
CS 698L: GPGPU
Architectures and CUDA C

Swarnendu Biswas

Semester 2019-2020-I
CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Rise of GPU Computing

• Popularity of graphical OS in late 80s created a market for a new
compute device
• 2D display accelerators offered hardware-assisted bitmap operations

• Silicon Graphics popularized use of 3D graphics
• Released OpenGL as a programming interface to its hardware

• Popularity of first-person games in mid-90s was the final push

CS 698L Swarnendu Biswas

Rise of GPU Computing

• Pixel shaders were used to produce a color for a pixel on screen
• It uses the (x,y) coordinates, input colors, texture coordinates and other

attributes as inputs

• NVIDIA’s GeForce 3 series in 2001 implemented the DirectX 8.0
standard from Microsoft

CS 698L Swarnendu Biswas

Need for GPGPU Computing Support

• Many real-world applications are
compute-intensive and data-
parallel
• They need to process a lot of data,

mostly floating-point operations

• For example, real-time high-
definition graphics applications
such as your favorite video games

• Iterative kernels which update
elements according to some fixed
pattern called a stencil

CS 698L Swarnendu Biswas

Rise of GPGPU Computing

• Researchers tricked GPUs to perform non-rendering computations

• Programming initial GPU devices for other purposes was very
convoluted

• Programming model was very restrictive
• Limited input colors and texture units, writes to arbitrary locations, floating-

point computations

• This spurred the need for a highly-parallel computational device with
high computational power and memory bandwidth
• CPUs are more complex devices catering to a wider audience

CS 698L Swarnendu Biswas

Enter NVIDIA and CUDA

• NVIDIA released GeForce 8800 GTX in 2006 with CUDA architecture
• General-purpose ALU and instruction set for general-purpose computation

• IEEE compliance for single-precision floating-point arithmetic

• Allowed arbitrary reads and writes to shared memory

• Introduced CUDA C and the toolchain for ease of development with
the CUDA architecture

CS 698L Swarnendu Biswas

Rise of GPGPU Computing

• GPUs are now used in different applications
• Game effects, computational science simulations, image processing and

machine learning, linear algebra

• Several GPU vendors like NVIDIA, AMD, Intel, QualComm, and ARM

CS 698L Swarnendu Biswas

GPGPU Architecture

Key Insights in GPGPU Architecture

• GPUs are suited for compute-intensive data-parallel applications
• The same program is executed for each data element

• Less complex control flow

• Multi-core chip
• SIMD execution within a single core (many ALUs performing the same

instruction)

• Multi-threaded execution on a single core (multiple threads executed
concurrently by a core)

CS 698L Swarnendu Biswas

Key Insights in GPGPU Architecture

• Much more transistors or real-estate is devoted to computation
rather than data caching and control flow

CS 698L Swarnendu Biswas

Key Insights in GPGPU Architecture

• GPUs do not reduce latency, they aim to hide latency

• The focus is on overall computing throughput rather than on the
speed of an individual core
• High arithmetic intensity to hide latency of memory accesses

• Large number of schedulable units

CS 698L Swarnendu Biswas

Floating-Point Operations per Second for the
CPU and GPU

CS 698L Swarnendu Biswas

Memory Bandwidth for CPU and GPU

CS 698L Swarnendu Biswas

Xeon 8180M Titan V
Cores 28 5120 (+ 640)
Active threads 2 per core 32 per core
Frequency 2.5 (3.8) GHz 1.2 (1.45) GHz
Peak performance (SP) 4.1 TFlop/s 13.8 TFlop/s
Peak mem. bandwidth 119 GB/s 653 GB/s
Maximum power 205 W 250 W
Launch price $13,000 $3000

Release dates
Xeon: Q3’17
Titan V: Q4’17

High-end CPU-GPU Comparison

CS 698L Swarnendu Biswas

Compare GPU to CPU Architecture

• Aims to reduce memory latency with increasingly large and complex
memory hierarchy

• Disadvantages
• The Intel I7-920 processor has some 8 MB of internal L3 cache, almost 30% of

the size of the chip

• Larger cache structures increases the physical size of the processor

• Implies more expensive manufacturing costs and increases likelihood of
manufacturing defects

• Effect of larger, progressively more inefficient caches ultimately
results in higher costs to the end user

CS 698L Swarnendu Biswas

Advantages of a GPU

• Performance of Xeon 8180M and
Titan V (based on peak values)
• 3.4x as many operations executed per

second

• Main memory bandwidth
• 5.5x as many bytes transferred per

second

• Cost- and energy-efficiency
• 15x as much performance per dollar

• 2.8x as much performance per watt

• GPU’s higher performance and
energy efficiency are due to
different allocation of chip area
• High degree of SIMD parallelism,

simple in-order cores, less
control/sync. logic, lower
cache/scratchpad capacity

CS 698L Swarnendu Biswas

From FLOPS to FLOPS/Watt

• Exploiting hardware specialization can improve energy efficiency

• Moving to vector hardware, such as that found in GPUs, may yield up
to 10X gain in efficiency by eliminating overheads of instruction
processing

• For example, Apple A8 application processor devotes more die area
to its integrated GPU than to central processor unit (CPU) cores

• Most energy-efficient supercomputers are now based on GPUs
instead of only-CPUs

CS 698L Swarnendu Biswas

GPU Disadvantages

• Clearly, we should be using GPUs all the time

• GPUs can only execute some types of code fast
• SIMD parallelism is not well suited for all algorithms

• Need lots of data parallelism, data reuse, & regularity

• GPUs are harder to program and tune than CPUs
• Mostly because of their architecture

• Fewer tools and libraries exist

CS 698L Swarnendu Biswas

GPU Architecture
• GPUs consist of Streaming Multiprocessors (SMs)

• NVIDIA calls these streaming multiprocessors and AMD calls them compute
units

• SMs contain Streaming Processors (SPs) or Processing Elements (PEs)
• Each core contains one or more ALUs and FPUs

• GPU can be thought of as a multi-multicore system

Global Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Shared

Memory

Adapted from NVIDIA

CS 698L Swarnendu Biswas

A Generic Modern GPU Architecture

CS 698L Swarnendu Biswas

Fermi Architecture

CS 698L Swarnendu Biswas

Looking into the SM

• A FP32 core is the execution unit that performs single precision floating
point arithmetic (floats).

• A FP64 core performs double precision arithmetic (doubles).
• A INT32 Core performs integer arithmetic.
• The warp scheduler selects which warp (group of 32 threads) to send to

which execution units (more to come).
• 64 KB Register File –lots of transistors used for very fast memory.
• 128KB of configurable L1 (data) cache or shared memory
• Shared memory is a used managed cache (more to come).
• LD/ST units load and store data to/from cores.
• SFU–special function units compute things like transcendentals.

CS 698L Swarnendu Biswas

CS 698L Swarnendu Biswas

NVIDIA GPU Microarchitecture Release Year Remarks

Tesla 2006 Unified shader model

Fermi 2010 Improved double precision
performance, support for FMA

Kepler 2012 Focused on energy efficiency, shuffle
instructions, dynamic parallelism

Maxwell 2014 Focused on energy efficiency, larger
L2 cache

Pascal 2016 Unified memory, half-precision
floating-point

Volta 2017 Features tensor cores for deep
learning workloads

Turing 2018 Features tensor cores for deep
learning workloads and real-time ray
tracing. Gaming version of Volta.

Ampere 2020?

CUDA-Enabled NVIDIA GPUs

Embedded Consumer
desktop/laptop

Professional
Workstation

Data Center

Turing (Compute
capabilities 7.x)

DRIVE/JETSON AGX
Xavier

GeForce 2000 Series Quadro RTX Series Tesla T Series

Volta (Compute
capabilities 7.x)

DRIVE/JETSON AGX
Xavier

Tesla V Series

Pascal (Compute
capabilities 6.x)

Tegra X2 GeForce 1000 Series Quadro P Series Tesla P Series

Maxwell (Compute
capabilities 5.x)

Tegra X1 GeForce 900 Series Quadro M Series Tesla M Series

Kepler (Compute
capabilities 3.x)

Tegra K1 GeForce 600/700
Series

Quadro K Series Tesla K Series

CS 698L Swarnendu Biswas

Compute Capability

• When programming with CUDA, it is very important to be aware of
the differences among different versions of hardware

• In CUDA, compute capability refers to architecture features
• For example, number of registers and cores, cache and memory size,

supported arithmetic instructions

• For example, compute capability 1.x devices have 16KB local memory
per thread, and 2.x and 3.x devices have 512KB local memory per
thread

CS 698L Swarnendu Biswas

https://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications

Role of CPUs

• CPU is responsible for initiating computation on the GPU and
transferring data to and from the GPU

• Beginning and end of the computation typically require access to
input/output (I/O) devices

• There are ongoing efforts to develop APIs providing I/O services
directly on the GPU
• GPUs are not standalone yet, assumes the existence of a CPU

CS 698L Swarnendu Biswas

Discrete and Integrated GPUs

Discrete Integrated

CS 698L Swarnendu Biswas

CPU
memory

GPU
memory

CPU GPU

bus
Memory

CPU GPU

Cache

Memory

Cache

CPUs vs GPUs

CPUs

• Designed for running a small number
of potentially complex tasks
• Tasks may be unconnected
• Suitable to run system software like the

OS and applications

• Small number of registers per core
private to a task
• Context switch between tasks is

expensive in terms of time
• Register set must be saved to memory

and the next one restored from memory

GPUs

• Designed for running large
number of simple tasks
• Suitable for data-parallelism

CS 698L Swarnendu Biswas

CPUs vs GPUs

CPUs

• Small number of registers per
core private to a task
• Context switch between tasks is

expensive in terms of time

• Register set must be saved to RAM
and the next one restored from
RAM

GPUs

• Have a single set of registers but
with multiple banks
• A context switch involves setting a

bank selector to switch in and out
the current set of registers

• Orders of magnitude faster than
having to save to RAM

CS 698L Swarnendu Biswas

An Analytical Model-based Analysis

CS 698L Swarnendu Biswas

Simple cache model where threads
do not share data and there is infinite
off-chip memory bandwidth

An Analytical Model-based Analysis

CS 698L Swarnendu Biswas

Simple cache model where threads
do not share data and there is infinite
off-chip memory bandwidth

Large cache shared
among few threads

Working set no longer
fits in the cache

Hides long off-chip
latency

CUDA Programming

CS 698L Swarnendu Biswas

What is CUDA?

• It is general purpose parallel computing platform and programming
model that leverages the parallel compute engine in NVIDIA GPUs
• Introduced in 2007 with NVIDIA Tesla architecture

• CUDA C, C++, Fortran, PyCUDA are language systems built on top of CUDA

• Three key abstractions in CUDA
• Hierarchy of thread groups

• Shared memories

• Barrier synchronization

CS 698L Swarnendu Biswas

CUDA Philosophy

SIMT philosophy

• Single Instruction Multiple Thread

Computationally intensive

• The time spent on computation significantly exceeds the time spent on
transferring data to and from GPU memory

Massively parallel

• The computations can be broken down into hundreds or thousands of
independent units of work

CS 698L Swarnendu Biswas

CUDA Programming Model

• Allows fine-grained data parallelism and thread parallelism nested
within coarse-grained data parallelism and task parallelism

1. Partition the problem into coarse sub-problems that can be solved
independently

2. Assign each sub-problem to a “block” of threads to be solved in
parallel

3. Each sub-problem is also decomposed into finer work items that are
solved in parallel by all threads within the “block”

CS 698L Swarnendu Biswas

Heterogeneous Computing

Host

• CPU and its memory (host
memory)

Device

• GPU and its memory (device
memory)

CS 698L Swarnendu Biswas

Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N 1024

#define RADIUS 3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

void fill_ints(int *x, int n) {

fill_n(x, n, 1);

}

int main(void) {

int *in, *out; // host copies of a, b, c

int *d_in, *d_out; // device copies of a, b, c

int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values

in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies

cudaMalloc((void **)&d_in, size);

cudaMalloc((void **)&d_out, size);

// Copy to device

cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

// Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);

return 0;

}

serial code

parallel code

serial code

parallel fn

CS 698L Swarnendu Biswas

Heterogeneous Computing
#include <iostream>

#include <algorithm>

using namespace std;

#define N 1024

#define RADIUS 3

#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out) {

__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

int gindex = threadIdx.x + blockIdx.x * blockDim.x;

int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Synchronize (ensure all the data is available)

__syncthreads();

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result

out[gindex] = result;

}

void fill_ints(int *x, int n) {

fill_n(x, n, 1);

}

int main(void) {

int *in, *out; // host copies of a, b, c

int *d_in, *d_out; // device copies of a, b, c

int size = (N + 2*RADIUS) * sizeof(int);

// Alloc space for host copies and setup values

in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);

out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

// Alloc space for device copies

cudaMalloc((void **)&d_in, size);

cudaMalloc((void **)&d_out, size);

// Copy to device

cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

// Launch stencil_1d() kernel on GPU

stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS,

d_out + RADIUS);

// Copy result back to host

cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

// Cleanup

free(in); free(out);

cudaFree(d_in); cudaFree(d_out);

return 0;

}

serial code

parallel code

serial code

parallel fn

CS 698L Swarnendu Biswas

Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 1>>>();

}

$ nvcc hello-world.cu

$./a.out

$

CS 698L Swarnendu Biswas

Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 1>>>();

cudaDeviceSynchronize();

}

$ nvcc hell-world.cu

$./a.out

Hello world!

$

CS 698L Swarnendu Biswas

Program returns immediately after launching the
kernel. To prevent program to finish before kernel is
completed, we call cudaDeviceSynchronize().

Hello World with CUDA

#include <stdio.h>

#include <cuda.h>

__global__ void hwkernel() {

printf(“Hello world!\n”);

}

int main() {

hwkernel<<<1, 32>>>();

cudaThreadSynchronize();

}

$ nvcc hell-world.cu

$./a.out
Hello world!
Hello world!
Hello world!
Hello world!
Hello world!
…
…
$

CS 698L Swarnendu Biswas

How nvcc works?

• Nvcc is a driver program based
on LLVM
• Compiles and links all input files

• Requires a general-purpose C/C++
host compiler
• Uses gcc and g++ by default on Linux

platforms

• nvcc --version

CS 698L Swarnendu Biswas

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

NVCC Details

Important Options Description

-std
{c++03|c++11|c++14}

Select a particular C++
dialect

-m {32|64} Specify the architecture

-arch ARCH Specify the class of the
virtual GPU
architecture

-code CODE Specify the name of the
GPU to assemble and
optimize for

Input File Type Description

.cu CUDA source file

.c, .cpp,

.cxx, .cc
C/C++ source files

.ptx PTX intermediate assembly

.cubin CUDA device binary code for a
single GPU architecture

.fatbin CUDA fat binary file that may
contain multiple PTX and CUBIN
files

.a, .so, .lib …

CS 698L Swarnendu Biswas

NVIDIA. CUDA Compiler Driver NVCC. v10.1.

NVCC Details

Important Options Description

-std
{c++03|c++11|c++14}

Select a particular C++
dialect

-m {32|64} Specify the architecture

-arch ARCH Specify the class of the
virtual GPU
architecture

-code CODE Specify the name of the
GPU to assemble and
optimize for

Input File Type Description

.cu CUDA source file

.c, .cpp,

.cxx, .cc
C/C++ source files

.ptx PTX intermediate assembly

.cubin CUDA device binary code for a
single GPU architecture

.fatbin CUDA fat binary file that may
contain multiple PTX and CUBIN
files

.a, .so, .lib …

CS 698L Swarnendu Biswas

NVIDIA. CUDA Compiler Driver NVCC. v10.1.

nvcc –arch=sm_50



nvcc –arch=compute_50 –code=sm_50,compute_50

CUDA Compilation Trajectory

• Conceptually, the flow is as follows
• Input program is preprocessed for device compilation

• It is compiled to a CUDA binary and/or PTX (Parallel Thread Execution)
intermediate code which are encoded in a fatbinary

• Input program is processed for compilation of the host code
• CUDA-specific C++ constructs are transformed to standard C++ code

• Synthesized host code and the embedded fatbinary are linked together to
generate the executable

CS 698L Swarnendu Biswas

CUDA Compilation
Trajectory

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

• A compiled CUDA device binary
includes
• Program text (instructions)

• Information about the resources
required
• N threads per block

• X bytes of local data per thread

• M bytes of shared space per block

Function Declarations in CUDA

Executed on Callable from

__device__ float deviceFunc() Device Device

__global__ void kernelFunc() Device Host

__host__ float hostFunc() Host Host

• __global__ define a kernel function, must return void
• __device__ functions can have return values
• __host__ is default, and can be omitted
• Prepending __host__ __device__ causes the system to compile separate host and

device versions of the function

CS 698L Swarnendu Biswas

Dynamic Parallelism

• It is possible to launch kernels from other kernels

• Calling __global__ functions from the device is referred to as
dynamic parallelism
• Requires CUDA devices of compute capability 3.5 and CUDA 5.0 or higher

CS 698L Swarnendu Biswas

Execution Model

CS 698L Swarnendu Biswas

Host
(serial execution)

Device
(Parallel execution)

Parallel kernel on device

Parallel kernel on device

Serial code on host

Serial code on host

Simple Processing Flow

PCI Bus

CS 698L Swarnendu Biswas

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

PCI Bus

CS 698L Swarnendu Biswas

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

PCI Bus

CS 698L Swarnendu Biswas

Simple Processing Flow

1. Copy input data from CPU memory

to GPU memory

2. Load GPU program and execute,

caching data on chip for

performance

3. Copy results from GPU memory to

CPU memory

PCI Bus

CS 698L Swarnendu Biswas

Vector Addition Example

__global__ void VecAdd(float* A, float* B,

float* C, int N) {

int i = blockDim.x * blockIdx.x + threadI
dx.x;

if (i < N)

C[i] = A[i] + B[i];

}

int main() {

…

float* h_A = (float*)malloc(size);

float* h_B = (float*)malloc(size);

float* h_C = (float*)malloc(size);

float* d_A;

cudaMalloc(&d_A, size);

float* d_B;

cudaMalloc(&d_B, size);

float* d_C;

cudaMalloc(&d_C, size);

// Copy vectors from host memory to

// device memory

cudaMemcpy(d_A, h_A, size,

cudaMemcpyHostToDevice);

cudaMemcpy(d_B, h_B, size,

cudaMemcpyHostToDevice);

CS 698L Swarnendu Biswas

Vector Addition Example

// Invoke kernel

int threadsPerBlock = 256;

int blocksPerGrid = N/threadsPerBlock;

VecAdd<<<blocksPerGrid, threadsPerBloc
k>>>(d_A, d_B, d_C, N);

// Copy result from device memory to

// host memory

cudaMemcpy(h_C, d_C, size,

cudaMemcpyDeviceToHost);

…

cudaFree(d_A);

cudaFree(d_B);

cudaFree(d_C);

…

}

CS 698L Swarnendu Biswas

Typical CUDA Program Flow

1. Load data into CPU memory
• fread/rand

2. Copy data from CPU to GPU memory
• cudaMemcpy(..., cudaMemcpyHostToDevice)

3. Call GPU kernel
• yourkernel<<<x, y>>>(...)

4. Copy results from GPU to CPU memory.
• cudaMemcpy(..., cudaMemcpyDeviceToHost)

5. Use results on CPU

CS 698L Swarnendu Biswas

CUDA Extensions for C/C++

• Kernel launch
• Calling functions on GPU

• Memory management
• GPU memory allocation, copying data to/from GPU

• Declaration qualifiers
• __device__, __shared, __local, __global__, __host__

• Special instructions
• Barriers, fences, etc.

• Keywords
• threadIdx, blockIdx, blockDim

CS 698L Swarnendu Biswas

C++11 Support from CUDA 7.5+

Supported Features

• auto

• lambdas

• constexpr

• rvalue references

• range-based for loops

Unsupported Features

• Standard library
• You cannot use std::cout in device

code

CS 698L Swarnendu Biswas

Kernels
• Special functions that a CPU can

call to execute on the GPU
• Executed N times in parallel by N

different CUDA threads

• Cannot return a value

• Each thread will execute
VecAdd()

• Each thread has a unique thread
ID that is accessible within the
kernel through the built-in
threadIdx variable

// Kernel definition

__global__ void VecAdd(float* A,
float* B, float* C) {

int i = threadIdx.x;

…

}

int main() {

…

// Kernel invocation with N threads

VecAdd<<<1, N>>>(A, B, C);

}

CS 698L Swarnendu Biswas

Kernels

• GPU spawns m blocks with n threads (i.e., m*n threads total) that run
a copy of the same function

• CPU can continue processing while GPU runs kernel

• Kernel call returns when all threads have terminated

CS 698L Swarnendu Biswas

kernel1<<<X,Y>>>(...); // kernel starts execution, CPU continues to next statement
kernel2<<<X,Y>>>(...); // kernel2 placed in queue, will start after kernel1 finishes, CPU
continues
cudaMemcpy(...); // CPU blocks until memory is copied, memory copy starts after all preceding
CUDA calls finish

KernelName<<<m, n>>>(arg1, arg2, ...)

Thread Hierarchy

• A kernel executes in parallel
across a set of parallel threads

• All threads that are generated by
a kernel launch are collectively
called a grid

• Threads are organized in thread
blocks, and blocks are organized
in to grids

CS 698L Swarnendu Biswas

Thread Hierarchy

• A thread block is a set of
concurrently executing threads
that can cooperate among
themselves through barrier
synchronization and shared
memory

• A grid is an array of thread blocks
that execute the same kernel
• Read inputs to and write results to

global memory
• Synchronize between dependent

kernel calls

CS 698L Swarnendu Biswas

Dimension and Index Variables

Dimension

• gridDim specifies the number
of blocks in the grid

• blockDim specifies the number
of threads in each block

Index

• blockIdx gives the index of the
block in the grid

• threadIdx gives the index of
the thread within the block

CS 698L Swarnendu Biswas

Type is dim3

Thread Hierarchy

• threadIdx is a 3-component vector
• Thread index can be 1D, 2D, or 3D

• Thread blocks as a result can be 1D, 2D, or 3D

• How to find out the relation between thread ids and threadIdx?
• 1D: tid = threadIdx.x

• 2D block of size (Dx, Dy): thread ID of a thread of index (x, y) is (x +
yDx)

• 3D block of size (Dx, Dy, Dz): thread ID of a thread of index (x, y, z) is
(x + yDx + zDxDy)

CS 698L Swarnendu Biswas

Thread Hierarchy

• Threads in a block reside on the
same core, max 1024 threads in a
block

• Thread blocks are organized into
1D, 2D, or 3D grids
• Also called cooperative thread array
• Grid dimension is given by gridDim

variable

• Identify block within a grid with the
blockIdx variable
• Block dimension is given by
blockDim variable

CS 698L Swarnendu Biswas

Finding Thread IDs

CS 698L Swarnendu Biswas

i is local to
each thread

Determining Block Dimensions

• Assume a block with a maximum of 1024 allowed threads

CS 698L Swarnendu Biswas

Variable blockDim Valid/Invalid

(512,1,1) 

(8, 16, 4) 

(32, 16, 2) 

(32, 32, 32) 

Find Device Information
int count;

cudaError_t err =

cudaGetDeviceCount(&count);

if (err != cudaSuccess) {

cerr << cudaGetErrorString(err) << end
l;

}

cudaDeviceProp Props;

for (int i = 0; i < count; i++) {

err = cudaGetDeviceProperties(&Props,
i);

}

Device number: 3

Device name: GeForce GTX 1080 Ti

Integrated or discrete GPU? discrete

Clock rate: 1544 MHz

Compute capability: 6.1

Number of SMs: 28

Total number of CUDA cores: 3584

Max threads per SM: 2048

Max threads per block: 1024

Warp size: 32

Max grid size (i.e., max number of blocks): [2147483647,65535,65535]

Max block dimension: [1024,1024,64]

Total global memory: 11172 MB

Shared memory per SM: 96 KB

32-bit registers per SM: 65536

Shared mem per block: 48 KB

Registers per block: 65536

Total const mem: 64 KB

L2 cache size: 2816 KB

CS 698L Swarnendu Biswas

Device Management

• Application can query and select GPUs
• cudaGetDeviceCount(int *count)
• cudaSetDevice(int device)
• cudaGetDevice(int *device)
• cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

• Multiple host threads can share a device

• A single host thread can manage multiple devices
• cudaSetDevice(i) to select current device

• cudaMemcpy(…) for peer-to-peer copies

CS 698L Swarnendu Biswas

Launching Kernels
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int i = threadIdx.x;

int j = threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation with one block of N * N * 1 threads

int numBlocks = 1;

dim3 threadsPerBlock(N, N);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}

CS 698L Swarnendu Biswas

Execution Configuration

• Assume data is of length N, and say the kernel execution
configuration is <<<N/TPB, TPB>>>
• Each block has TPB threads

• There are N/TPB blocks

• Suppose N = 64 and TPB = 32
• Implies there are 2 blocks of 32 threads

• Dimension variables are vectors of integral type

CS 698L Swarnendu Biswas

Launching Kernels
// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N], float C[N][N]) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

C[i][j] = A[i][j] + B[i][j];

}

int main() {

...

// Kernel invocation

dim3 threadsPerBlock(16, 16);

dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

...

}

CS 698L Swarnendu Biswas

Execution Configuration Uses Integer
Arithmetic
• Assume data is of length N, and say the kernel execution

configuration is <<<N/TPB, TPB>>>
• Each block has TPB threads

• There are N/TPB blocks

• Suppose N = 64 and TPB = 32
• Implies there are 2 blocks of 32 threads

• Dimension variables are vectors of integral type

• Now assume N = 65

CS 698L Swarnendu Biswas

So now
what?

Execution Configuration Uses Integer
Arithmetic
• Ensure that the grid covers the array length

• One strategy is to change the number of blocks from N/TPB to
(N+TPB-1)/TPB to ensure rounding up

CS 698L Swarnendu Biswas

Execution Configuration Uses Integer
Arithmetic
• Ensure that the grid covers the array length

• One strategy is to change the number of blocks from N/TPB to
(N+TPB-1)/TPB to ensure rounding up

• This means that a thread index can exceed the maximum array index

• Many examples use a control statement in the kernel to check for
such corner cases

CS 698L Swarnendu Biswas

What should be numBlocks?
const int Nx = 11; // not a multiple of

threadsPerBlock.x

const int Ny = 5; // not a multiple of

threadsPerBlock.y

//

dim3 threadsPerBlock(4, 3, 1);

dim3 numBlocks(x, y, z);

// assume A, B, C are allocated Nx x Ny float arrays

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CS 698L Swarnendu Biswas

What should be numBlocks?
const int Nx = 11; // not a multiple of

threadsPerBlock.x

const int Ny = 5; // not a multiple of

threadsPerBlock.y

//

dim3 threadsPerBlock(4, 3, 1);

dim3
numBlocks((Nx+threadsPerBlock.x‐1)/threadsPerBlock.x,

(Ny+threadsPerBlock.y‐1)/threadsPerBlock.y,

1);

// assume A, B, C are allocated Nx x Ny float arrays

// this call will cause execution of 72 threads

// 6 blocks of 12 threads each

matrixAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

CS 698L Swarnendu Biswas

Example
__global__ void matrixAdd(float* A,

float* B, float* C) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

int j = blockIdx.y * blockDim.y + threadIdx.y;

// Guard against out of bounds array access

if (i < N && j < N)

C[i+N*j] = A[i+N*j] + B[i+N*j];

}

CS 698L Swarnendu Biswas

Find Thread IDs

__global__ void thread_details(uint32_t * const block, uint32_t * const thr
ead, uint32_t * const warp, uint32_t * const calc_thread) {

const uint32_t thread_idx = (blockIdx.x * blockDim.x) + threadIdx.x;

block[thread_idx] = blockIdx.x;

thread[thread_idx] = threadIdx.x;

warp[thread_idx] = threadIdx.x / warpSize;

calc_thread[thread_idx] = thread_idx;

}

thread_details<<<num_blocks, num_threads>>>(gpu_block, gpu_thread,

gpu_warp, gpu_calc_thread);

CS 698L Swarnendu Biswas

Matrix Multiplication Example

int main() {

int SIZE = N * N;

cudaError_t status;

float *hostA, *hostB, *hostC;

hostA = (float*)malloc(SIZE * sizeof(f
loat));

hostB = (float*)malloc(SIZE * sizeof(f
loat));

hostC = (float*)malloc(SIZE * sizeof(f
loat));

float *deviceA, *deviceB, *deviceC;

status = cudaMalloc((void**)&deviceA,
SIZE * sizeof(float));

if (status != cudaSuccess) {

cerr << cudaGetErrorString(status) <
< endl;

}

status = cudaMalloc((void**)&deviceB,
SIZE * sizeof(float));

status = cudaMalloc((void**)&deviceC,
SIZE * sizeof(float));

CS 698L Swarnendu Biswas

Matrix Multiplication Example

status = cudaMemcpy(deviceA, hostA, SI
ZE * sizeof(float), cudaMemcpyHostToDevi
ce);

status = cudaMemcpy(deviceB, hostB, SI
ZE * sizeof(float), cudaMemcpyHostToDevi
ce);

dim3 blocksPerGrid(1, 1);

dim3 threadsPerBlock(N, N);

matmulKernel<<<blocksPerGrid, threadsP
erBlock>>>(deviceA, deviceB, deviceC);

cudaMemcpy(hostC, deviceC, SIZE * size
of(float), cudaMemcpyDeviceToHost);

…

cudaFree(deviceA);

cudaFree(deviceB);

cudaFree(deviceC);

free(hostA);

free(hostB);

…

}

CS 698L Swarnendu Biswas

Matrix Multiplication Example

__global__ void matmulKernel(float* A, float* B, float* C) {

int i = blockIdx.y * blockDim.y + threadIdx.y;

int j = blockIdx.x * blockDim.x + threadIdx.x;

float tmp = 0;
if (i < N && j < N) {

// Each thread computes one element of the matrix

for (int k = 0; k < N; k++) {

tmp += A[i * N + k] * B[k * N + j];

}

}

C[i * N + j] = tmp;

}

CS 698L Swarnendu Biswas

Choosing Optimal Execution Configuration

• The number of thread blocks in a grid is usually dictated by the size of
the data being processed or the number of processors in the system
• It is okay to have a much greater number of threads

• No fixed rule, needs exploration and experimentation

• Choose number of threads in a block to be some multiple of 32

CS 698L Swarnendu Biswas

Timing a CUDA Kernel
float memsettime;

cudaEvent_t start, stop;

// initialize CUDA timer

cudaEventCreate(&start); cudaEventCreate(&stop);

cudaEventRecord(start,0);

// CUDA Kernel

…

cudaEventRecord(stop,0); // stop CUDA timer

cudaEventSynchronize(stop);

cudaEventElapsedTime(&memsettime,start,stop); // in milliseconds

std::cout << “Kernel execution time: “ << memsettime << “\n”;

cudaEventDestroy(start);

cudaEventDestroy(stop);

CS 698L Swarnendu Biswas

Reporting Errors

• All CUDA API calls return an error code (cudaError_t)
• Error in the API call itself or error in an earlier asynchronous operation (e.g.

kernel)

• Get the error code for the last error
cudaError_t cudaGetLastError(void)

• Get a string to describe the error:
char *cudaGetErrorString(cudaError_t)

CS 698L Swarnendu Biswas

Mapping Blocks and Threads

• A GPU executes one or more kernel grids

• When a CUDA kernel is launched, the thread blocks are enumerated
and distributed to SMs
• Potentially >1 block per SM

• An SM executes one or more thread blocks
• Each GPU has a limit on the number of blocks that can be assigned to each

SM

• For example, a CUDA device may allow up to eight blocks to be assigned to
each SM

• Multiple thread blocks can execute concurrently on one SM

CS 698L Swarnendu Biswas

Mapping Blocks and Threads

• The threads of a block execute concurrently on one SM
• CUDA cores in the SM execute threads

• A block begins execution only when it has secured all execution
resources necessary for all the threads

• As thread blocks terminate, new blocks are launched on the vacated
multiprocessors

• Blocks are mostly not supposed to synchronize with each other
• Allows for simple hardware support for data parallelism

CS 698L Swarnendu Biswas

Mapping Blocks and Threads

• The threads of a block execute concurrently on one SM
• CUDA cores in the SM execute threads

• A block begins execution only when it has secured all execution
resources necessary for all the threads

• As thread blocks terminate, new blocks are launched on the vacated
multiprocessors

• Blocks are mostly not supposed to synchronize with each other
• Allows for simple hardware support for data parallelism

CS 698L Swarnendu Biswas

CUDA runtime can execute blocks in any order

Scheduling Blocks

• Number of threads that can be simultaneously tracked and scheduled
is bounded
• Requires resources for an SM to maintain block and thread indices and their

execution status

• Up to 2048 threads can be assigned to each SM on recent CUDA
devices
• For example, 8 blocks of 256 threads, or 4 blocks of 512 threads

• Assume a CUDA device with 28 SMs
• Each SM can accommodate up to 2048 threads
• The device can have up to 57344 threads simultaneously residing in the

device for execution

CS 698L Swarnendu Biswas

Block Scalability

• Hardware can assign blocks to SMs in any order
• A kernel with enough blocks scales across GPUs

• Not all blocks may be resident at the same time

CS 698L

GPU with 2 SMs

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

GPU with 4 SMs

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7time

Adapted from NVIDIA

Swarnendu Biswas

Scalability of GPU Architecture

A multithreaded program is
partitioned into blocks of threads
that execute independently from
each other.

A GPU with more multiprocessors
will automatically execute the
program in less time than a GPU
with fewer multiprocessors.

CS 698L Swarnendu Biswas

Thread Warps

• Conceptually, threads in a block can execute in any order

• Sharing a control unit among compute units reduce hardware
complexity, cost, and power consumption

• A set of consecutive threads (currently 32) that execute in SIMD
fashion (wavefront in AMD with 64 threads)

• Warps are scheduling units in an SM
• Part of the implementation in NVIDIA, not the programming model

CS 698L Swarnendu Biswas

Thread Warps

• All threads in a warp run in lockstep
• Warps share an instruction stream

• Same instruction is fetched for all threads in a warp during the instruction
fetch cycle
• Prior to Volta, warps used a single shared program counter

• In the execution phase, each thread will either execute the instruction or will
execute nothing

• Individual threads in a warp have their own instruction address counter and
register state

CS 698L Swarnendu Biswas

Thread Warps

• Warp threads are fully synchronized
• There is an implicit barrier after each step/instruction

• If 3 blocks are assigned to an SM and each block has 256 threads,
how many warps are there in an SM?
• Each Block is divided into 256/32 = 8 warps

• There are 8 * 3 = 24 warps

CS 698L Swarnendu Biswas

Thread Divergence

• If some threads take the if branch and other threads take the else
branch, they cannot operate in lockstep
• Some threads must wait for the others to execute

• Renders code at that point to be serial rather than parallel

• Divergence occurs only within a warp

• The programming model does not prevent thread divergence
• Performance problem at the warp level

CS 698L Swarnendu Biswas

Parallelism in GPUs

• Two levels of parallelism
• Concurrent thread blocks

• Coarse-grained data parallelism or task parallelism

• Concurrent warps
• Use several threads per block

• Fine-grained data parallelism or thread parallelism

CS 698L Swarnendu Biswas

Scheduling Thread Warps

• Each SM launches warps of threads, and excutes threads on a
timesharing basis
• Timesharing is implemented in hardware, not software

• SM schedules and executes warps that are ready to run
• Warps run for fixed-length time slices like processes

• Warps whose next instruction has its operands ready for consumption are
eligible for execution

• Selection of ready warps for execution does not introduce any idle time into
the execution timeline
• Zero-overhead scheduling in hardware

CS 698L Swarnendu Biswas

Scheduling Thread Warps

• If more than one warp is ready for execution, a priority mechanism is
used to select one for execution

• Thread blocks execute on an SM, thread instructions execute on a
core

• CUDA virtualizes the physical hardware
• Thread is a virtualized scalar processor (registers, PC, state)

• Block is a virtualized multiprocessor (threads, shared memory)

CS 698L Swarnendu Biswas

Scheduling Thread Warps

• Suppose an instruction executed by a warp has to wait for the result
of a previously initiated long-latency operation
• The warp is not selected for execution

• Another warp that is not waiting for results is selected for execution

• Hide latency of long operations with work from other threads
• Called latency tolerance or latency hiding

CS 698L Swarnendu Biswas

Scheduling Thread Warps

• Goal is to have enough threads and warps around to utilize hardware
in spite of long-latency operations
• GPU hardware will likely find a warp to execute at any point in time

• With warp scheduling, the long waiting time of warp instructions is “hidden”
by executing instructions from other warps

• As warps and thread blocks complete, resources are freed

CS 698L Swarnendu Biswas

Question

• Assume that a CUDA device allows up to 8 blocks and 1024 threads
per SM, whichever becomes a limitation first
• It allows up to 512 threads in each block

• Say for the matrix-matrix multiplication kernel, should we use 8x8,
16x16, or 32x32 thread blocks?

CS 698L Swarnendu Biswas

Explanation

• 8x8 threads/block
• If we use 8x8 blocks, each block would have only 64 threads
• We will need 1,024/64=16 blocks to fully occupy an SM
• Since there is a limitation of up to 8 blocks in each SM, we have 64x8 = 512 threads/SM
• There will be fewer warps to schedule around long-latency operations
• Implies that the SM execution resources will likely be underutilized

• 16x16 threads/block
• 16x16 blocks give 256 threads per block
• Each SM can take 1024/256=4 blocks, which is within the 8-block limitation
• Reasonable configuration since we have full thread capacity in each SM and a maximal

number of warps for scheduling around the long-latency operations

• 32x32 threads/block
• 32x32 blocks give 1024 threads in each block, exceeding the limit of 512 threads per block

CS 698L Swarnendu Biswas

SIMT Architecture

• GPUs employ SIMD hardware to exploit the data-level parallelism

• In vectorization, users program SIMD hardware directly

• CUDA features a MIMD-like programming model
• Launch large number of threads

• Each thread can have its own execution path and access arbitrary memory locations

• At runtime, the GPU hardware executes warps in lockstep

• Exploits regularity and spatial locality on GPU SIMD hardware

• This execution model is called single-instruction multiple-thread (SIMT)

CS 698L Swarnendu Biswas

SIMT Architecture

• Very similar in flavor to SIMD
• In SIMD, you program with the vector width in mind

• Possibly use auto-vectorization or intrinsics

• SIMT can be thought of as SIMD with multithreading
• Software analog compared to the hardware perspective of SIMD

• For e.g., we rarely need to know the number of cores with CUDA

CS 698L Swarnendu Biswas

SIMD vs SPMD

SIMD

• Processing units are executing
the same instruction at any
instant

SPMD

• Parallel processing units execute
the same program on multiple
parts of the data

• All the processing units may not
execute the same instruction at
the same time

CS 698L Swarnendu Biswas

Memory Hierarchy

CS 698L Swarnendu Biswas

Memory Access Efficiency

• Compute to global memory access ratio
• Number of floating-point operations performed for each access to global

memory

• Assume a GPU device with 800 GB/s global memory bandwidth and
peak single-precision performance of 1500 GFLOPS
• What is the performance we expect?

CS 698L Swarnendu Biswas

for (int i = 0; i < N; i++)
tmp += A[i*N+K]*B[k*N+j];

Memory Hierarchy in CUDA

CS 698L Swarnendu Biswas

Variable Type Qualifiers in CUDA

Memory Scope Lifetime

int localVar Register Thread Kernel

__device__ __local__ int localVar Local Thread Kernel

__device__ __shared__ int sharedVar; Shared Block Kernel

__device__ int globalVar Global Grid Application

__device__ __constant__ int constVar Constant Grid Application

• __device__ is optional when used with __local__, __shared__, or __constant__
• Automatic variables without any qualifier reside in a register

• Except arrays that reside in local memory
• Pointers can only point to memory allocated or declared in global memory

CS 698L Swarnendu Biswas

Memory Organization

• Host and device maintain their own separate memory spaces
• A variable in CPU memory may not be accessed directly in a GPU kernel

• It is programmer's responsibility to keep them in sync
• A programmer needs to maintain copies of variables

CS 698L Swarnendu Biswas

Registers

• 64K 32-bit registers per SM
• So 256KB register file per SM, a CPU in contrast has a few (1-2 KB) per core

• Up to 255 registers per thread

• If a code uses the maximum number of registers per thread (255) and
an SM has 64K of registers then the SM can support a maximum of
256 threads

• If we use the maximum allowable number of threads per SM (2048),
then each thread can use at most 32 registers per thread

CS 698L Swarnendu Biswas

Registers

• 64K 32-bit registers per SM
• So 256KB register file per SM, a CPU in contrast has a few (1-2 KB) per core

• Up to 255 registers per thread

• If a code uses the maximum number of registers per thread (255) and
an SM has 64K of registers then the SM can support a maximum of
256 threads

• If we use the maximum allowable number of threads per SM (2048),
then each thread can use at most 32 registers per thread

CS 698L Swarnendu Biswas

What if each thread uses 33 registers?

Registers

• If we use the maximum allowable number of threads per SM (2048),
then each thread can use at most 32 registers per thread

• What if each thread uses 33 registers?
• Fewer threads, reduce number of blocks

• There is a big difference between “fat” threads which use lots of
registers, and “thin” threads that require very few!

CS 698L Swarnendu Biswas

Shared Memory

• Shared memory aims to bridge the gap in memory speed and access
• Also called scratchpad memory

• Usually 16-64KB of storage that can be accessed efficiently by all threads in a
block

• Primary mechanism in CUDA for efficiently supporting thread
cooperation

• Each SM contains a single shared memory
• Resides adjacent to an SM, on-chip

• The space is shared among all blocks running on that SM

CS 698L Swarnendu Biswas

Shared Memory

• Variable in shared memory is
allocated using the __shared__
specifier
• Faster than global memory

• Can be accessed only by threads
within a block

• Amount of shared memory per
block limits occupancy

• Say an SM with 4 thread blocks
has 16 KB of shared memory

__shared__ float min[256];

__shared__ float max[256];

__shared__ float avg[256];

__shared__ float stdev[256];

CS 698L Swarnendu Biswas

Registers vs Shared Memory

Registers

• Faster than shared memory

• Private to a thread

Shared Memory

• On-chip memory space, requires
load/store operations

• Visible to all threads in a block

CS 698L Swarnendu Biswas

Global Variables

• Variable lock can be accessed
by both kernels
• Resides in global memory space

• Can be both read and modified by
all threads

__device__ int lock=0;

__global__ void kernel1(...) {

// Kernel code

}

__global__ void kernel2(...) {

// Kernel code

}

CS 698L Swarnendu Biswas

Global Memory

• On-device memory accessed via 32, 64, or 128 B transactions

• An warp executes an instruction that accesses global memory
• The addresses are coalesced into transactions

• Number of transactions depend on the access size and distribution of
memory addresses

• More transactions mean less throughput
• For example, if 32 B transaction is needed for a thread’s 4 B access, throughput is

essentially 1/8th

CS 698L Swarnendu Biswas

Constant Memory

• Use for data that will not change during kernel execution
• Constant memory is 64KB

• Constant memory is cached
• Each SM has a read-only constant cache that is shared by all cores in the SM

• Used to speed up reads from the constant memory space which resides in
device memory

• Read from constant memory incurs a memory latency on a miss
• Otherwise, it is a read from constant cache, which is almost as fast as registers

CS 698L Swarnendu Biswas

Constant Variables

• Constant variables can’t be modified by kernels
• Reside in constant memory

• Accessible from all threads within a grid

• They are defined with global scope within the kernel using the prefix
__constant__

• Host code can access via cudaMemcpyToSymbol() and
cudaMemcpyFromSymbol()

CS 698L Swarnendu Biswas

Local Memory

• Local memory is off-chip memory
• More like thread-local global memory, so it requires memory transactions and

consumes bandwidth

• Automatic variables are placed in local memory
• Arrays for which it is not known whether indices are constant quantities

• Large structures or arrays that consume too much register space

• In case of register spilling

• Inspect PTX assembly code (compile with –ptx)
• Check for ld.local and st.local mnemonic

CS 698L Swarnendu Biswas

Device Memory Management

• Global device memory can be allocated with cudaMalloc()

• Freed by cudaFree()

• Data transfer between host and device is with cudaMemcpy()

• Initialize memory with cudaMemset()

• There are asynchronous versions

CS 698L Swarnendu Biswas

GPU Caches

• GPUs have L1 and L2 data caches on devices with CC 2.x and higher
• Texture and constant cache are available on all devices

• L1 cache is per SM
• Shared memory is partitioned out of unified data cache and its size can be

configured, remaining portion is the L1 cache

• Can be configured as 48 KB of shared memory and 16 KB of L1 cache, or 16 KB
of shared memory and 48 KB of L1 cache, or 32 KB each

• L1 caches are 16-48 KB

• L2 cache is shared by all SMs

CS 698L Swarnendu Biswas

GPU Caches

• L1 cache lines are 128 B wide in Fermi onward, while L2 lines are 32 B

CS 698L Swarnendu Biswas

CPU Caches vs GPU caches

CPU

• Data is automatically moved by
hardware between caches
• Association between threads and

cache does not have to be
exposed to programming model

• Caches are generally coherent

GPU

• Data movement must be
orchestrated by programmer
• Association between threads and

storage is exposed to
programming model

• L1 cache is not coherent, L2
cache is coherent

CS 698L Swarnendu Biswas

Synchronization in CUDA

CS 698L Swarnendu Biswas

Race Conditions and Data Races

• A race condition occurs when program behavior depends upon
relative timing of two (or more) event sequences

• Execute: *c += sum;
• Read value at address c

• Add sum to value

• Write result to address c

CS 698L Swarnendu Biswas

Be Careful to Avoid Race Conditions!

Thread 0, Block 0

• Read value at address c

• Add sum to value

• Write result to address c

Thread 3, Block 7

• Read value at address c

• Add sum to value

• Write result to address c

ti
m

e

CS 698L Swarnendu Biswas

Synchronization Constructs in CUDA

1. __syncThreads() synchronizes threads within a block

2. cudaDeviceSynchronize() synchronizes all threads in a grid
• There are other variants

3. Atomic operations prevent conflicts associated with multiple
threads concurrently accessing a variable

• Atomic operations on both global memory and shared memory variables

• For e.g., float atomicAdd(float* addr, float amount)

CS 698L Swarnendu Biswas

__syncthreads()

• A __syncthreads() statement must be executed by all threads in a
block

• __syncthreads() is in an if statement
• Either all threads in the block execute the path that includes the
__syncthreads() or none of them does

• __syncthreads() statement is in each path of an if-then-else
statement
• Either all threads in a block execute the __syncthreads() on the then path

or all of them execute the else path

• The two __syncthreads() are different barrier synchronization points

CS 698L Swarnendu Biswas

Synchronization Between Grids

• For threads from different grids, system ensures writes from kernel
happen before reads from subsequent grid launches

CS 698L Swarnendu Biswas

Atomic Operations

• Perform read-modify-write (RMW) atomic operations on data residing
in global or local memory
• atomicAdd(), atomicSub(), atomicMin(), atomicMax(),
atomicInc(), atomicDec(), atomicExch(), atomicCAS()

• Predictable result when simultaneous access to memory required

CS 698L Swarnendu Biswas

Overlap Host and Device Computation

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice)

kernel1<<<1,N>>>(d_a);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

CS 698L Swarnendu Biswas

https://devblogs.nvidia.com/how-overlap-data-transfers-cuda-cc/
https://devblogs.nvidia.com/gpu-pro-tip-cuda-7-streams-simplify-concurrency/

Overlap Host and Device Computation

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice)

kernel1<<<1,N>>>(d_a);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

cudaMemcpy(d_a, h_a, numBytes, cudaMemcpyHostToDevice)

kernel1<<<1,N>>>(d_a);

h_func(h_b);

cudaMemcpy(h_res, d_a, numBytes, cudaMemcpyDeviceToHost);

CS 698L Swarnendu Biswas

Utilize GPU Hardware

• Overlap kernel execution with memory copy between host and device

• Overlap execution of multiple kernels if there are resources

• Depends on whether the GPU architecture supports overlapped
execution

CS 698L Swarnendu Biswas

CUDA Streams

• Sequence of operations that execute on the device in the order in
which they were issued by the host
• Operations across streams can interleave and run concurrently

• All GPU device operations run in the default “null” stream
• Default stream is synchronizing

• No operation in the default stream will begin until all previously issued
operations in any stream have completed

• An operation in the default stream must complete before any other operation
in any stream will begin

• CUDA 7 provides options to change behavior of default streams

CS 698L Swarnendu Biswas

Non-Default Streams

• Operations in a non-default
stream are non-blocking with
host

• Use cudaDeviceSynchronize()
• Blocks host until all previously

issued operations on the device
have completed

• Cheaper alternatives
• cudaStreamSynchronize(),
cudaEventSynchronize(), …

cudaStream_t stream1;

cudaError_t res;

res = cudaStreamCreate(&stream1);

res = cudaMemcpyAsync(d_a, a, N,
cudaMemcpyHostToDevice, stream1);

increment<<<1,N,0,stream1>>>(d_a);

res = cudaStreamDestroy(&stream1);

CS 698L Swarnendu Biswas

Why Use CUDA Streams?

• Memory copy and kernel execution can be overlapped in they occur
in different, non-default streams
• Check for GPU device capabilities

• Individual kernels can overlap if there are enough resources on the
GPU

CS 698L Swarnendu Biswas

Performance Bottlenecks with
CUDA

Key Ideas for Performance

• Try and reduce resource consumption

• Strive for good locality
• Use tiling to exploit shared memory
• Copy blocks of data from global memory to shared memory and operate on

them (for e.g., matrix multiplication kernel)
• Improve throughput by reducing global memory traffic

• Exploit SIMT
• Reduce thread divergence in a warp

• Memory access optimization
• Global memory: memory coalescing
• Shared memory: avoid bank conflicts

CS 698L Swarnendu Biswas

What can we say about this code?

__global__ void dkernel(float *vector, int vectorsize) {

int id = blockIdx.x * blockDim.x + threadIdx.x;

switch (id) {

case 0: vector[id] = 0; break;

case 1: vector[id] = vector[id] * 10; break;

case 2: vector[id] = vector[id - 2]; break;

case 3: vector[id] = vector[id + 3]; break;

…

case 31: vector[id] = vector[id] * 9; break;

}

}

CS 698L Swarnendu Biswas

Deal with Thread Divergence

• Thread divergence renders execution sequential
• SIMD hardware takes multiple passes through the divergent paths

CS 698L Swarnendu Biswas

if (threadIdx.x > 2) {}

if (threadIdx.x / WARP_SIZE > 2) {}

Deal with Thread Divergence

• Condition evaluating to different truth values is not bad

• Branch granularity is a whole multiple of warp size; all threads in any given
warp follow the same path

• Conditions evaluating to different truth-values for threads in a warp is
bad

• Creates two different control paths for threads in a block; branch granularity <
warp size; threads 0 and 1 follow different path than the rest of the threads in the
first warp

CS 698L Swarnendu Biswas

if (threadIdx.x > 2) {}

if (threadIdx.x / WARP_SIZE > 2) {}

Implement a Reduction Kernel in CUDA

CS 698L Swarnendu Biswas

Reduction Kernel

__shared__ float partialSum[];

…

unsigned int t = threadIdx.x;

for (unsigned int stride = 1; stride < blockDim.x; stride *= 2) {

__syncthreads();

if (t % (2*stride) == 0)

partialSum[t] += partialSum[t+stride];

}

CS 698L Swarnendu Biswas

Reduction Kernel

__shared__ float partialSum[];

…

unsigned int t = threadIdx.x;

for (unsigned int stride = blockDim.x; stride > 1; stride /= 2) {

__syncthreads();

if (t < stride)

partialSum[t] += partialSum[t+stride];

}

CS 698L Swarnendu Biswas

Execution of the Revised Kernel

CS 698L Swarnendu Biswas

Parallel Memory Architecture

• In a parallel machine, many threads
access memory
• Therefore, memory is divided into banks

to achieve high bandwidth

• Each bank can service one address per
cycle
• A memory can service as many

simultaneous accesses as it has banks

• Multiple simultaneous accesses to a
bank result in a bank conflict
• Conflicting accesses are serialized

Example of Bank Addressing

• No bank conflicts
• Linear addressing, stride=1

• No bank conflicts
• Random permutation

Example of Bank Addressing

• 2-way Bank Conflicts
• Linear addressing, stride = 2

• 8-way Bank Conflicts
• Linear addressing, stride = 8

168

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

Shared Memory Bank Conflicts

• Shared memory is as fast as registers if there are no bank conflicts

• Fast case
• If all threads of a warp access different banks, there is no bank conflict

• If all threads of a warp access the identical address, there is no bank conflict

• Slow case
• Bank Conflict: multiple threads in the same half-warp access the same bank

• Must serialize the accesses

• Cost = max # of simultaneous accesses to a single bank

170

Memory Coalescing

• Coalesced memory access
• A warp of threads access adjacent data in a cache line

• In the best case, this results in one memory transaction (best bandwidth)

• Uncoalesced memory access
• A warp of threads access scattered data all in different cache lines

• This may result in 32 different memory transactions (poor bandwidth)

CS 698L Swarnendu Biswas

Memory Coalescing

CS 698L Swarnendu Biswas

Global Memory Accesses

• Global memory (DRAM) is off-chip
• Only one address per memory

transaction

• Each load transaction brings some
number of aligned, contiguous bytes
(say 32 B lines) from memory

• Hardware automatically combines
requests to same line from different
threads in warp (coalescing)

• Multiple lines are processed
sequentially

Md

W
I D

T
H

WIDTH

Coalesced

Thread 1

Thread 2

Not coalesced

Matrix Multiplication Example

__global__ void matmulKernel(float* A, float* B, float* C) {

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

float tmp = 0;
if (row < N && col < N) {

// Each thread computes one element of the matrix

for (int k = 0; k < N; k++) {

tmp += A[row * N + k] * B[k * N + col];

}

}

C[row * N + col] = tmp;

}

CS 698L Swarnendu Biswas

Coalesced

Thread 1

Thread 2

Not coalesced

Optimizing Global Memory Accesses

• Try to ensure that memory
requests from a warp can be
coalesced
• Stride-one access across threads in

a warp is good

• Use structure of arrays rather than
array of structures

Md

W
I D

T
H

WIDTH

Coalesced

Thread 1

Thread 2

Not coalesced

References

• NVIDIA – CUDA C Programming Guide v10.1.

• NVIDIA – CUDA C Best Practices Guide v10.1.

• D. Kirk and W. Hwu – Programming Massively Parallel Processors.

• N. Matloff – Programming on Parallel Machines.

• Shane Cook - CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs.

• T. Aamodt et al. – General-Purpose Graphics Processor Architecture.

• J. Sanders and E. Kandrot – CUDA By Example: An Introduction to General-Purpose GPU Programming.

CS 698L Swarnendu Biswas

