CS698L: Data Dependence Analysis

Swarnendu Biswas

Semester 2019-2020-I CSE, IIT Kanpur

How to Write Efficient and Scalable Programs?

Good choice of algorithms and data structures

Determines number of operations executed

Code that the compiler and architecture can effectively optimize

Determines number of instructions executed

Proportion of parallelizable and concurrent code

Amdahl's law

Sensitive to the architecture platform

- Efficiency and characteristics of the platform
- For e.g., memory hierarchy, cache sizes

Role of a Good Compiler

Try and extract performance automatically

Optimize memory access latency

- Code restructuring optimizations
- Prefetching optimizations
- Data layout optimizations
- Code layout optimizations

Parallelism Challenges for a Compiler

- On single-core machines
 - Focus is on register allocation, instruction scheduling, reduce the cost of array accesses
- On parallel machines
 - Find parallelism in sequential code, find portions of work that can be executed in parallel
 - Principle strategy is data decomposition good idea since this can scale

Can we parallelize the following loops?

```
do i = 1, 100
A(i) = A(i) + 1
enddo
```

```
do i = 1, 100

A(i) = A(i-1) + 1

enddo
```

Data Dependences

- S1 a = b + c
- S2 d = a * 2
- S3 a = c + 2
- S4 e = d + c + 2

Data Dependences

```
S1 a = b + c
```

S2
$$d = a * 2$$

S3
$$a = c + 2$$

S4
$$e = d + c + 2$$

Execution constraints

- S2 must execute after S1
- S3 must execute after S2
- S3 must execute after S1
- S3 and S4 can execute in any order, and concurrently

Data Dependence

- There is a data dependence from S1 to S2 if and only if
 - Both statements access the same memory location
 - At least one of the accesses is a write
 - There is a feasible execution path at run-time from S1 to S2

Types of Dependences

Flow (true)

S1 X = ...

S2 ... = X

S1 ... = X

S2 X = ...

S1 X = ...

S2 X = ...

 $S1 \dots = a/b$

S2 ... = b * c

Anti

Output

Input

Bernstein's Conditions

- Suppose there are two processes
 P₁ and P₂
- Let I_i be the set of all input variables for process P_i
- Let O_i be the set of all output variables for process P_i

- P₁ and P₂ can execute in parallel (denoted as P₁ | | P₂) if and only if
 - $I_1 \cap I_2 = \Phi$
 - $I_2 \cap O_1 = \Phi$
 - $O_2 \cap O_1 = \Phi$

CS 698L

Bernstein's Conditions

- Suppose there are two processes P_1 and P_2 can execute in parallel P_1 ar ρ nly
- Let I Two processes can execute in parallel if they are flow-, varia anti-, and output-independent
- Let O_i be the set of all output variables for process P_i $O_2 \cap O_1 = \Phi$

Bernstein's Conditions

- Suppose there are two processes
 P₁ and P₂ can execute in parallel pnly
- Let I Two processes can execute in parallel if they are flow-, anti-, and output-independent
- Let O_i be the set of all output variables for process P_i • $O_2 \cap O_1 = \Phi$
 - If P_i | | P_j, does that imply P_j | | P_i?
 - If P_i || P_j and P_j || P_k, does that imply P_i || P_k?

Find Parallelism in Loops — Is it Easy?

- Need to analyze array subscripts
- Need to check whether two array subscripts access the same memory location

Dependence in Loops

```
for i = 1 to 50

S1 A[i] = B[i-1] + C[i]

S2 B[i] = A[i+2] + C[i]

endfor
```

 Unrolling loops can help figure out dependences

```
S1(1) A[1] = B[0] + C[1]

S2(1) B[1] = A[3] + C[1]

S1(2) A[2] = B[1] + C[2]

S2(2) B[2] = A[4] + C[2]

S1(3) A[3] = B[2] + C[3]

S2(3) B[3] = A[5] + C[3]
```

•••••

Dependence in Loops

```
for i = 1 to 50

S1 A[i] = B[i-1] + C[i]

S2 B[i] = A[i+2] + C[i]

endfor
```

 Unrolling loops can help figure out dependences

- large loop bounds
- loop bounds may not be known at compile time

S1(1)
$$A[1] = B[0] + C[1]$$

S2(1) $B[1] = A[3] + C[1]$
S1(2) $A[2] = B[1] + C[2]$
S2(2) $B[2] = A[4] + C[2]$
S1(3) $A[3] = B[2] + C[3]$
S2(3) $B[3] = A[5] + C[3]$

CS 698L

Dependence in Loops

 Parameterize the statement with the loop iteration number

Normalized Iteration Number

For an arbitrary loop in which the loop index I runs from L to U in steps of S, the normalized iteration number i of a specific iteration is equal to the value (I-L+1)/S, where I is the value of the index on that iteration

Iteration Vector

Given a nest of *n* loops, the *iteration vector i* of a particular iteration of the innermost loop is a vector of integers that contains the iteration numbers for each of the loops in order of nesting level.

The iteration vector \mathbf{i} is $\{i_1, i_2, ..., i_n\}$ where $i_k, 1 \le k \le n$, represents the iteration number for the loop at nesting level k.

Iteration Space Graphs

- Represent each dynamic instance of a loop as a point in the graph
- Draw arrows from one point to another to represent dependences

```
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
S1: a[i][j] = a[i][j-1] * x;
```


Iteration Space Graph

- Dimension of iteration space is the loop nest level
- Not restricted to be rectangular

```
for i = 1 to 5 do
  for j = i to 5 do
    A(i, j) = B(i, j) + C(j)
  endfor
endfor
```

CS 698L

Lexicographic Ordering of Iteration Vectors

• Assume i is a vector, i_k is the k^{th} element of the vector i, and i[1:k] is a k-vector consisting of the leftmost k elements of i

- Iteration i precedes iteration j, denoted by i < j, if and only if
 - i. i[1:n-1] < j[1:n-1], or
 - ii. i[1:n-1] = j[1:n-1] and $i_n < j_n$

Formal Definition of Loop Dependence

There exists a dependence from statement S1 to statement S2 in a common nest of loops if and only if there exist two iteration vectors i and j for the nest, such that

- i. i < j or i = j and there is a path from S1 to S2 in the body of the loop,
- ii. statement S1 accesses memory location M on iteration i and statement S2 accesses location M on iteration j, and
- iii. one of these accesses is a write.

Distance Vectors

 For each dimension of an iteration space, the distance is the number of iterations between accesses to the same memory location

• Distance vector: (1, 2)

inner loop

Distance Vectors

• Suppose that there is a dependence from statement S1 on iteration i of a loop nest and statement S2 on iteration j, then the *dependence* distance vector d(i,j) is defined as a vector of length n such that $d(i,j)_k = j_k - i_k$.

• A vector (d1, d2) is positive if (0,0) < (d1, d2), i.e., its first (leading) non-zero component is positive

Direction Vectors

Suppose that there is a dependence from statement S1 on iteration i
 of a loop nest of n loops and statement S2 on iteration j, then the
 dependence direction vector is D(i,j) is defined as a vector of length n
 such that

$$D(i,j)_{k} = \begin{cases} -if \ D(i,j)_{k} < 0 \\ 0 \ if \ D(i,j)_{k} = 0 \\ +if \ D(i,j)_{k} > 0 \end{cases}$$

Distance and Direction Vectors

• Suppose that there is a dependence from statement S1 on iteration i of a loop nest of *n* loops and statement S2 on iteration i, then the

depe such

In any valid dependence, the leftmost non-"0" component of the direction vector must be "+"

$$D(i,j)_{k} = \begin{cases} -ij \ D(i,j)_{k} < 0 \\ 0 \ if \ D(i,j)_{k} = 0 \\ +if \ D(i,j)_{k} > 0 \end{cases}$$

Distance and Direction Vector Example

```
DO I = 1, N

DO J = 1, M

DO K = 1, L

A(I+1,J,K-1) = A(I,J,K) + 10

ENDDO

ENDDO

ENDDO
```

Distance and Direction Vector Example

```
FOR I = 1, 5
DO J = 1, 5
A(I,J) = A(I,J-3) + A(I-2,J) + A(I-1,J+2) + A(I+1,J-1)
ENDFOR
ENDFOR
```

Reordering Transformations

- A reordering transformation does not add or remove statements from a loop nest
 - Only reorders the execution of the statements that are already in the loop

Do not add or remove statements

Do not add or remove any new dependences

Direction Vector Transformation

- Let T be a transformation is applied to a loop nest
 - Does not rearrange the statements in the body of the loop
- T is valid if, after it is applied, none of the direction vectors for dependences with source and sink in the nest has a leftmost non-"0" component that is "-"

Validity of Dependence-Based Transformations

 A transformation is said to be valid for the program to which it applies if it preserves all dependences in the program

Loop-Carried Dependences

- S1 can reference the common location on one iteration of a loop; on a subsequent iteration S2 can reference the same location
- i. S1 references location *M* on iteration i
- ii. S2 references *M* on iteration j
- iii. d(i,j) > 0 (that is, contains a "+"
 as leftmost non-"0" component)

```
DO I = 1, N

S1 A(I+1) = F(I)

S2 F(I+1) = A(I)

ENDDO
```

Level of Loop-Carried Dependence

• The *level* of a loop-carried dependence is the index of the leftmost non-"0" of D(i,j) for the dependence.

```
DO I = 1, 10

DO J = 1, 10

DO K = 1, 10

A(I,J,K+1) = A(I,J,K)

ENDDO

ENDDO

ENDDO
```

Utility of Dependence Levels

- A reordering transformation preserves all level-k dependences if it
 - i. preserves the iteration order of the level-k loop
 - ii. does not interchange any loop at level < k to a position inside the level-k loop and
 - iii. does not interchange any loop at level > k to a position outside the level-k loop.

Is this transformation valid?

```
DO I = 1, 10

DO J = 1, 10

DO K = 10, 1, -1

DO K = 1, 10

A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO

DO I = 1, 10

DO K = 10, 1, -1

DO J = 1, 10

A(I+1,J+2,K+3) = A(I,J,K) + B

ENDDO

ENDDO

ENDDO

ENDDO

ENDDO
```

Loop-Independent Dependences

- S1 and S2 can both reference the common location on the same loop iteration, but with S1 preceding S2 during execution of the loop iteration.
- i. S1 refers to memory location *M* on iteration i
- ii. S2 refers to *M* on iteration j and i = j
- iii. There is a control flow path from S1 to S2 within the iteration.

```
DO I = 1, N

S1 A(I+1) = F(I)

S2 G(I+1) = A(I+1)

ENDDO
```

```
DO I = 1, 9

S1 A(I) =

S2 ... = A(10-I)

ENDDO
```

Is this transformation valid?

```
DO I = 1, N D(1) = A(1) + E
S1: A(I) = B(I) + C DO I = 2, N
S2: D(I) = A(I) + E S1: A(I-1) = B(I-1) + C
ENDDO S2: D(I) = A(I) + E
ENDDO
A(N) = B(N) + C
```

Dependence Testing

- Dependence question
 - Can 4*I be equal to 2*I+1 for I in [1, N]?

DO I=1, N
$$A(4*I) = ...$$

$$... = A(2*I+1)$$
ENDDO

Given (i) two subscript functions f and g, and (ii) lower and upper loop bounds L and U respectively, does $f(i_1) = g(i_2)$ have a solution such that $L \le i_1, i_2 \le U$?

Multiple Loop Nests

```
DO i=1,n

DO j=1,m

X(a_1*i + b_1*j + c_1) = ...

... = X(a_2*i + b_2*j + c_2)

ENDDO

ENDDO
```

Dependence test

$$a_1 * i_1 + b_1 * j_1 + c_1 = a_2 * i_2 + b_2 * j_2 + c_2$$

 $1 \le i_1, i_2 \le n$
 $1 \le j_1, j_2 \le m$

Multiple Loop Indices, Multi-Dimensional Array

DO i=1,n
DO j=1,m

$$X(a_1*i_1 + b_1*j_1 + c_1, d_1*i_1 + e_1*j_1 + f_1) = ...$$

 $... = X(a_2*i_2 + b_2*j_2 + c_2, d_2*i_2 + e_2*j_2 + f_2)$
ENDDO

Dependence test

$$a_1 i_1 + b_1 j_1 + c_1 = a_2 i_2 + b_2 j_2 + c_2$$

 $d_1 i_1 + e_1 j_1 + f_1 = d_2 i_2 + e_2 j_2 + f_2$
 $1 \le i_1, i_2 \le n$
 $1 \le j_1, j_2 \le m$

CS 698L

ENDDO

Multiple Loop Indices, Multi-Dimensional Array

ENDDO

DO i=1,n
DO j=1,m

$$X(a_1*i_1 + b_1*j_1 + c_1, d_1*i_1 + e_1*j_1 + f_1) = ...$$

 $... = X(a_2*i_2 + b_2*j_2 + c_2, d_2*i_2 + e_2*j_2 + f_2)$
ENDDO

Dependence test

$$a_1 i_1 + b_1 j_1 + c_1 = a_2 i_2 + b_2 j_2 + c_2$$

 $d_1 i_1 + e_1 j_1 + f_1 = d_2 i_2 + e_2 j_2 + f_2$
 $1 \le i_1, i_2 \le n$
 $1 \le j_1, j_2 \le m$

complex

Data Dependence Testing

Variables in loop indices are integers
 — Diophantine equations

- Equation $a_1*i_1-b_1*i_2=c$ has a solution if and only if gcd(a,b) (evenly) divides c
- The Diophantine equation $a_1i_1+a_2i_2+\cdots+a_ni_n=c$ has a solution iff $\gcd(a_1,a_2,\ldots,a_n)$ evenly divides c

• If there is a solution, we can test if it lies within the loop bounds. If not, then there is no dependence

CS 698L

Dependence Testing Problem

Equivalent to an integer linear programming problem with 2n variables and n+d constraints

An algorithm that finds two iteration vectors that satisfies these constraints is called a dependence tester

This is an NP-complete problem, and so in practice the algorithms must be conservative

Lamport Test

```
for i = 1 to n

for j = 1 to n

for j = 1 to n

for j = 1 to n

a[i,j] = a[i-1,j+1]

S1 a[i,2*j] = a[i-1,2*j+1]
```

Other Dependence Tests

- GCD test is simple but not accurate
 - It can tell us that there is no solution
- Other tests
 - Banerjee-Wolfe test: widely used test
 - Power Test: improvement over Banerjee test
 - Omega test: "precise" test, most accurate for linear subscripts
 - Range test: handles non-linear and symbolic subscripts
 - many variants of these tests

```
for i = 1 to 10
S1 a[i] = b[i] + c[i]
S2 d[i] = a[i-100];
```

Banerjee-Wolfe Test

• If the total subscript range accessed by ref1 does not overlap with the range accessed by ref2, then ref1 and ref2 are independent

- Weakness
 - Ranges accessed
 - [1:100], [6:105]
 - No dependence?

Dependence Testing is Hard

Unknown loop bounds can lead to false dependences

Need to be conservative about aliasing

Triangular loops adds new constraints

Why is Dependence Analysis Important?

- Dependence information can be used to drive other important loop transformations
 - For example, loop parallelization, loop interchange, loop fusion

We will see many examples soon

References

- R. Bryant and D. O'Hallaron Computer Systems: A Programmer's Perspective.
- R. Allen and K. Kennedy Optimizing Compilers for Modern Architectures.
- Michelle Strout CS 553: Compiler Construction, Fall 2007.