CS698L: Data Dependence Analysis

Swarnendu Biswas

Semester 2019-2020-I
CSE, IIT Kanpur

How to Write Efficient and Scalable Programs?

Good choice of algorithms and data structures

- Determines number of operations executed

Code that the compiler and architecture can effectively optimize

- Determines number of instructions executed

Proportion of parallelizable and concurrent code

- Amdahl's law

Sensitive to the architecture platform

- Efficiency and characteristics of the platform
- For e.g., memory hierarchy, cache sizes

Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

- Code restructuring optimizations
- Prefetching optimizations
- Data layout optimizations
- Code layout optimizations

Parallelism Challenges for a Compiler

- On single-core machines
- Focus is on register allocation, instruction scheduling, reduce the cost of array accesses
- On parallel machines
- Find parallelism in sequential code, find portions of work that can be executed in parallel
- Principle strategy is data decomposition - good idea since this can scale

Can we parallelize the following loops?

```
do i = 1, 100
    A(i) = A(i) + 1
enddo
```

```
do i = 1, 100
    A(i) = A(i-1) + 1
enddo
```


Data Dependences

$$
\begin{array}{ll}
\text { S1 } & a=b+c \\
\text { S2 } & d=a * 2 \\
\text { S3 } & a=c+2 \\
\text { S4 } & e=d+c+2
\end{array}
$$

Data Dependences

S1	$a=b+c$
S2	$d=a * 2$
S3	$a=c+2$
S4	$e=d+c+2$

Execution constraints

- S2 must execute after S1
- S3 must execute after S2
- S3 must execute after S1
- S3 and S4 can execute in any order, and concurrently

Data Dependence

- There is a data dependence from S1 to S2 if and only if
- Both statements access the same memory location
- At least one of the accesses is a write
- There is a feasible execution path at run-time from S1 to S2

Types of Dependences

Flow (true)

$$
\begin{array}{ll}
\text { S1 } \quad X=\ldots \\
\text { S2 } \quad \ldots=X \\
\text { S1 } \quad \ldots=X \\
\text { S2 } \quad X=\ldots
\end{array}
$$

S1 X = ...
S2 $X=$...

$$
\begin{aligned}
& \text { S1 } \ldots=a / b \\
& \text { S2 } \ldots=b * c
\end{aligned}
$$

Bernstein's Conditions

- Suppose there are two processes P_{1} and P_{2}
- Let I_{i} be the set of all input variables for process P_{i}
- Let O_{i} be the set of all output variables for process P_{i}
- P_{1} and P_{2} can execute in parallel (denoted as $P_{1} \| P_{2}$) if and only if
- $I_{1} \cap I_{2}=\Phi$
- $I_{2} \cap O_{1}=\Phi$
- $O_{2} \cap O_{1}=\Phi$

Bernstein's Conditions

- Suppose there are two processes
- P_{1} and P_{2} can execute in parallel P_{1} ar
- Let I Two processes can execute in parallel if they are flow-, varia anti-, and output-independent
- Let σ_{i} ve mie setor alroutput - $O_{2} \cap O_{1}=\Phi$ variables for process P_{i}

Bernstein's Conditions

Find Parallelism in Loops - Is it Easy?

- Need to analyze array subscripts
- Need to check whether two array subscripts access the same memory location

Dependence in Loops

	for i	$=1$ to 50
S1$A[i]$ $=B[i-1]+C[i]$ $S 2$ $B[i]$$=A[i+2]+C[i]$		
	endfor	

- Unrolling loops can help figure out dependences

$$
\begin{array}{ll}
\mathrm{S} 1(1) & \mathrm{A}[1]=\mathrm{B}[0]+\mathrm{C}[1] \\
\mathrm{S} 2(1) & \mathrm{B}[1]=\mathrm{A}[3]+\mathrm{C}[1] \\
\mathrm{S} 1(2) & \mathrm{A}[2]=\mathrm{B}[1]+\mathrm{C}[2] \\
\mathrm{S} 2(2) & \mathrm{B}[2]=\mathrm{A}[4]+\mathrm{C}[2] \\
\mathrm{S} 1(3) & \mathrm{A}[3]=\mathrm{B}[2]+\mathrm{C}[3] \\
\mathrm{S} 2(3) & \mathrm{B}[3]=\mathrm{A}[5]+\mathrm{C}[3]
\end{array}
$$

Dependence in Loops

for i	$=1$ to 50
S1$A[i]$ $=B[i-1]+C[i]$ $S 2$ $B[i]$	$=A[i+2]+C[i]$
endfor	

- Unrolling loops can help figure out dependences

$\mathrm{S} 1(1)$	$\mathrm{A}[1]=\mathrm{B}[0]+\mathrm{C}[1]$
$\mathrm{S} 2(1)$	$\mathrm{B}[1]=\mathrm{A}[3]+\mathrm{C}[1]$
$\mathrm{S} 1(2)$	$\mathrm{A}[2]=\mathrm{B}[1]+\mathrm{C}[2]$
$\mathrm{S} 2(2)$	$\mathrm{B}[2]=\mathrm{A}[4]+\mathrm{C}[2]$
$\mathrm{S} 1(3)$	$\mathrm{A}[3]=\mathrm{B}[2]+\mathrm{C}[3]$
$\mathrm{S} 2(3)$	$\mathrm{B}[3]=\mathrm{A}[5]+\mathrm{C}[3]$

Dependence in Loops

- Parameterize the statement with the loop iteration number

DO $\mathrm{I}=1, \mathrm{~N}$
S1
$A(I+1)=A(I)+B(I)$
ENDDO

DO $I=L, U, S$
S1
ENDDO

Normalized Iteration Number

For an arbitrary loop in which the loop index I runs from L to U in steps of S, the normalized iteration number i of a specific iteration is equal to the value $(I-L+1) / S$, where I is the value of the index on that iteration

Iteration Vector

Given a nest of n loops, the iteration vector i of a particular iteration of the innermost loop is a vector of integers that contains the iteration numbers for each of the loops in order of nesting level.

The iteration vector \boldsymbol{i} is $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ where $i_{k}, 1 \leq k \leq n$, represents the iteration number for the loop at nesting level k.

Iteration Space Graphs

- Represent each dynamic instance of a loop as a point in the graph
- Draw arrows from one point to another to represent dependences

Iteration Space Graph

- Dimension of iteration space is the loop nest level
- Not restricted to be rectangular

```
for i = 1 to 5 do
    for j = i to 5 do
        A(i, j) = B(i, j) + C(j)
    endfor
endfor
```


Lexicographic Ordering of Iteration Vectors

- Assume i is a vector, i_{k} is the $k^{\text {th }}$ element of the vector i, and $i[1: k]$ is a k -vector consisting of the leftmost k elements of i
- Iteration i precedes iteration j , denoted by $\mathrm{i}<\mathrm{j}$, if and only if
i. $\quad i[1: n-1]<j[1: n-1]$, or
ii. $\quad i[1: n-1]=j[1: n-1]$ and $i_{n}<j_{n}$

Formal Definition of Loop Dependence

There exists a dependence from statement S1 to statement S2 in a common nest of loops if and only if there exist two iteration vectors i and j for the nest, such that
i. $\quad \mathrm{i}<\mathrm{j}$ or $\mathrm{i}=\mathrm{j}$ and there is a path from S 1 to S 2 in the body of the loop,
ii. statement S 1 accesses memory location M on iteration i and statement S2 accesses location M on iteration j , and
iii. one of these accesses is a write.

Distance Vectors

- For each dimension of an iteration space, the distance is the number of iterations between accesses to the same memory location

```
do i = 1, 6
    do j = 1, 5
        A(i, j) = A(i-1, j-2) + 1
    enddo
enddo
```

outer loop

- Distance vector: (1, 2)
inner loop

Distance Vectors

- Suppose that there is a dependence from statement S1 on iteration i of a loop nest and statement S2 on iteration j , then the dependence distance vector $\mathrm{d}(\mathrm{i}, \mathrm{j})$ is defined as a vector of length n such that $\boldsymbol{d}(i, j)_{k}$ $=\boldsymbol{j}_{k}-\boldsymbol{i}_{k}$.
- A vector ($\mathrm{d} 1, \mathrm{~d} 2$) is positive if $(0,0)<(\mathrm{d} 1, \mathrm{~d} 2)$, i.e., its first (leading) non-zero component is positive

Direction Vectors

- Suppose that there is a dependence from statement S1 on iteration i of a loop nest of n loops and statement S2 on iteration j, then the dependence direction vector is $D(i, j)$ is defined as a vector of length n such that

$$
D(i, j)_{k}=\left\{\begin{array}{l}
- \text { if } D(i, j)_{k}<0 \\
0 \text { if } D(i, j)_{k}=0 \\
+ \text { if } D(i, j)_{k}>0
\end{array}\right.
$$

Distance and Direction Vectors

- Suppose that there is a dependence from statement S1 on iteration i
such In any valid dependence, the leftmost non-"0" component of the direction vector must be " + "

Distance and Direction Vector Example

```
    DO I = 1, N
        DO J = 1, M
        DO K = 1, L
            A(I+1,J,K-1) = A(I,J,K) + 10
            ENDDO
        ENDDO
ENDDO
```


Distance and Direction Vector Example

```
FOR I = 1, 5
    DO J = 1, 5
        \(A(I, J)=A(I, J-3)+A(I-2, J)+A(I-1, J+2)+A(I+1, J-1)\)
    ENDFOR
ENDFOR
```


Reordering Transformations

- A reordering transformation does not add or remove statements from a loop nest
- Only reorders the execution of the statements that are already in the loop

Do not add or remove statements

Do not add or remove any new dependences

Direction Vector Transformation

- Let T be a transformation is applied to a loop nest
- Does not rearrange the statements in the body of the loop
- T is valid if, after it is applied, none of the direction vectors for dependences with source and sink in the nest has a leftmost non-" 0 " component that is "-"

Validity of Dependence-Based Transformations

- A transformation is said to be valid for the program to which it applies if it preserves all dependences in the program

Loop-Carried Dependences

- S1 can reference the common location on one iteration of a loop; on a subsequent iteration S2 can reference the same location
i. S1 references location M on iteration i
ii. $\quad S 2$ references M on iteration j
iii. $d(i, j)>0$ (that is, contains a " + " as leftmost non-" 0 " component)

```
DO I = 1, N
    A(I+1) = F(I)
    F(I+1) = A(I)
ENDDO
```

ENDDO

Level of Loop-Carried Dependence

- The level of a loop-carried dependence is the index of the leftmost non-" 0 " of $D(i, j)$ for the dependence.
DO $\mathrm{I}=1,10$
DO J $=1,10$
DO $\mathrm{K}=1,10$
A(I, J,K+1) $=A(I, J, K)$
ENDDO
ENDDO
ENDDO

Utility of Dependence Levels

- A reordering transformation preserves all level-k dependences if it
i. preserves the iteration order of the level-k loop
ii. does not interchange any loop at level < k to a position inside the level- k loop and
iii. does not interchange any loop at level $>k$ to a position outside the level- k loop.

```
DO I = 1, 10
S1 A(I+1) = F(I)
S2 F(I+1) = A(I)
ENDDO
```

```
DO I = 1, 10
S2 F(I+1) = A(I)
S1
    A(I+1) = F(I)
ENDDO
```


Is this transformation valid?

$$
\begin{aligned}
& \text { DO } \mathrm{I}=1,10 \\
& \text { DO J }=1,10 \\
& \text { DO } \mathrm{K}=1,10 \\
& \mathrm{~S}(\mathrm{I}+1, \mathrm{~J}+2, \mathrm{~K}+3)=\mathrm{A}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})+\mathrm{B} \\
& \text { ENDDO } \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

S

$$
\begin{aligned}
& \text { DO } I=1,10 \\
& \text { DO } \mathrm{K}=10,1,-1 \\
& \text { DO J }=1,10 \\
& \quad \mathrm{~A}(\mathrm{I}+1, \mathrm{~J}+2, \mathrm{~K}+3)=\mathrm{A}(\mathrm{I}, \mathrm{~J}, \mathrm{~K})+\mathrm{B} \\
& \quad \text { ENDDO } \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

Loop-Independent Dependences

- S1 and S2 can both reference the common location on the same loop iteration, but with S1 preceding S2 during execution of the loop iteration.
i. S1 refers to memory location M on iteration i
ii. $\quad S 2$ refers to M on iteration j and i = j
iii. There is a control flow path from S1 to S2 within the iteration.

```
DO I = 1, N
    A(I+1) = F(I)
    G(I+1) = A(I+1)
ENDDO
```

```
DO I = 1, 9
    A(I) =
    ... = A(10-I)
ENDDO
```


Is this transformation valid?

$$
\begin{aligned}
& \text { DO } I=1, N \\
& \text { S1: } \quad A(I)=B(I)+C \\
& \text { S2: } \quad D(I)=A(I)+E \\
& \\
& \text { ENDDO }
\end{aligned}
$$

Dependence Testing

- Dependence question
- Can $4 *$ I be equal to $2 * 1+1$ for I in [1, N] ?

$$
\begin{aligned}
& \text { DO } I=1, N \\
& A(4 \star I)=\ldots \\
& \ldots=A(2 * I+1)
\end{aligned}
$$

ENDDO

Given (i) two subscript functions f and g, and (ii) lower and upper loop bounds L and U respectively, does $f\left(i_{1}\right)=g\left(i_{2}\right)$ have a solution such that $L \leq i_{1}, i_{2} \leq U$?

Multiple Loop Nests

$$
\begin{aligned}
& \text { DO } i=1, n \\
& \quad \text { DO } j=1, m \\
& \text { X }\left(a_{1} * i+b_{1} * j+c_{1}\right)=\ldots \\
& \ldots=X\left(a_{2} * i+b_{2} * j+c_{2}\right) \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

- Dependence test

$$
\begin{aligned}
& a_{1} * i_{1}+b_{1} * j_{1}+c_{1}=a_{2} * i_{2}+b_{2} * j_{2}+c_{2} \\
& 1 \leq i_{1}, i_{2} \leq n \\
& 1 \leq j_{1}, j_{2} \leq m
\end{aligned}
$$

Multiple Loop Indices, Multi-Dimensional

 Array$$
\begin{aligned}
& \text { DO } i=1, n \\
& \quad \text { DO } j=1, m \\
& X\left(a_{1} * i_{1}+b_{1} * j_{1}+c_{1}, d_{1} * i_{1}+e_{1} * j_{1}\right. \\
& \left.+f_{1}\right) \stackrel{=}{=} \\
& \ldots=X\left(a_{2} * i_{2}+b_{2} * j_{2}+c_{2}, d_{2} * i_{2}+\right. \\
& \left.e_{2} * j_{2}+f_{2}\right) \\
& \quad \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

- Dependence test

$$
\begin{aligned}
& a_{1} i_{1}+b_{1} j_{1}+c_{1}=a_{2} i_{2}+b_{2} j_{2}+c_{2} \\
& d_{1} i_{1}+e_{1} j_{1}+f_{1}=d_{2} i_{2}+e_{2} j_{2}+f_{2} \\
& 1 \leq i_{1}, i_{2} \leq n \\
& 1 \leq j_{1}, j_{2} \leq m
\end{aligned}
$$

Multiple Loop Indices, Multi-Dimensional Array

$$
\begin{aligned}
& \text { DO } i=1, n \\
& \quad \text { DO } j=1, m \\
& \quad X\left(a_{1} * i_{1}+b_{1} * j_{1}+c_{1}, d_{1} * i_{1}+e_{1} * j_{1}\right. \\
& \left.+f_{1}\right)=\ldots \\
& \ldots=X\left(a_{2} * i_{2}+b_{2} * j_{2}+c_{2}, d_{2} * i_{2}+\right. \\
& \left.e_{2} * j_{2}+f_{2}\right) \\
& \quad \text { ENDDO }
\end{aligned}
$$

- Dependence test

$$
\begin{aligned}
& a_{1} i_{1}+b_{1} j_{1}+c_{1}=a_{2} i_{2}+b_{2} j_{2}+c_{2} \\
& d_{1} i_{1}+e_{1} j_{1}+f_{1}=d_{2} i_{2}+e_{2} j_{2}+f_{2} \\
& 1 \leq i_{1}, i_{2} \leq n \\
& 1 \leq j_{1}, j_{2} \leq m
\end{aligned}
$$

complex

Data Dependence Testing

- Variables in loop indices are integers \rightarrow Diophantine equations
- Equation $a_{1} * i_{1}-b_{1} * i_{2}=c$ has a solution if and only if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ (evenly) divides c
- The Diophantine equation $a_{1} i_{1}+a_{2} i_{2}+\cdots+a_{n} i_{n}=c$ has a solution iff $\operatorname{gcd}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ evenly divides c
- If there is a solution, we can test if it lies within the loop bounds. If not, then there is no dependence

Dependence Testing Problem

Equivalent to an integer linear programming problem with $2 n$ variables and $n+d$ constraints

An algorithm that finds two iteration vectors that satisfies these constraints is called a dependence tester

This is an NP-complete problem, and so in practice the algorithms must be conservative

Lamport Test

$$
\begin{aligned}
& \text { for } i=1 \text { to } n \\
& \text { for } j=1 \text { to } n \\
& \text { S1 } \quad \begin{array}{l}
\text { a[i,j] }=a[i-1, j+1]
\end{array}
\end{aligned}
$$

$$
\text { for } i=1 \text { to } n
$$

$$
\text { for } j=1 \text { to } n
$$

S1

$$
a[i, 2 * j]=a[i-1,2 * j+1]
$$

Other Dependence Tests

- GCD test is simple but not accurate
- It can tell us that there is no solution
- Other tests
- Banerjee-Wolfe test: widely used test
- Power Test: improvement over Banerjee test
- Omega test: "precise" test, most accurate for linear subscripts
- Range test: handles non-linear and symbolic subscripts
- many variants of these tests

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to } 10 \\
\text { S1 } & a[i]=b[i]+c[i] \\
\text { S2 } & d[i]=a[i-100] ;
\end{aligned}
$$

Banerjee-Wolfe Test

- If the total subscript range accessed by ref1 does not overlap with the range accessed by ref2, then ref1 and ref2 are independent
- Weakness
- Ranges accessed
- [1:100], [6:105]
- No dependence?

$$
\begin{aligned}
& \text { DO } j=1,100 \\
& a(j)=\ldots \\
& \ldots=a(j+200)
\end{aligned}
$$

ENDDO

$$
\begin{gathered}
\text { DO } j=1,100 \\
a(j)=\ldots \\
\ldots=a(j+5)
\end{gathered}
$$

ENDDO

Dependence Testing is Hard

Unknown loop bounds can lead to false dependences
Need to be conservative about aliasing
Triangular loops adds new constraints

Why is Dependence Analysis Important?

- Dependence information can be used to drive other important loop transformations
- For example, loop parallelization, loop interchange, loop fusion
- We will see many examples soon

References

- R. Bryant and D. O'Hallaron - Computer Systems: A Programmer's Perspective.
- R. Allen and K. Kennedy - Optimizing Compilers for Modern Architectures.
- Michelle Strout - CS 553: Compiler Construction, Fall 2007.

