
CS 698L: Intel Threading
Building Blocks

Swarnendu Biswas

Semester 2019-2020-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Approaches to Parallelism

• New languages
• For example, Cilk, X10, Chapel

• New concepts, but difficult to get widespread acceptance

• Language extensions/pragmas
• For example, OpenMP

• Easy to extend, but requires special compiler or preprocessor support

• Library
• For example, C++ STL, Intel TBB, and MPI

• Works with existing environments, usually no new compiler is needed

CS 698L Swarnendu Biswas

What is Intel TBB?

• A library to help leverage multicore performance using standard C++
• Does not require programmers to be an expert

• Writing a correct and scalable parallel loop is not straightforward

• Does not require support for new languages and compilers

• Does not directly support vectorization

• TBB was first available in 2006
• Current release is 2019 Update 8

• Open source and licensed versions available

CS 698L Swarnendu Biswas

What is Intel TBB?

• TBB works at the abstraction of tasks instead of low-level threads
• Specify tasks that can run concurrently instead of threads

• Specify work (i.e., tasks), instead of focusing on workers (i.e., threads)
• Raw threads are like assembly language of parallel programming

• Maps tasks onto physical threads, efficiently using cache and balancing load

• Full support for nested parallelism

CS 698L Swarnendu Biswas

Advantages with Intel TBB

• Promotes scalable data-parallel programming
• Data parallelism is more scalable than functional parallelism

• Functional blocks are usually limited while data parallelism scales with more
processors

• Not tailored for I/O-bound or real-time processing

• Compatible with other threading packages and is portable

• Can be used in concert with native threads and OpenMP

• Relies on generic programming (e.g., C++ STL)

CS 698L Swarnendu Biswas

Key Features of Intel TBB

Synchronization primitives
atomic operations, condition_variable
various flavors of mutexes

Generic Parallel algorithms
parallel_for, parallel_for_each,
parallel_reduce, parallel_scan,
parallel_do, pipeline, parallel_pipeline,
parallel_sort, parallel_invoke

Concurrent containers
concurrent_hash_map
concurrent_unordered_map
concurrent_queue
concurrent_bounded_queue
concurrent_vectorTask scheduler

task_group, structured_task_group,
task, task_scheduler_init

Memory allocators
tbb_allocator, cache_aligned_allocator, scalable_allocator, zero_allocator

Utilities
tick_count
tbb_thread

CS 698L Swarnendu Biswas

Task-Based Programming

• Challenges with threads: oversubscription or undersubscription,
scheduling policy, load imbalance, portability
• For example, mapping of logical to physical threads is crucial

• Mapping also depends on whether computation waits on external devices

• Non-trivial impact of time slicing with context switches, cache cooling effects,
and lock preemption
• Time slicing allows more logical threads than physical threads

CS 698L Swarnendu Biswas

Task-Based Programming with Intel TBB

• Intel TBB parallel algorithms map tasks onto threads automatically
• Task scheduler manages the thread pool

• Oversubscription and undersubscription of core resources is
prevented by task-stealing technique of TBB scheduler

• Tasks are lighter-weight than threads

CS 698L Swarnendu Biswas

An Example: Hello World

#include <iostream>
#include <tbb/tbb.h>

using namespace std;
using namespace tbb;

class HelloWorld {
const char* id;

public:
HelloWorld(const char* s) : id(s) {}
void operator()() const {

cout << "Hello from task "
<< id << "\n"; }

};

int main() {
task_group tg;

tg.run(HelloWorld("1"));
tg.run(HelloWorld("2"));

tg.wait();

return EXIT_SUCCESS;
}

CS 698L Swarnendu Biswas

An Example: Hello World

#include <iostream>
#include <tbb/tbb.h>

using namespace std;
using namespace tbb;

class HelloWorld {
const char* id;

public:
HelloWorld(const char* s) : id(s) {}
void operator()() const {

cout << "Hello from task "
<< id << "\n"; }

};

int main() {
task_group tg;

tg.run(HelloWorld("1"));
tg.run(HelloWorld("2"));

tg.wait();

return EXIT_SUCCESS;
}

CS 698L Swarnendu Biswas

Another Example: Parallel loop

#include <chrono>

#include <iostream>

#include <tbb/parallel_for.h>

#include <tbb/tbb.h>

using namespace std;

using namespace std::chrono;

using HRTimer = high_resolution_clock::time_point;

#define N (1 << 26)

void seq_incr(float* a) {

for (int i = 0; i < N; i++) {

a[i] += 10;

}

}

void parallel_incr(float* a) {

tbb::parallel_for(static_cast<size_t>(0),
static_cast<size_t>(N),

[&](size_t i) {

a[i] += 10;

});

}

CS 698L Swarnendu Biswas

Another Example: Parallel loop

int main() {

float* a = new float[N];

for (int i = 0; i < N; i++) {

a[i] = static_cast<float>(i);

}

HRTimer start = high_resolution_clock:
:now();

seq_incr(a);

HRTimer end = high_resolution_clock::n
ow();

auto duration = duration_cast<microsec
onds>(end - start).count();

cout << "Sequential increment in " <<
duration << " us\n";

start = high_resolution_clock::now();

parallel_incr(a);

end = high_resolution_clock::now();

duration = duration_cast<microseconds>
(end - start).count();

cout << "Intel TBB Parallel increment
in " << duration << " us\n";

return EXIT_SUCCESS;

}

CS 698L Swarnendu Biswas

Another Example: Parallel loop

int main() {

float* a = new float[N];

for (int i = 0; i < N; i++) {

a[i] = static_cast<float>(i);

}

HRTimer start = high_resolution_clock:
:now();

seq_incr(a);

HRTimer end = high_resolution_clock::n
ow();

auto duration = duration_cast<microsec
onds>(end - start).count();

cout << "Sequential increment in " <<
duration << " us\n";

start = high_resolution_clock::now();

parallel_incr(a);

end = high_resolution_clock::now();

duration = duration_cast<microseconds>
(end - start).count();

cout << "Intel TBB Parallel increment
in " << duration << " us\n";

return EXIT_SUCCESS;

}

CS 698L Swarnendu Biswas

Initializing the TBB Library

#include <tbb/task_scheduler_init.h>

using namespace tbb;

int main() {

task_scheduler_init init;

...

return 0;

}

• Control when the task
scheduler is constructed
and destroyed.

• Specify the number of
threads used by the task
scheduler.

• Specify the stack size for
worker threads

CS 698L Swarnendu Biswas

Not required in recent versions,
>= TBB 2.2

Thinking Parallel

• Decomposition
• Decompose the problem into concurrent tasks

• Scaling
• Identify concurrent tasks to keep processors busy

• Threads
• Map tasks to threads

• Correctness
• Ensure correct synchronization to shared resources

CS 698L Swarnendu Biswas

How to Decompose?

Data parallelism Task parallelism

CS 698L Swarnendu Biswas

How to Decompose?

• Distinguishing just between data and task parallelism may not be
perfect
• Imagine TAs grading questions of varied difficulty

• Might need hybrid parallelism or pipelining or work stealing

CS 698L Swarnendu Biswas

OpenMP vs Intel TBB

OpenMP

• Language extension consisting of
pragmas, routines, and
environment variables

• Supports C, C++, and Fortran

• User can control scheduling
policies

• OpenMP limited to specified
types (for e.g., reduction)

Intel TBB

• Library for task-based
programming

• Supports C++ with generics

• Automated divide-and-conquer
approach to scheduling, with
work stealing

• Generic programming is flexible
with types

CS 698L Swarnendu Biswas

Generic Parallel Algorithms

CS 698L Swarnendu Biswas

Generic Programming

• Best known example is C++ Standard Template Library (STL)

• Enables distribution of useful high-quality algorithms and data
structures

• Write best possible algorithm with fewest constraints (for e.g.,
std::sort)

• Instantiate algorithm to specific situation
• C++ template instantiation, partial specialization, and inlining make resulting

code efficient

• STL is not generally thread-safe

CS 698L Swarnendu Biswas

Generic Programming Example

• The compiler creates the needed versions

template <typename T> T max (T x, T y) {
if (x < y) return y;
return x;

}

int main() {
int i = max(20,5);
double f = max(2.5, 5.2);
MyClass m = max(MyClass(“foo”), MyClass(“bar”));
return 0;

}

T must define a copy constructor
and a destructor

T must define operator <

CS 698L Swarnendu Biswas

Intel Threading Building Blocks Patterns

• High-level parallel and scalable patterns
• parallel_for: load-balanced parallel execution of independent loop

iterations

• parallel_reduce: load-balanced parallel execution of independent loop
iterations that perform reduction

• parallel_scan: template function that computes parallel prefix

• parallel_while: load-balanced parallel execution of independent loop
iterations with unknown or dynamically changing bounds

• pipeline: data-flow pipeline pattern

• parallel_sort: parallel sort

CS 698L Swarnendu Biswas

Loop Parallelization

• parallel_for and parallel_reduce
• Load-balanced, parallel execution of a fixed number of independent loop

iterations

• parallel_scan
• A template function that computes a prefix computation (also known as a

scan) in parallel
• y[i] = y[i-1] op x[i]

CS 698L Swarnendu Biswas

TBB parallel_for

void SerialApplyFoo(float a[], size_t n) {

for (size_t i=0; i<n; ++i)

foo(a[i]);

}

CS 698L Swarnendu Biswas

Class Definition for TBB parallel_for

#include “tbb/blocked_range.h”

class ApplyFoo {

float *const m_a;

public:

void operator()(const blocked_range<size_t>& r) const {

float *a = m_a;

for (size_t i=r.begin(); i!=r.end(); ++i)

foo(a[i]);

}

ApplyFoo(float a[]) : m_a(a) {}

};

CS 698L Swarnendu Biswas

Task

B
o

d
y

o
b

je
ct

TBB parallel_for

#include “tbb/parallel_for.h”

void ParallelApplyFoo(float a[], size_t n) {

parallel_for(blocked_range<size_t>(0,n,grainSize), ApplyFoo(a));

}

• parallel_for schedules tasks to operate in parallel on subranges of the
original iteration space, using available threads so that:
• Loads are balanced across the available processors

• Available cache is used efficiently (similar to tiling)

• Adding more processors improves performance of existing code

CS 698L Swarnendu Biswas

Requirements for parallel_for Body

• Body::Body(const Body&)

• Body::~Body()

• void Body::operator() (Range&
subrange) const

• Copy ctor

• Dtor

• Apply the body to the subrange

CS 698L Swarnendu Biswas

Other Nuances

• The object has to have a copy constructor and destructor

• operator() should not modify the body

• parallel_for requires that the body object’s operator() be
declared as const

• Apply the body to a subrange

CS 698L Swarnendu Biswas

Splittable Concept

• A type is splittable if it has a splitting constructor that allows an
instance to be split into two pieces

• X::X(X& x, tbb::split)
• Split x into x and a newly constructed object

• Attempt to split x roughly into two non-empty halves

• Set x to be the first half, and the constructed object is the second half

• Dummy argument distinguishes from a copy constructor

• Used in two contexts
• Partition a range into two subranges that can be processed concurrently

• Fork a body (function object) into two bodies that can run concurrently

CS 698L Swarnendu Biswas

Range is Generic

• R::R(const R&)

• R::~R()

• bool R::is divisible() const

• bool R::empty() const

• R::R(R& r, split)

• Copy constructor

• Destructor

• True if splitting constructor can be called, false
otherwise

• True if range is empty, false otherwise

• Splitting constructor. It splits range r into two
subranges. One of the subranges is the newly
constructed range. The other subrange is
overwritten onto r.

CS 698L Swarnendu Biswas

More about Ranges

• tbb::blocked_range<int>(0,8) represents the index range
{0,1,2,3,4,5,6,7}

// Construct half-open interval [0,30) with grainsize of 20

blocked_range<int> r(0,30,20);

assert(r.is_divisible());

// Call splitting constructor

blocked_range<int> s(r);

// Now r=[0,15) and s=[15,30) and both have a grainsize 20

// Inherited from the original value of r

assert(!r.is_divisible());

assert(!s.is_divisible());

CS 698L Swarnendu Biswas

More about Ranges

• A two-dimensional variant is tbb::blocked_range2d
• Permits using a single parallel_for to iterate over two dimensions at once,

which sometimes yields better cache behavior than nesting two one-
dimensional instances of parallel_for

CS 698L Swarnendu Biswas

Splitting over 2D Range

CS 698L Swarnendu Biswas

Split range...

.. recursively...

...until  grainsize.
tasks available to be scheduled to
other threads (thieves)

Example 1
class ParallelAverage {

const float* m_input;

float* m_output;

public:

ParallelAverage(float* a, float* b) : m_input(a), m_output(b) {}

void operator()(const blocked_range<int>& range) const {

for (int i = range.begin(); i != range.end(); ++i)

m_output[i] = (m_input[i - 1] + m_input[i] + m_input[i + 1]) * (1 / 3.0f);

}

};

…

ParallelAverage avg(a, par_out);

parallel_for(blocked_range<int>(1, N - 1), avg);

CS 698L Swarnendu Biswas

Example 1’
parallel_for(static_cast<int>(1), static_cast<int>(N - 1),

[&](int i) {

lamda_out[i] = (a[i - 1] + a[i] + a[i + 1]) * (1 / 3.0f);

});

// Compile:

g++ -std=c++11 parallel_average.cpp -o parallel_average -ltbb

CS 698L Swarnendu Biswas

Example 1’
parallel_for(static_cast<int>(1), static_cast<int>(N - 1),

[&](int i) {

lamda_out[i] = (a[i - 1] + a[i] + a[i + 1]) * (1 / 3.0f);

});

Compile:

g++ -std=c++11 parallel_average.cpp -o parallel_average -ltbb

CS 698L Swarnendu Biswas

Grain Size

• Specifies the number of iterations for a chunk to give to a processor

• Impacts parallel scheduling overhead

CS 698L Swarnendu Biswas

Set the Right Grain Size

• Set the grainsize parameter
higher than necessary

• Run your algorithm on one
processor core

• Start halving the grainsize
parameter

• See how much the algorithm
slows down as the value
decreases

CS 698L Swarnendu Biswas

Partitioner

• Range form of parallel_for takes an optional partitioner argument

parallel_for(r,f,simple_partitioner());

• auto_partitioner: Runtime will try to subdivide the range to balance load, this
is the default

• simple_partitioner: Runtime will subdivide the range into subranges as finely
as possible; method is_divisible will be false for the final subranges

• affinity_partitioner: Request that the assignment of subranges to underlying
threads be similar to a previous invocation of parallel_for or parallel_reduce
with the same affinity_partitioner object

CS 698L Swarnendu Biswas

Affinity Partitioner

• The computation does a few operations per data access
• The data acted upon by the loop fits in cache
• The loop, or a similar loop, is re-executed over the same data

void ParallelApplyFoo(float a[], size_t n) {
static affinity_partitioner ap;
parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a), ap);

}
void TimeStepFoo(float a[], size_t n, int steps) {
for (int t=0; t<steps; ++t)
ParallelApplyFoo(a, n);

}

CS 698L Swarnendu Biswas

Partitioners

Partitioner Description Iteration Space

simple_partitioner Chunk size bounded by grain size ൗ
𝑔
2 ≤ 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒 ≤ 𝑔

auto_partitioner (default) Automatic chunk size
ൗ

𝑔
2 ≤ 𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒

affinity_partitioner Automatic chunk size and cache
affinity

CS 698L Swarnendu Biswas

TBB parallel_reduce

• #include <tbb/parallel_reduce.h>

• Value tbb::parallel_reduce(range, identity, func,
reduction [, partitioner…]);
• Apply func to subranges in range and reduce the results suing the binary

operator reduction

• Parameters func and reduction can be lambda expressions

• void parallel_reduce(range, body, [, partitioner…]

CS 698L Swarnendu Biswas

Serial Reduction

float SerialSumFoo(float a[], size_t n) {

float sum = 0;

for (size_t i=0; i!=n; ++i)

sum += Foo(a[i]);

return sum;

}

CS 698L Swarnendu Biswas

Parallel Reduction

float ParallelSumFoo(const float *a, size_t n) {

SumFoo sf(a);

parallel_reduce(blocked_range<size_t>(0,n), sf);

return sf.my_sum;

}

CS 698L Swarnendu Biswas

Assume iterations are independent

Parallel Reduction

class SumFoo {

float* my_a;

public:

float my_sum;

void operator()(const

blocked_range<size_t>& r) {

float *a = my_a;

float sum = my_sum;

size_t end = r.end();

for (size_t i=r.begin(); i!=end; ++i)

sum += Foo(a[i]);

my_sum = sum;

}

SumFoo(SumFoo& x, split) : my_a(x.my_a),

my_sum(0.0f)
{}

void join(const SumFoo& y) {

my_sum += y.my_sum;

}

SumFoo(float a[]) : my_a(a), my_sum(0.0f)
{}

};

CS 698L Swarnendu Biswas

Differences between Parallel For and Reduce

parallel_for

• operator() is constant

• Requires only a copy ctor

parallel_reduce

• operator() is not constant

• Requires a splitting ctor for
creating subtasks

• Requires a join() function to
accumulate the results of the
subtasks

CS 698L Swarnendu Biswas

Graph of the Split-Join Sequence

CS 698L Swarnendu Biswas

Graph of the Split-Join Sequence

CS 698L Swarnendu Biswas

One Possible Execution of parallel_reduce

CS 698L Swarnendu Biswas

blocked_range<int>(0, 20, 5);

Incorrect Definition of Parallel Reduction

class SumFoo {

float* my_a;

public:

float my_sum;

void operator()(const
blocked_range<size_t>& r) {

float *a = my_a;

float sum = 0; // WRONG

size_t end = r.end();

for (size_t i=r.begin(); i!=end; ++i)

sum += Foo(a[i]);

my_sum = sum;

}

SumFoo(SumFoo& x, split) : my_a(x.my_a),

my_sum(0) {}

void join(const SumFoo& y) {

my_sum+=y.my_sum;

}

SumFoo(float a[]) : my_a(a), my_sum(0) {}

};

CS 698L Swarnendu Biswas

TBB Task Scheduler

• Parallel algorithms make use of the task scheduler
• TBB parallel algorithms map tasks onto threads automatically

• Task scheduler manages the thread pool
• Scheduler is unfair to favor tasks that have been most recent in the cache

CS 698L Swarnendu Biswas

Problem TBB Approach

Oversubscription One scheduler thread per hardware thread

Fair scheduling Non-preemptive unfair scheduling

High overhead Programmer specifies tasks, not threads

Load imbalance Work stealing balances load

Task-Based Programming

Serial Code

long SerialFib(long n) {

if (n < 2)

return n;

else

return SerialFib(n-1) +
SerialFib(n-2);

}

CS 698L Swarnendu Biswas

Task Graph for Fibonacci Calculation

CS 698L Swarnendu Biswas

SerialFib(4)

SerialFib(3) SerialFib(2)

SerialFib(1)

SerialFib(2)

SerialFib(1) SerialFib(0)

SerialFib(2)

SerialFib(1) SerialFib(0)

SerialFib(3)

SerialFib(2) SerialFib(1)

SerialFib(1)

SerialFib(0)SerialFib(1)

SerialFib(0)

Task-Based Programming

Serial Code

long SerialFib(long n) {

if (n < 2)

return n;

else

return SerialFib(n-1) +
SerialFib(n-2);

}

TBB Code

long ParallelFib(long n) {

long sum;

FibTask& a =
*new(task::allocate_root())
FibTask(n,&sum);

task::spawn_root_and_wait(a);

return sum;

}

CS 698L Swarnendu Biswas

Description of FibTask Class
class FibTask: public task {

public:

const long n;

long* const sum;

FibTask(long n_, long* sum_) :

n(n_), sum(sum_) {}

task* execute() {

if (n<CutOff) {

*sum = SerialFib(n);

}

else {

long x, y;

FibTask& a = *new(
allocate_child()) FibTask(n-1,&x);

FibTask& b = *new(
allocate_child()) FibTask(n-2,&y);

// Convention: two children plus

// one for the wait

set_ref_count(3);

spawn(b); // Return immediately

spawn_and_wait_for_all(a);

*sum = x+y;

}

return NULL;

}};

CS 698L Swarnendu Biswas

Task Scheduler

CS 698L Swarnendu Biswas

• Engine that drives the parallel algorithms and task groups

• Each task has a method execute()
• Definition should do the work of the task

• Return either NULL or a pointer to the next task to run

• Once a thread starts running execute(), the task is bound to that
thread until execute() returns
• During that period, the thread serves other tasks only when it has to wait for

some event

How Task Scheduling Works

• Scheduler evaluates a
task graph

• Each task has a refcount
• Number of tasks that

have it as a successor

CS 698L Swarnendu Biswas

of children
in flight+ 1

No children
yet Spawned, but not yet

started executing

Task Scheduling

• Deeper tasks are more recently created, and will probably have better
locality

• Breadth-first execution can have more parallelism if more physical
threads are available

• TBB scheduler implements a hybrid of depth-first and breadth-first
execution

CS 698L Swarnendu Biswas

Scheduling Algorithm

• There is a shared queue of tasks
that were created

• Each thread has a “ready pool” of
tasks it can run
• The pool is basically a deque of task

objects

• When a thread spawns a task, it
pushes it to the end of its own
deque

• Thread participates in task graph
evaluation
• Pops a task from the bottom of its

deque
• Steals a task from the top of another

randomly deque

CS 698L Swarnendu Biswas

Scheduling Algorithm

• There is a shared queue of tasks
that were created

• Each thread has a “ready pool” of
tasks it can run
• The pool is basically a deque of task

objects

• When a thread spawns a task, it
pushes it to the end of its own
deque

• Thread participates in task graph
evaluation
• Pops a task from the bottom of its

deque
• Steals a task from the top of another

randomly deque

CS 698L Swarnendu Biswas

Work done is depth-first and stealing is breadth-first

Parallelism in TBB

• Parallelism is generated by split/join pattern
• Continuation-passing style and blocking style

CS 698L Swarnendu Biswas

Blocking Style

CS 698L Swarnendu Biswas

https://software.intel.com/en-us/node/506294

running tasks
are shaded

Disadvantages with Blocking Style

• The local variables of a blocked parent task live on the stack
• Task is not destroyed until all its child are done, problematic for large

workloads

• Worker thread that encounters wait_for_all() in parent task is
doing no work

CS 698L Swarnendu Biswas

Continuation-passing Style

• Concept used in functional programming

• Parent task creates child tasks and specifies a continuation task to be
executed when the children complete
• Continuation inherits the parent's ancestor

• The parent task then exits; it does not block on its children

• The children subsequently run

• After the children (or their continuations) finish, the continuation task
starts running
• Any idle thread can run the continuation task

CS 698L Swarnendu Biswas

Continuation-passing Style

CS 698L Swarnendu Biswas

https://software.intel.com/en-us/node/506294

Did Tasks Help?
class FibTask: public task {

public:

const long n;

long* const sum;

FibTask(long n_, long* sum_) :

n(n_), sum(sum_) {}

task* execute() {

if (n<CutOff) {

*sum = SerialFib(n);

}

else {

long x, y;

FibTask& a = *new(
allocate_child()) FibTask(n-1,&x);

FibTask& b = *new(
allocate_child()) FibTask(n-2,&y);

// two children plus one for the
wait

set_ref_count(3);

spawn(b);

spawn_and_wait_for_all(a);

*sum = x+y;

}

return NULL;

}};

CS 698L Swarnendu Biswas

Concurrent Containers

CS 698L Swarnendu Biswas

Concurrent Containers

• TBB Library provides highly concurrent containers
• STL containers are not concurrency-friendly: attempt to modify them

concurrently can corrupt container

• Standard practice is to wrap a lock around STL containers
• Turns container into serial bottleneck

• Library provides fine-grained locking or lockless implementations
• Worse single-thread performance, but better scalability.

• Can be used with the library, OpenMP, or native threads.

CS 698L Swarnendu Biswas

Concurrency-Friendly Interfaces

• Some STL interfaces are inherently not concurrency-friendly

• For example, suppose two threads each execute

• Solution: concurrent_queue has try_pop()

extern std::queue q;

if(!q.empty()) {

item=q.front();

q.pop();

}

At this instant, another thread
might pop last element.

CS 698L Swarnendu Biswas

Concurrent TBB Containers

• TBB containers offer a high level of concurrency
• Fine-grained locking

• Multiple threads operate by locking only portions they really need to lock

• As long as different threads access different portions, they can proceed concurrently

• Lock-free techniques
• Different threads account and correct for the effects of other interfering threads

CS 698L Swarnendu Biswas

Serial vs Concurrent Queue

std::queue

extern std::queue<T> serialQ;

T item;

if (!serialQ.empty()) {

item = serialQ.front();

serialQ.pop_front();

// process item

}

tbb::concurrent_queue

extern concurrent_queue<T> myQ;

T item;

if (myQ.try_pop(item)) {

// process item

}

CS 698L Swarnendu Biswas

Concurrent Queue Container

• concurrent_queue<T>
• FIFO data structure that permits multiple threads to concurrently push and

pop items

• Method push(const T&) places copy of item on back of queue. The method
waits until it can succeed without exceeding the queue's capacity.

• try_push(item) pushes item only if it would not exceed the queue's
capacity

• pop(item) waits until it can succeed

• Method try_pop(T&) pops value if available, otherwise it does nothing

• If a thread pushes values A and B in order, another thread B will see values A
and B in order

https://software.intel.com/en-us/node/506200

CS 698L Swarnendu Biswas

Concurrent Queue Container

• concurrent_queue<T>
• Method size() returns signed integer

• Number of push operations started minus the number of pop operations started

• If size() returns –n, it means n pops await corresponding pushes on an empty queue

• Method empty() returns size() == 0
• May return true if queue is empty, but there are pending pop()

CS 698L Swarnendu Biswas

https://software.intel.com/en-us/node/506200

Concurrent Queue Container Example

#include “tbb/concurrent_queue.h”

using namespace tbb;

int main () {

concurrent_queue<int> queue;

int j;

for (int i = 0; i < 10; i++)

queue.push(i);

while (!queue.empty()) {

queue.pop(&j);

printf(“from queue: %d\n”, j);

}

return 0;

}

• Simple example to enqueue and print
integers

CS 698L Swarnendu Biswas

ABA Problem

• A thread checks a location to be
sure the value is A and proceeds
with an update only if the value
was A

• Thread T1 reads value A from
shared memory location

• Other threads update A to B,
and then back to A

• T1 performs compare_and_swap()
and succeeds

CS 698L Swarnendu Biswas

Example of ABA Problem

CS636 Swarnendu Biswas 86

tailhead

ba c

• Thread 1 will execute deq(a)

d

Example of ABA Problem

CS636 Swarnendu Biswas 87

tailhead

ba c

• Thread 1 is executing deq(a), gets delayed

d

Example of ABA Problem

CS636 Swarnendu Biswas 88

tailhead

ba c

• Other threads execute deq(a, b, c, d), then
execute enq(a)

d

Example of ABA Problem

CS636 Swarnendu Biswas 89

tailhead

a b

• Other threads execute deq(a, b, c, d), then
execute enq(a)

Example of ABA Problem

CS636 Swarnendu Biswas 90

• Thread 1 is executes CAS for deq(a), CAS
succeeds

tailhead

a b

head.compareAndSet(first, next)

Concurrent Vector Container

• concurrent_vector<T>
• Dynamically growable array of T

• Method grow_by(size_type delta) appends delta elements to end of vector

• Method grow_to_at_least(size_type n) adds elements until vector has at least n
elements

• Method push_back(x) safely appends x to the array

• Method size() returns the number of elements in the vector

• Method empty() returns size() == 0

• Never moves elements until cleared
• Can concurrently access and grow

• Method clear() is not thread-safe with respect to access/resizing

CS 698L Swarnendu Biswas

Concurrent Vector Container Example

• Append a string to the array of characters held in
concurrent_vector
• Grow the vector to accommodate new string

• grow_by() returns old size of vector (first index of new element)

• Copy string into vector

void Append(concurrent_vector<char>& V, const char* string) {

size_type n = strlen(string)+1;

memcpy(&V[V.grow_by(n)], string, n+1);

}

CS 698L Swarnendu Biswas

Concurrent HashMap Container

• concurrent_hash_map<Key,T,HashCompare>
• Maps Key to element of type T

• Define class HashCompare with two methods
• hash() maps Key to hashcode of type size_t

• equal() returns true if two Keys are equal

• Enables concurrent find(), insert(), and erase() operations
• An accessor grants read-write access

• A const_accessor grants read-only access

• Lock released when smart pointer is destroyed, or with explicit release()

CS 698L Swarnendu Biswas

Concurrent HashMap Container Example

// Structure that defines hashing and comparison operations for user's type

struct MyHashCompare {

static size_t hash(const string& x) {

size_t h = 0;

for (const char* s = x.c_str(); *s; ++s)

h = (h*17)^*s;

return h;

}

static bool equal(const string& x, const string& y) {

return x==y;

}

};

CS 698L Swarnendu Biswas

Concurrent HashMap Container Example
// A concurrent hash table that maps strings to ints

typedef concurrent_hash_map<string,int,MyHashCompare> StringTable;

// Function object for counting occurrences of strings

struct Tally {

StringTable& table;

Tally(StringTable& table_) : table(table_) {}

void operator()(const blocked_range<string*> range) const {

for (string* p=range.begin(); p!=range.end(); ++p) {

StringTable::accessor a;

table.insert(a, *p);

a->second += 1;

}

}

};

CS 698L Swarnendu Biswas

Concurrent HashMap Container Example
const size_t N = 1000000;

string Data[N];

void CountOccurrences() {

StringTable table;

parallel_for(blocked_range<string*>(Data, Data+N, 1000), Tally(table));

for (StringTable::iterator i=table.begin(); i!=table.end(); ++i)

printf("%s %d\n",i->first.c_str(),i->second);

}

CS 698L Swarnendu Biswas

Scalable Memory Allocation

CS 698L Swarnendu Biswas

Scalable Memory Allocators

• Serial memory allocation can easily become a bottleneck in
multithreaded applications
• Threads require mutual exclusion into shared global heap

• In the old days, a single-process lock was used for malloc() and free() in
libc

• Many malloc() alternatives are now available (jemalloc(), tcmalloc())

• New C++ standards are trying to deal with this

• Smart pointers, std::aligned_alloc (C++17)

• False sharing - threads accessing the same cache line
• Even accessing distinct locations, cache line can ping-pong

CS 698L Swarnendu Biswas

Scalable Memory Allocators

• TBB offers two choices for scalable memory allocation
• Similar to the STL template class std::allocator
• scalable_allocator

• Offers scalability, but not protection from false sharing

• Memory is returned to each thread from a separate pool

• cache_aligned_allocator
• Two objects allocated by this allocator are guaranteed to not have false sharing

• Always allocates on a cache line, increases space usage

std::vector<int, cache_aligned_allocator<int>>

CS 698L Swarnendu Biswas

Methods for scalable_allocator

• #include <tbb/scalable_allocator.h>

• Scalable versions of malloc, free, realloc, calloc
• void *scalable_malloc(size_t size);
• void scalable_free(void *ptr);
• void *scalable_realloc(void *ptr, size_t size);
• void *scalable_calloc(size_t nobj, size_t size);

CS 698L Swarnendu Biswas

Synchronization Primitives

CS 698L Swarnendu Biswas

Synchronization Primitives

• Critical regions of code are protected by scoped locks
• The range of the lock is determined by its lifetime (scope)

• Does not require the programmer to remember to release the lock

• Leaving lock scope calls the destructor, making it exception safe

• Mutual exclusion is implemented with mutex objects and locks
• Mutex is the object on which a thread can acquire a lock

• Several mutex variants are available

CS 698L Swarnendu Biswas

Mutex Example

spin_mutex mtx; // Construct unlocked mutex

{

// Create scoped lock and acquire lock on mtx

spin_mutex::scoped_lock lk(mtx);

// Critical section

} // Lock goes out of scope, destructor releases the lock

spin_mutex::scoped_lock lk;

lk.acquire(mtx);

// Critical section

lk.release();

CS 698L Swarnendu Biswas

Atomic Execution

• atomic<T>
• T should be integral type or pointer type

• Full type-safe support for 8, 16, 32, and 64-bit integers

atomic<int> i;
. . .
int z = i.fetch_and_add(2);

CS 698L Swarnendu Biswas

Operations Semantics

“= x” and “x = “ read/write value of x

x.fetch_and_store(y) z = x, y = x, return z

x.fetch_and_add(y) z = x, x += y, return z

x.compare_and_swap(y, p) z = x, if (x == p) { x = y, return z; }

Summary

• Intel Threading Building Blocks is a data parallel programming model
for C++ applications
• Used for computationally intense code

• Uses generic programming

• Intel Threading Building Blocks provides
• Generic parallel algorithms

• Highly concurrent containers

• Low-level synchronization primitives

• A task scheduler that can be used directly

• Learn when to use or mix Intel TBB, OpenMP or explicit threading

CS 698L Swarnendu Biswas

References

• Intel. Threading for Performance with Intel Threading Building Blocks

• M. Voss. What’s New in Threading Building Blocks. OSCON 2008.

• Vivek Sarkar. Intel Thread Building Blocks. COMP 422, Rice University.

• M. McCool et al. Structured Parallel Programming: Patterns for Efficient Computation.

• J. Reindeers. Intel Threading Building Blocks Outfitting C++ for Multi-Core Processor Parallelism.

CS 698L Swarnendu Biswas

