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Enhancing Program Performance

Fundamental issues
• Adequate fine-grained parallelism

• Exploit vector instruction sets (SSE, AVX, AVX-512)

• Multiple pipelined functional units in each core

• Adequate parallelism for SMP-type systems 
• Keep multiple asynchronous processors busy with work

• Minimize cost of memory accesses
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Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

• Code restructuring optimizations

• Prefetching optimizations

• Data layout optimizations

• Code layout optimizations
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Loop Optimizations

• Loops are one of most commonly used constructs in HPC program

• Compiler performs many of loop optimization techniques 
automatically 
• In some cases source code modifications enhance optimizer’s ability to 

transform code
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Reordering Transformations

• A reordering transformation does not add or remove statements from 
a loop nest 
• Only reorders the execution of the statements that are already in the loop
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Do not add or remove 
statements

Do not add or remove 
any new dependences



Reordering Transformations

• A reordering transformation does not add or remove statements from 
a loop nest 
• Only reorders the execution of the statements that are already in the loop
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Do not add or remove 
statements

Do not add or remove 
any new dependences

A reordering transformation is valid if it preserves all existing 
dependences in the loop



Iteration Reordering and Parallelization

• A transformation that reorders the iterations of a level-k loop, 
without making any other changes, is valid if the loop carries no 
dependence

• Each iteration of a loop may be executed in parallel if it carries no 
dependences
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DDG and Parallelization

• If the DDG is acyclic, then vectorization of the program is possible and 
is straightforward

• Otherwise, try to reduce the DDG to an acyclic graph 
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Enhancing Fine-Grained 
Parallelism
Focus on Parallelization of Inner Loops
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System Setup

• Setup
• Vector or superscalar architectures

• Focus is mostly on parallelizing the inner loops

• We will see optimizations for coarse-grained parallelism later
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Loop Interchange (Loop Permutation)

• Switch the nesting order of loops in 
a perfect loop nest

• Can increase parallelism, can 
improve spatial locality

• Dependence is now carried by the 
outer loop

• Inner-loop can be vectorized

DO I = 1, N
DO J = 1, M

S     A(I,J+1) = A(I,J) + B
ENDDO

ENDDO

DO J = 1, M
DO I = 1, N

S     A(I,J+1) = A(I,J) + B
ENDDO

ENDDO
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Interchange of Non-rectangular Loops

for (i=0; i<n; i++) 

for (j=0; j<i; j++)

y[i] = y[i] + A[i][j]*x[j];

for (j=0; j<n; j++) 

for (i=j+1; i<n; i++)

y[i] = y[i] + A[i][j]*x[j];
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Validity of Loop Interchange

• Construct direction vectors for all possible dependences in the loop
• Also called a direction matrix

• Compute direction vectors after permutation

• Permutation of the loops in a perfect nest is legal iff there are no “-” 
direction as the leftmost non–“0” direction in any direction vector
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Legality of Loop Interchange

(0, 0)

• Dependence is loop-independent

(0, +)

• Dependence is carried by the jth loop, which remains the same after interchange

(+, 0)

• Dependence is carried by the ith loop, relations do not change after interchange

(+, +)

• Dependence relations remain positive in both dimensions
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Legality of Loop Interchange

(+, -)

• Dependence is carried by ith loop, interchange results in an illegal direction 
vector

(0, +)

• Dependence is carried by the jth loop, which remains the same after 
interchange

(0, -) (-, *)

• Such direction vectors are illegal, should not appear in the original loop
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Invalid Loop Interchange

do i = 1, n 

do j = 1, n

C(i, j) = C(i+1, j-1)

enddo

enddo

do j = 1, n

do i = 1, n 

C(i,j) = C(i+1,j-1) 

enddo 

enddo
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Validity of Loop Interchange

• Loop interchange is valid for a 2D loop nest if none of the 
dependence vectors has any negative components

• Interchange is legal: (1,1), (2,1), (0,1), (3,0)

• Interchange is not legal: (1,-1), (3,-2)
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Valid or Invalid Loop Interchange?

DO J = 1, M

DO I = 1, N

A(I,J+1) = A(I+1,J) + B

ENDDO

ENDDO
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Validity of Loop Permutation

• Generalization to higher-dimensional loops 

• Permute all dependence vectors exactly the same way as the 
intended loop permutation 

• If any permuted vector is lexicographically negative, permutation is 
illegal

• Example: d1 = (1,-1,1) and d2 = (0,2,-1)
• ijk -> jik? (1,-1,1) -> (-1,1,1): illegal
• ijk -> kij? (0,2,-1) -> (-1,0,2): illegal
• ijk -> ikj? (0,2,-1) -> (0,-1,2): illegal
• No valid permutation:

• j cannot be outermost loop (-1 component in d1)
• k cannot be outermost loop (-1 component in d2)
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Valid or Invalid Loop Interchange?

DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J+1,K) = A(I,J,K) + A(I,J+1,K+1)

ENDDO

ENDDO

ENDDO
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Benefits from Loop Interchange 

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k]*B[k][j];

ikj kij jik ijk jki kji

C[i][j] 1 1 0 0 n n

A[i][k] 0 0 1 1 n n

B[k][j] 1 1 n n 0 0
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Does Loop Interchange Always Help?

do i = 1, 10000

do j = 1, 1000

a[i] = a[i] + b[j,i] * c[i]

end do

end do
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Understanding Loop Interchange

Pros

• Goal is to improve locality of 
reference or allow vectorization

Cons

• Need to careful about the 
iteration order, order of array 
accesses, and data involved
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Loop Shifting

• In a perfect loop nest, if loops at level i, i+1,…, i+n carry no 
dependence—that is, all dependences are carried by loops at level 
less than i or greater than i+n—it is always legal to shift these loops 
inside of loop i+n+1. 

• These loops will not carry any dependences in their new position.
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Loops i to i+n

Dependence carried
by outer loops

Dependence carried
by inner loops



Loop Shift for Matrix Multiply

DO I = 1, N

DO J = 1, N

DO K = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO

ENDDO

ENDDO
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Could we perform 
loop shift?



Loop Shift for Matrix Multiply

DO I = 1, N

DO J = 1, N

DO K = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO

ENDDO

ENDDO

DO K = 1, N

DO I = 1, N

DO J = 1, N

S A(I,J) = A(I,J) + B(I,K)*C(K,J)

ENDDO

ENDDO

ENDDO
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Scalar Expansion

DO I = 1, N

S1    T = A(I)

S2    A(I) = B(I)

S3    B(I) = T

ENDDO
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Scalar Expansion

DO I = 1, N

S1    $T(I) = A(I)

S2    A(I) = B(I)

S3    B(I) = $T(I)

ENDDO

T = $T(N)
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Scalar Expansion

DO I = 1, N

T = T + A(I) + A(I-1)

A(I) = T

ENDDO

$T(0) = T

DO I = 1, N

$T(I) = $T(I-1) + A(I) + A(I-1)

A(I) = $T(I)

ENDDO

T = $T(N)
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Can we parallelize 
the I loop?



Understanding Scalar Expansion

Pros

• Eliminates dependences due to 
reuse of memory locations

• Helps with uncovering 
parallelism

Cons

• Increases memory overhead

• Complicates addressing
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Draw the Dependence Graph

DO I = 1, 100

S1    T = A(I) + B(I)

S2    C(I) = T + T

S3 T = D(I) - B(I)

S4    A(I+1) = T * T

ENDDO
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Scalar Expansion Does Not Help! 

DO I = 1, 100

S1    T = A(I) + B(I)

S2    C(I) = T + T

S3 T = D(I) - B(I)

S4    A(I+1) = T * T

ENDDO

DO I = 1, 100

S1 $T(I) = A(I) + B(I)

S2    C(I) = $T(I) + $T(I)

S3 $T(I) = D(I) - B(I)

S4    A(I+1) = $T(I) * $T(I)

ENDDO
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Scalar Renaming

DO I = 1, 100

S1    T = A(I) + B(I)

S2    C(I) = T + T

S3 T = D(I) - B(I)

S4    A(I+1) = T * T

ENDDO

DO I = 1, 100

S1    T1 = A(I) + B(I)

S2    C(I) = T1 + T1

S3 T2 = D(I) - B(I)

S4    A(I+1) = T2 * T2

ENDDO

T = T2
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Loop Peeling

• Splits any problematic first or last few iterations from the loop body

• Change from a loop-carried dependence to loop-independent 
dependence
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DO I = 1, N
A(I) = A(I) + A(1)

ENDDO

A(1) = A(1) + A(1)
DO I = 2, N
A(I) = A(I) + A(1)

ENDDO



Loop Peeling

• Splits any problematic first or last few iterations from the loop body

• Change from a loop-carried dependence to loop-independent 
dependence
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int p = 10;
for (int i = 0; i < 10; ++i) {
y[i] = x[i] + x[p];
p = i;

}

y[0] = x[0] + x[10];
for (int i = 1; i < 10; ++i) {
y[i] = x[i] + x[i-1];

}

https://en.wikipedia.org/wiki/Loop_splitting



Loop Splitting

DO I = 1, N

A(I) = A(N/2) + B(I)

ENDDO

M = N/2

DO I = 1, M-1

A(I) = A(N/2) + B(I)

ENDDO

A(M) = A(N/2) + B(I)

DO I = M+1, N

A(I) = A(N/2) + B(I)

ENDDO
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assume N is 
divisible by 2



Understanding Loop Peeling and Splitting

Pros

• Transformed loop carries no 
dependence, can be parallelized

Cons
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Draw the Dependence Graph 

DO I = 1, N

DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

ENDDO

ENDDO
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Which loops carry 
dependences?



Loop Skewing

DO I = 1, N

DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

ENDDO

ENDDO
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Loop Skewing

DO I = 1, N

DO J = 1, N

S A(I,J) = A(I-1,J) + A(I,J-1)

ENDDO

ENDDO
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DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO



Loop Skewing

DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO
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Perform Loop Interchange

DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO

???
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Which loop carries 
the dependence?



Perform Loop Interchange

DO I = 1, N

DO j = I+1, I+N

S A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO

DO j = 2, N+N

DO I = max(1,j-N), min(N,j-1)

S      A(I,j-I) = A(I-1,j-I) + A(I,j-I-1)

ENDDO

ENDDO
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Understanding Loop Skewing

Pros

• Reshapes the iteration space to 
find possible parallelism

• Allows for loop interchange in 
future

Cons

• Resulting iteration space can be 
trapezoidal

• Irregular loops are not very 
amenable for vectorization

• Need to be careful about load 
imbalance
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Loop Unrolling (Loop Unwinding)

for (i = 0; i < n; i++) {

a[i] = a[i−1] + a[i] + a[i+1];

}

for (i = 0; i < n; i+ = 4) {

a[i] = a[i−1] + a[i] + a[i+1];

a[i+1] = a[i] + a[i+1] + a[i+2];

a[i+2] = a[i+1] + a[i+2] + a[i+3];

a[i+3] = a[i+2] + a[i+3] + a[i+4];

}

int f = n % 4;

for (i = n − f ; i < n; i ++) {

a[i] = a[i−1] + a[i] + a[i+1];

}
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Loop Unrolling (Loop Unwinding)

• Reduce number of iterations of loops 
• Add statement(s) to do work of missing iterations

• JIT compilers try to perform unrolling at run-time
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for (i = 0; i < n; i++) {
for (j = 0; j < 2*m; j++) {
loop-body(i, j);

}
}

for (i = 0; i < n; i++) {
for (j = 0; j < 2*m; j+=2) {
loop-body(i, j);
loop-body(i, j+1); 

}
} 2-way unrolled



Inner Loop Unrolling

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

y[i] = y[i] + a[i][j]*x[j];

}

}

for (i=0; i<n; i++) {

for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j];

y[i] = y[i] + a[i][j+1]*x[j+1];

y[i] = y[i] + a[i][j+2]*x[j+2];

y[i] = y[i] + a[i][j+3]*x[j+3]; 

}

}
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Inner Loop Unrolling

for (i=0; i<n; i++) {

for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j];

y[i] = y[i] + a[i][j+1]*x[j+1];

y[i] = y[i] + a[i][j+2]*x[j+2];

y[i] = y[i] + a[i][j+3]*x[j+3]; 

}

}

for (i=0; i<n; i++) {

for (j=0; j<n; j+=4) {

y[i] = y[i] + a[i][j]*x[j]

+ a[i][j+1]*x[j+1]

+ a[i][j+2]*x[j+2]

+ a[i][j+3]*x[j+3]; 

}

}
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Outer Loop Unrolling

for (i=0; i<2*n; i++)

for(j=0; j<m; j++) 

loop-body(i,j);

for (i=0; i<2*n; i+=2) {        

for(j=0; j<m; j++) { 

loop-body(i,j) 

}

for(j=0; j<m; j++) { 

loop-body(i+1,j) 

}

}
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Does this 
work?



Outer Loop Unrolling

for (i=0; i<2*n; i++)

for(j=0; j<m; j++) 

loop-body(i,j);

for (i=0; i<2*n; i+=2) {        

for(j=0; j<m; j++) { 

loop-body(i,j) 

}

for(j=0; j<m; j++) { 

loop-body(i+1,j) 

}

}
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2-way outer unroll does 
not increase operation-

level parallelism



Outer Loop Unrolling + Inner Loop Jamming

for (i=0; i<2*n; i++)

for(j=0; j<m; j++) 

loop-body(i,j);

for (i=0; i<2*n; i+=2) {        

for(j=0; j<m; j++) { 

loop-body(i,j) 

loop-body(i+1,j) 

}

}
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Validity Condition for Loop Unroll/Jam

• Sufficient condition can be obtained by observing that complete 
unroll/jam of a loop is equivalent to a loop permutation that moves 
that loop innermost, without changing order of other loops

• If such a loop permutation is valid, unroll/jam of the loop is valid

• Example: 4D loop ijkl; d1 = (1,-1,0,2), d2 = (1,1,-2,-1)
• i: d1-> (-1,0,2,1) => invalid to unroll/jam

• j: d1-> (1,0,2,-1); d2 -> (1,-2,-1,1) => valid to unroll/jam

• k: d1 -> (1,-1,2,0); d2 -> (1,1,-1,-2) => valid to unroll/jam

• l: d1 and d2 are unchanged; innermost loop always unrollable
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Understanding Loop Unrolling

Pros

• Small loop bodies are 
problematic, reduces control 
overhead of loops

• Increases operation-level 
parallelism in loop body

• Allows other optimizations like 
reuse of temporaries across 
iterations

Cons

• Increases the executable size

• Increases register usage 

• May prevent function inlining
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Loop Tiling

• Improve data reuse by chunking the data in to smaller blocks (tiles)
• The block is supposed to fit in the cache

• Tries to exploit spatial and temporal locality of data

CS 698L Swarnendu Biswas

for (i = 0; i < N; i++) {
…

}

for (j = 0; j < N; j +=B) {
for (i = j; i < min(N, j+B); j++) {
…

}
}



MVM with 2x2 Blocking
int i, j, a[100][100], b[100], c[100];

int n = 100;

for (i = 0; i < n; i++) {

c[i] = 0;

for (j = 0; j < n; j++) {

c[i] = c[i] + a[i][j] * b[j];

}

}

int i, j, x, y, a[100][100], b[100], c[100];

int n = 100;

for (i = 0; i < n; i += 2) {

c[i] = 0;

c[i + 1] = 0;

for (j = 0; j < n; j += 2) {

for (x = i; x < min(i + 2, n); x++) {

for (y = j; y < min(j + 2, n); y++) {

c[x] = c[x] + a[x][y] * b[y];

}

}

}

}

https://en.wikipedia.org/wiki/Loop_nest_optimization



Loop Tiling

• Determining the tile size 
• Difficult theoretical problem, usually heuristics are applied

• Tile size depends on many factors
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Validity Condition for Loop Tiling

• A contiguous band of loops can be 
tiled if they are fully permutable

• A band of loops is fully permutable 
of all permutations of the loops in 
that band are legal

• Example: d = (1,2,-3)
• Tiling all three loops ijk is not valid, 

since the permutation kij is invalid 

• 2D tiling of band ij is valid

• 2D tiling of band jk is valid

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)

for (k = 0; k < n; k++)

loop_body(i,j,k)

for (it = 0; it < n; it+=T)

for (jt = 0; tj < n; j+=T)

for (i = it; i < it+T; i++)

for (j = jt; j < jt+T; j++)

for (k = 0; k < n; k++)

loop_body(i,j,k)
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Creating Coarse-Grained 
Parallelism
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Find Work For Threads

• Setup
• Symmetric multiprocessors with shared-memory 
• Threads are running on each core, and coordinating execution with occasional 

synchronization

• A basic synchronization element is a barrier
• A barrier in a program forces all processes to reach a certain point before 

execution continues.

• Challenge: Balance the granularity of parallelism with communication 
overheads
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Challenges in Coarse-Grained Parallelism

• Running everything on one 
processor achieves minimal 
communication and 
synchronization overhead

• Very fine-grained parallelism 
achieves good load balance, but 
benefits possibly are outweighed 
by frequent communication and 
synchronization

CS 698L Swarnendu Biswas

Minimize communication and synchronization overhead while evenly 
load balancing across the processors



Challenges in Coarse-Grained Parallelism

• Running everything on one 
processor achieves minimal 
communication and 
synchronization overhead

• Very fine-grained parallelism 
achieves good load balance, but 
benefits possibly are outweighed 
by frequent communication and 
synchronization
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Minimize communication and synchronization overhead while evenly 
load balancing across the processors

One expectation from an 
optimizing compiler is to find 

the sweet spot



Few Ideas to Try

• Single loop
• Carries a dependence ➔ Try transformations to eliminate the loop carried 

dependence

• For example, loop distribution and scalar expansion

• Decide on the granularity of the new parallel loop

• Perfect loop nests
• Try loop interchange to see if the dependence level can be changed
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Privatization

• Privatization is similar in flavor to scalar expansion

• Temporaries can be given separate namespaces for each iteration
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DO I = 1,N

S1     T = A(I)

S2     A(I) = B(I)

S3     B(I) = T

ENDDO

PARALLEL DO I = 1,N

PRIVATE t

S1    t = A(I)

S2    A(I) = B(I)

S3    B(I) = t

ENDDO     



Privatization

• A scalar variable x in a loop L is said  to be privatizable if every path 
from the loop entry to a use of x inside the loop passes through a 
definition of x

• No use of the variable is upward exposed, i.e., the use never reads a 
value that was assigned outside the loop

• No use of the variable is from an assignment in an earlier iteration
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Privatization

• If all dependences carried by a loop involve a privatizable variable, 
then loop can be parallelized by making the variables private

• Preferred compared to scalar expansion

CS 698L Swarnendu Biswas

Why?



Privatization

• If all dependences carried by a loop involve a privatizable variable, 
then loop can be parallelized by making the variables private

• Preferred compared to scalar expansion
• Less memory requirement

• Scalar expansion may suffer from false sharing

• However, there can be situations where scalar expansion works but 
privatization does not
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Privatization and Scalar Expansion

DO I = 1, N

T = A(I) + B(I)

A(I-1) = T

ENDDO

DO I = 1, N

PRIVATE T

T = A(I) + B(I) 

A(I-1) = T

ENDDO     
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Privatization and Scalar Expansion

DO I = 1, N

T = A(I) + B(I)

A(I-1) = T

ENDDO

DO I = 1, N

PRIVATE T

T = A(I) + B(I) 

A(I-1) = T

ENDDO     

PARALLEL DO I = 1, N

T$(I) = A(I) + B(I)

A(I-1) = T$(I)

ENDDO
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Privatization and Scalar Expansion

DO I = 1, N

T = A(I) + B(I)

A(I-1) = T

ENDDO

DO I = 1, N

PRIVATE T

T = A(I) + B(I) 

A(I-1) = T

ENDDO     

PARALLEL DO I = 1, N

T$(I) = A(I) + B(I)

ENDDO

PARALLEL DO I = 1, N

A(I-1) = T$(I)

ENDDO
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Loop Distribution (Loop Fission)

DO I = 1, 100

DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

S2 D(I,J) = A(I,J-1) * 2.0

ENDDO

ENDDO

• How to eliminate loop-carried 
dependences?
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Loop Distribution (Loop Fission)

DO I = 1, 100

DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

S2 D(I,J) = A(I,J-1) * 2.0

ENDDO

ENDDO

• Goal is to eliminate loop-carried 
dependences

DO I = 1, 100

DO J = 1, 100

S1 A(I,J) = B(I,J) + C(I,J)

ENDDO

DO J = 1, 100

S2 D(I,J) = A(I,J-1) * 2.0

ENDDO

ENDDO
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Validity Condition for Loop Distribution

• Sufficient (but not necessary) condition: A loop with two statements 
can be distributed if there are no dependences from any instance of 
the later statement to any instance of the earlier one
• Generalizes to more statements
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Validity Condition for Loop Distribution

• Example: Loop distribution is not 
valid (executing all S1 first and 
then all S2)

• Example: Loop distribution is 
valid

For I = 1, N

S1    A(I) = B(I) + C(I)

S2    E(I) = A(I+1) * D(I)

EndFor

For I = 1, N

S1    A(I) = B(I) + C(I)

S2    E(I) = A(I-1) * D(I)

EndFor
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Understanding Loop Distribution

Pros

• Execute source of a dependence 
before the sink

• Reduces the memory footprint 
of the original loop
• For both data and code

Cons

• Decreases granularity of 
parallelism

• Can increase the synchronization 
required between dependence 
points
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How to deal with the loop?

DO I = 1, N

S1    A(I) = B(I) + 1

S2    C(I) = A(I) + C(I-1)

S3    D(I) = A(I) + X

ENDDO

L1  DO I = 1, N

A(I) = B(I) + 1

ENDDO

L2  DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO

L3  DO I = 1, N

D(I) = A(I) + X

ENDDO
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Loop Fusion (Loop Jamming)

L1  DO I = 1, N

A(I) = B(I) + 1

ENDDO

L2  DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO

L3  DO I = 1, N

D(I) = A(I) + X

ENDDO

L1  PARALLEL DO I = 1, N

A(I) = B(I) + 1

L3    D(I) = A(I) + X

ENDDO

L2  DO I = 1, N

C(I) = A(I) + C(I-1)

ENDDO
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Loop Fusion Allowed?

DO I = 1, N

S1    A(I) = B(I) + C

ENDDO

DO I = 1, N

S2    D(I) = A(I+1) + E

ENDDO

DO I = 1, N

S1    A(I) = B(I) + C

S2    D(I) = A(I+1) + E

ENDDO
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Loop Fusion Allowed?

DO I = 1, N

S1    A(I) = B(I) + C

ENDDO

DO I = 1, N

S2    D(I) = A(I-1) + E

ENDDO

DO I = 1, N

S1    A(I) = B(I) + C

S2    D(I) = A(I-1) + E

ENDDO
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Validity Condition for Loop Fusion

• Loop-independent dependence between statements in two different 
loops (i.e., from S1 to S2) 

• Dependence is fusion-preventing if fusing the two loops causes the 
dependence to be carried by the combined loop in the reverse 
direction (from S2 to S1)
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Understanding Loop Fusion

Pros

• Reduce overhead of loops

• May improve temporal locality

Cons

• May decrease data locality in the 
fused loop
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Loop Interchange

DO I = 1, N

DO J = 1, M

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

ENDDO

CS 698L Swarnendu Biswas

Which loop 
carries a 

dependence?



Loop Interchange

DO I = 1, N

DO J = 1, M

A(I+1,J) = A(I,J) + B(I,J)

ENDDO

ENDDO
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Loop I carries 
a dependence

Parallelizing J is good 
for vectorization, but 

not from coarse-
grained parallelism



Loop Interchange

DO I = 1, N
DO J = 1, M
A(I+1,J) = A(I,J) + B(I,J)

ENDDO
ENDDO

DO J = 1, M
DO I = 1, N
A(I+1,J) = A(I,J) + B(I,J)

ENDDO
ENDDO

PARALLEL DO J = 1, M
DO I = 1, N
A(I+1,J) = A(I,J) + B(I,J)

ENDDO
END PARALLEL DO
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Dependence-free 
loops should move to 
the outermost level



Loop Interchange

Vectorization

• Move dependence-free loops to 
innermost level

Coarse-grained Parallelism

• Move dependence-free loops to 
outermost level
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Loop Interchange

DO I = 1, N

DO J = 1, M

A(I+1,J+1) = A(I,J) + B(I,J)

ENDDO

ENDDO
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Condition for Loop Interchange

• In a perfect loop nest, a loop can be parallelized at the outermost 
level if and only if the column of the direction matrix for that nest 
contains only “0” entries
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Code Generation Strategy

1) Continue till there are no more columns to move
1) Choose a loop from the direction matrix that has all “0” entries in the 

column
2) Move it to the outermost position
3) Eliminate the column from the direction matrix

2) Pick loop with most “+” entries, move to the next outermost 
position
1) Generate a sequential loop
2) Eliminate the column
3) Eliminate any rows that represent dependences carried by this loop

3) Repeat from Step 1
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Loop Interchange

DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO

ENDDO

ENDDO
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Loop Interchange

DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO

ENDDO

ENDDO
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Since there are no columns with 
all “0” entries, none of the loops 

can be parallelized at the 
outermost level



Generated Code

DO I = 1, N

PARALLEL DO J = 1, M

DO K = 1, L

A(I+1,J,K) = A(I,J,K) + X1

B(I,J,K+1) = B(I,J,K) + X2

C(I+1,J+1,K+1) = C(I,J,K) + X3

ENDDO

END PARALLEL DO

ENDDO
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How did we 
pick loop J?



How can we parallelize this loop?

DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO
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How can we parallelize this loop?

DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO

CS 698L Swarnendu Biswas

No single loop 
carries all the 
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Loop Reversal

DO I = 2, N+1

DO J = 2, M+1

DO K = 1, L

A(I,J,K) = A(I,J-1,K+1) + A(I-
1,J,K+1)

ENDDO

ENDDO

ENDDO

DO I = 2, N+1

DO J = 2, M+1

DO K = L, 1, -1

A(I,J,K) = A(I,J-1,K+1) + A(I-
1,J,K+1)

ENDDO

ENDDO

ENDDO
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Loop Reversal

• When the iteration space of a loop is reversed, the direction of 
dependences within that reversed iteration space are also reversed. 
Thus, a “+" dependence becomes a “-" dependence, and vice versa

DO I = 2, N+1
DO J = 2, M+1
DO K = L, 1, -1
A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO
ENDDO

ENDDO
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Perform Loop Interchange

DO K = L, 1, -1

DO I = 2, N+1

DO J = 2, M+1

A(I,J,K) = A(I,J-1,K+1) + A(I-1,J,K+1)

ENDDO

ENDDO

ENDDO
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Understanding Loop Reversal

Pros

• Increases options for performing 
other optimizations

Cons
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Which Transformations are Most Important?

• Flow dependences by nature are difficult to remove 
• Try to reorder statements as in loop peeling, loop distribution

• Techniques like scalar expansion, privatization can be very useful
• Loops often use scalars for temporary values
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Challenges for Real-World Compilers

• Conditional execution

• Symbolic loop bounds

• Indirect memory accesses

• … 
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