp section

x_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

} // implicit barrier

…

}

CS 698L Swarnendu Biswas

Explicit Tasks

Explicit Task Constructs in OpenMP

• Not all programs have simple
loops OpenMP can parallelize

• OpenMP can only parallelize
loops in a basic standard form
with loop counts known at
runtime

• Consider a program to traverse a
linked list

p=head;

while (p) {

dowork(p);

p = p->next;

}

CS 698L Swarnendu Biswas

One Potential Solution

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for (i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

dowork(parr[i]);

}

CS 698L Swarnendu Biswas

1

2

3

One Potential Solution

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for (i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

dowork(parr[i]);

}

CS 698L Swarnendu Biswas

1

2

3

This works, but is inelegant (had to use a vector or
array as an intermediate) and is inefficient
(requires multiple passes over the data)

Tasks in OpenMP

• Explicit tasks were introduced in
OpenMP 3.0

• Tasks are independent units of work

• Tasks are composed of
• code to execute
• data to compute with
• control variables

• Threads are assigned to perform the
work of each task

• The runtime system decides when
tasks are executed
• Tasks may be deferred
• Tasks may be executed immediately

CS 698L Swarnendu Biswas

The Tasking Concept in OpenMP

CS 698L Swarnendu Biswas

Thread
Generate
tasks

Ex
ec

u
te

 t
as

ks

Thread

Thread

Thread

Tasks in OpenMP

• The task construct includes a
structured block of code

• Inside a parallel region, a thread
encountering a task construct
will package up the code block
and its data for execution

• Tasks can be nested: i.e. a task
may itself generate tasks

CS 698L Swarnendu Biswas

Task Directive

#pragma omp parallel
{

#pragma omp master
{

#pragma omp task
fred();

#pragma omp task
daisy();

#pragma omp task
billy();

}
}

CS 698L Swarnendu Biswas

Task 0 packages data

Tasks executed by some
thread in some order

All tasks complete
before this barrier ends

Task Completion

• You can use a barrier

• #pragma omp taskwait
• Wait for child tasks to complete

CS 698L Swarnendu Biswas

Example of Tasks

#pragma omp parallel

{

#pragma omp single

{

cout << “A ”;

#pragma omp task

cout << “race “;

#pragma omp task

cout << “car “;

cout << “is fun to watch!”;

}

}

#pragma omp parallel

{

#pragma omp single

{

cout << “A ”;

#pragma omp task

cout << “race “;

#pragma omp task

cout << “car “;

#pragma omp taskwait

cout << “is fun to watch!”;

}

}

CS 698L Swarnendu Biswas

SIMD Programming

SPMD Programming

• Single Program Multiple Data
• Each thread runs same program

• Selection of data, or branching conditions, based on thread id
• General and common parallel programming paradigm

• In OpenMP implementations
• Perform work division in parallel loops

• Query thread_id and num_threads

• Partition work among threads

CS 698L Swarnendu Biswas

How about SIMD support?

• Support in older versions of OpenMP required vendor-specific
extensions
• Programming models (e.g., Intel Cilk Plus)

• Compiler pragmas (e.g., #pragma vector)

• Low-level constructs or intrinsics (e.g., _mm_add_pd())

CS 698L Swarnendu Biswas

#pragma omp parallel for
#pragma vector always
#pragma ivdep
for (int i = 0; i < N; i++) {

a[i] = b[i] + 10;
}

simd Construct

• #pragma omp simd …
• Can be applied to a loop to indicate that the loop can be transformed to a

SIMD loop

• Use SIMD instructions

• Partition loop into chunks that fit a SIMD vector register

• Does not parallelize the loop body

• #pragma omp declare simd
• Applied to a function to enable creation of one or more versions to allow for

SIMD processing

CS 698L Swarnendu Biswas

simd Worksharing Construct

• #pragma omp for simd …

• Parallelize and vectorize a loop nest
• Distribute a loop’s iteration space across a thread team

• Subdivide loop chunks to fit a SIMD vector register

CS 698L Swarnendu Biswas

SIMD Function Vectorization

• Declare one or more functions to be compiled for calls from a SIMD-
parallel loop

#pragma omp declare simd …
function-definition-or-declaration

CS 698L Swarnendu Biswas

#pragma omp declare simd
float min(float a, float b) {

return a < b ? a : b;
}

// Vector version
vec8 min_v(vec8 a, vec8 b) {

return a < b ? a : b;
}

OpenMP Memory Model

Correctness of Shared-memory Programs

CS636 Swarnendu Biswas 132

“To write correct and efficient shared memory programs,
programmers need a precise notion of how memory behaves with
respect to read and write operations from multiple processors”

S. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorials. WRL Research Report, 1995.

Busy-Wait Paradigm

X = new Object();
done = true;

Thread T1

while (!done) {}
if (X != null)
X.compute();

Thread T2

Object X = null;
boolean done= false;

done = true;

X = new Object();

while (!done) {}
X.compute();

Thread T1 Thread T2

NPE

X = new Object();

done = true;

temp = done;

while (!temp) {}

Thread T1 Thread T2

Infinite loop

What Value Can a Read Return?

Core C1

S1: store X, 10

S2: store done, 1

Core C2

L1: load r1, done

B1: if (r1 != 1) goto L1

L2: load r2, X

X = 0
done = 0

Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

CS636 Swarnendu Biswas 136

Different
addresses!

Reordering of Accesses by Hardware

Store-store

Load-load

Load-store

Store-load

CS636 Swarnendu Biswas 137

Different
addresses!

Correct in a single-threaded context

Non-trivial in a multithreaded context

What values can a load return?

Return the “last” write

Uniprocessor: program order

Multiprocessor: ?

CS636 Swarnendu Biswas 138

Memory Consistency Model

Set of rules that govern how systems process memory operation
requests from multiple processors

• Determines the order in which memory operations appear to execute

Specifies the allowed behaviors of multithreaded programs executing
with shared memory

• Both at the hardware-level and at the programming-language-level

• There can be multiple correct behaviors

CS636 Swarnendu Biswas 139

Importance of Memory Consistency Models

Determines what optimizations are correct

Contract between the programmer and the hardware

Influences ease of programming and program
performance

Impacts program portability

CS636 Swarnendu Biswas 140

Dekker’s Algorithm

Core C1

S1: store flag1, 1

L1: load r1, flag2

Core C2

S2: store flag2, 1

L2: load r2, flag1

flag1 = 0
flag2 = 0

Can both r1 and r2 be set to zero?

Sequential Consistency

CS636 Swarnendu Biswas 142

A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in the order
specified by the program.

Leslie Lamport

Interleavings with SC

CS636 Swarnendu Biswas 143

Interleavings with SC

CS636 Swarnendu Biswas 144

SC Formalism

Every load gets its value from the last store before it
(in global memory order) to the same address

CS636 Swarnendu Biswas 145

SC Rules

Suppose we
have two

addresses a
and b

• a == b or a!= b

Constraints

• if L(a) <p L(b) ⇒ L(a) <m L(b)

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b)

CS636 Swarnendu Biswas 146

End-to-end SC

Simple memory model that can be implemented both
in hardware and in languages

Performance can take a hit

• Naive hardware

• Maintain program order - expensive for a write

CS636 Swarnendu Biswas 147

Existing Memory Consistency Models

Hardware

• Sequential Consistency (SC)

• Total Store Order (TSO)

• Partial Store Order (PSO)

• Weak Ordering (WO)

• …

Programming Languages

• Java

• C++ and OpenMP

• …

CS 698L Swarnendu Biswas

Cache Coherence

Single writer multiple readers (SWMR)

Memory updates are passed correctly, cached copies always contain the most
recent data

Virtually a synonym for SC, but for a single memory location

Alternate definition based on relaxed ordering

• A write is eventually made visible to all processors

• Writes to the same location appear to be seen in the same order by all processors (serialization)

• SC - *all*

CS636 Swarnendu Biswas 149

Memory Consistency vs Cache Coherence

Memory Consistency

• Defines shared memory behavior

• Related to all shared-memory locations

• Policy on when new value is propagated to
other cores

• Memory consistency implementations can
use cache coherence as a “black box”

Cache Coherence

• Does not define shared memory behavior

• Specific to a single shared-memory location

• Propagate new value to other cached copies
• Invalidation-based or update-based

CS636 Swarnendu Biswas 150

Total Store Order

Allows reordering stores to loads

Can read own write early, not other’s writes

Conjecture: widely-used x86 memory model is
equivalent to TSO

CS636 Swarnendu Biswas 151

TSO Rules

• If L(a) <p L(b) ⇒ L(a) <m L(b)

• If L(a) <p S(b) ⇒ L(a) <m S(b)

• If S(a) <p S(b) ⇒ S(a) <m S(b)

• If S(a) <p L(b) ⇒ S(a) <m L(b) /* Enables FIFO Write Buffer */

a == b or a != b

Every load gets its value from the last store before it
to the same address

CS636 Swarnendu Biswas 152

Support for FENCE Operations in TSO

If L(a) <p FENCE ⇒ L(a) <m FENCE

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p FENCE ⇒ FENCE <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

If FENCE <p S(a) ⇒ FENCE <m S(a)

If S(a) <p FENCE ⇒ S(a) <m FENCE

If FENCE <p L(a) ⇒ FENCE <m L(a)

CS636 Swarnendu Biswas 153

Possible Outcomes with TSO

CS636 Swarnendu Biswas 154

Possible Outcomes with TSO

CS636 Swarnendu Biswas 155

Partial Store Order (PSO)

• Allows reordering of store to loads and stores to stores

• Writes to different locations from the same processor can be
pipelined or overlapped and are allowed to reach memory or other
cached copies out of program order

• Can read own write early, not other’s writes

CS636 Swarnendu Biswas 156

Opportunities to Reorder Memory Operations

CS636 Swarnendu Biswas 157

Reorder Operations Within a Synchronization
Block

CS636 Swarnendu Biswas 158

Optimization Opportunities

Non-FIFO coalescing write buffer

Support non-blocking reads

• Hide latency of reads

• Use lockup-free caches and speculative execution

Simpler support for speculation

• Need not compare addresses of loads to coherence requests

• For SC, need support to check whether the speculation is correct

CS636 Swarnendu Biswas 159

Desirable Properties of a Memory Model

Hard to
satisfy all

three
properties

• Programmability

• Performance

• Portability Pros
• Intuitive

• Serializability of instructions

Cons

• No atomicity of regions

• Inhibits compiler
transformations

• Almost all recent
architectures violate SC

CS636 Swarnendu Biswas 160

Think of SC

Relaxed Consistency Memory Model

• OpenMP supports a relaxed consistency shared memory model
• Closely related to the weak ordering model

• Threads can maintain a temporary view of shared memory that is not
consistent with other threads

• These temporary views are made consistent only at certain points in
the program

• The operation that enforces consistency is called the flush operation

CS 698L Swarnendu Biswas

Semantics of the flush Operation

• A flush is a sequence point at which a thread is guaranteed to see a
consistent view of memory
• All previous read/writes by this thread have completed and are visible to

other threads

• No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared memory
APIs

CS 698L Swarnendu Biswas

Potential Benefits with Relaxed Consistency

• Relaxed memory model allows
flexibility to OpenMP
implementations

• Write to A
• May complete immediately

• May complete after the execution
marked “…”

A = 1

…

…

#pragma omp flush(A)

CS 698L Swarnendu Biswas

Flush and Synchronization

• A flush operation is implied by OpenMP synchronizations
• at entry/exit of parallel, critical, and ordered regions

• at implicit and explicit barriers

• at entry/exit of parallel worksharing regions

• during lock APIs

• ….

CS 698L Swarnendu Biswas

Flush and Synchronization

• This means if you are mixing reads and writes of a variable across
multiple threads, you cannot assume the reading threads see the
results of the writes unless:
• The writing threads follow the writes with a construct that implies a flush.

• The reading threads precede the reads with a construct that implies a flush

CS 698L Swarnendu Biswas

Reordering Example

1. a = …;

2. b = …;

3. c = …;

4. #pragma omp flush(c)

5. #pragma omp flush(a, b)

6. …= a…b…;

7. …c…;

• 1 and 2 may not be moved after
5

• 4 and 5 maybe interchanged at
will

• 6 may not be moved before 5

CS 698L Swarnendu Biswas

OpenMP Example
#pragma omp parallel sections

{

// Producer

#pragma omp section

{

// produce data

flag = 1;

}

// Consumer

#pragma omp section

{

while (flag == 0) {}

// consume data

}

}

#pragma omp parallel sections

{

#pragma omp section

{

// produce data

#pragma omp flush

#pragma omp write

flag = 1;

#pragma omp flush(flag)

}

#pragma omp section

{

while (1) {

#pragma omp flush(flag)

#pragma omp atomic read

flag_read = flag

if (flag_read) break;

}

#pragma omp flush

// consume data

}

}

OpenMP Optimizing Compiler

• Can reorder operations freely inside a parallel region
• No guarantees about the ordering of operations during a parallel region

excepting around flush operations

• Parallel region contains implicit flushes

• Cannot move operations outside of the parallel region or around
synchronization operations

• Presence of flush operations make the OpenMP memory model a variant of
weak ordering

CS 698L Swarnendu Biswas

More Rules

• If the intersection of the flush-sets of two flushes performed by two
different threads is non-empty, then the two flushes must be
completed as if in some sequential order, seen by all threads

• If the intersection of the flush-sets of two flushes performed by one
thread is non-empty, then the two flushes must appear to be
completed in that thread’s program order

• If the intersection of the flush-sets of two flushes is empty, then the
threads can observe these flushes in any order

CS 698L Swarnendu Biswas

References

• Tim Mattson et al. The OpenMP Common Core: A hands on exploration, SC 2018.

• Tim Mattson and Larry Meadows. A “Hands-on” Introduction to OpenMP. SC 2008.

• Ruud van der Pas. OpenMP Tasking Explained. SC 2013.

• Peter Pacheco. An Introduction to Parallel Programming.

• Blaise Barney. OpenMP. https://computing.llnl.gov/tutorials/openMP/

CS 698L Swarnendu Biswas

https://computing.llnl.gov/tutorials/openMP/

