
CS698L: Concurrent Data
Structures

Swarnendu Biswas

Semester 2019-2020-I

CSE, IIT Kanpur

Content influenced by many excellent references, see References slide for acknowledgements.

Need for Concurrent Data Structures

CS698L Swarnendu Biswas

Using more hardware resources may not always translate to
speedup

Multithreaded/concurrent programming is now mainstream

Challenges with Concurrent Programming

CS698L Swarnendu Biswas

Less synchronization More synchronization

Deadlock
Order, atomicity &

sequential consistency
violations

Poor performance: lock
contention, serialization

Concurrent and
correct

Need for Concurrent Data Structures

CS698L Swarnendu Biswas

Less synchronization More synchronization

Deadlock
Order, atomicity &

sequential consistency
violations

Poor performance: lock
contention, serialization

Concurrent and
correctImplies that languages and libraries should provide

efficient portable data structures as building blocks

Designing a Concurrent Set
Data Structure

CS698L Swarnendu Biswas

Designing A Set Data Structure

public interface Set<T> {
boolean add(T x);
boolean remove(T x);
boolean contains(T x);

}

add(x)
• adds x to the set and returns true if

and only if x was not already present

remove(x)

• removes x from the set and returns
true if and only if x was present

contains(x)

• returns true if and only if x is present
in the set

CS698L Swarnendu Biswas

Designing A Set Data Structure using Linked
Lists
class Node {

T data;
int key;
Node next;

}

• Two immutable sentinel nodes
• head and tail

CS698L Swarnendu Biswas

head tail

• key field is the data’s hash code, to
help with efficient search

• Assume that all hash codes are unique

A Set Instance

CS698L Swarnendu Biswas

a b

head tail

Invariants

• No duplicates

• Nodes are sorted based on the key value

• tail is reachable from head

A Thread-Unsafe Set Data Structure

public class UnsafeList<T> {

private Node head;

public UnsafeList() {

head = new Node(Integer.MIN_VALUE);

head.next = new Node(Integer.MAX_VALUE);

}

CS698L Swarnendu Biswas

A Thread-Unsafe Set Data Structure: add()

public boolean add(T x) {

Node pred, curr;

int key = x.hashcode();

pred = head;

curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

if (key == curr.key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

}

}

CS698L Swarnendu Biswas

A Thread-Unsafe Set Data Structure:
remove()
public boolean remove(T x) {

Node pred, curr;

int key = x.hashcode();

pred = head;

curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

}

CS698L Swarnendu Biswas

A Thread-Unsafe Set Data Structure:
contains()
public boolean contains(T x) {

Node pred, curr;

int key = x.hashcode();

pred = head;

curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

if (key == curr.key) {

return true;

} else {

return false;

}

}

}

CS698L Swarnendu Biswas

A Thread-Unsafe Set Data Structure:
remove()
public boolean remove(T x) {

Node pred, curr;

int key = x.hashcode();

pred = head;

curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

}

CS698L Swarnendu Biswas

Can you give an example to show remove() is
not thread-safe?

Unsafe Set: Incorrect remove()

CS698L Swarnendu Biswas

head
prev2 curr2

b

tail

a

• Thread 1 is executing remove(a)

• Thread 2 is executing remove(b)

prev1 curr1

X X

1

23

A Concurrent Set Data Structure

public class CoarseList<T> {

private Node head;

private Lock lock = new ReentrantLock();

public CoarseList() {

head = new Node(Integer.MIN_VALUE);

head.next = new Node(Integer.MAX_VALUE);

}

CS698L Swarnendu Biswas

A Concurrent Set Data Structure: add()

public boolean add(T x) {
Node pred, curr;
int key = x.hashcode();
lock.lock();
try {
pred = head;
curr = pred.next;
while (curr.key < key) {
pred = curr;
curr = curr.next;

}

if (key == curr.key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

}

} finally {

lock.unlock();

}

}
CS698L Swarnendu Biswas

A Concurrent Set Data Structure: remove()

public boolean remove(T x) {
Node pred, curr;
int key = x.hashcode();
lock.lock();
try {
pred = head;
curr = pred.next;
while (curr.key < key) {
pred = curr;
curr = curr.next;

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

} finally {

lock.unlock();

}

}

}

CS698L Swarnendu Biswas

Performance Metrics of Concurrent Data
Structures
• Speedup measures how effectively is an application utilizing

resources
• Linear speedup is desirable

• Data structures whose speedup grows with resources is desirable

• Amdahl’s law says we need to reduce amount of serialized code

• Lock contention
• Lock implementations with single memory location can introduce additional

coherence traffic and memory traffic due to unsuccessful acquires

• Blocking or nonblocking

CS698L Swarnendu Biswas

Challenges in Designing Concurrent Data
Structures
• Multiple threads can access a shared object

• E.g., a node in our Set data structure

• Situation:
• Thread 1 is checking for contains(a)

• Thread 2 is executing remove(a)

• How do you reason about the outcome?

CS698L Swarnendu Biswas

Reasoning about Correctness

• Identify invariants and make sure they always hold
• An item is in the set if and only if it is reachable from head

• Safety property is linearizability

• Liveness property are starvation and deadlock-freedom

CS698L Swarnendu Biswas

Understanding Linearizability

• Say you perform some operations on an object (for e.g., a method call)
• Each operation requires an invocation on that object, followed by a response

• A history is a sequence of invocations and responses on an object made
by concurrent threads

CS698L Swarnendu Biswas

time

invocation

Thread 1 invokes
acquire(lock)

Thread 2 invokes
acquire(lock)

Thread 1
succeeds

Thread 2 fails

response

Understanding Linearizability

• Sequential history is where all invocations and responses are
instantaneous
• Starts with an invocation, last invocation may not have a response

• Method calls do not overlap

CS698L Swarnendu Biswas

Thread 1 invokes
acquire(lock)

Thread 2 invokes
acquire(lock)

Thread 1 fails
Thread 2
succeeds

time

Is this a sequential
history?

Understanding Linearizability

• Sequential history is where all invocations and responses are
instantaneous

CS698L Swarnendu Biswas

Thread 1 invokes
acquire(lock)

Thread 2 invokes
acquire(lock)

Thread 1 fails
Thread 2
succeeds

time

Thread 1 invokes
acquire(lock)

Thread 1 fails
Thread 2 invokes

acquire(lock)
Thread 2
succeeds

This is sequential
history

Linearizability

• A history (set of operations) σ is linearizable if
• For every completed operation in σ, the operation returns the same result in

the execution as it would return if every operation in σ would have been
completed one after the other

• If an operation op1 completes before operation op2 in sequential history, then
op1 precedes op2 in σ

CS698L Swarnendu Biswas

Linearizability

• A history (set of operations) σ is linearizable if
• For every completed operation in σ, the operation returns the same result in

the execution as it would return if every operation in σ would have been
completed one after the other

• If an operation op1 completes before operation op2, then op1 precedes op2
in σ.

• Simpler words
• Invocations and response can be reordered to form a sequential history

• Sequential history is correct according to the semantics of the object

• If a response preceded an invocation in the original history, it must still
precede it in the sequential reordering

CS698L Swarnendu Biswas

Understanding Linearizability

• Sequential history

CS698L Swarnendu Biswas

time

Thread 1 invokes
acquire(lock)

Thread 1 fails
Thread 2 invokes

acquire(lock)
Thread 2
succeeds

Is this linearizable?
Is this sequential

history?

Understanding Linearizability

• Sequential history

• Successful linearization

CS698L Swarnendu Biswas

time

Thread 1 invokes
acquire(lock)

Thread 1 fails
Thread 2 invokes

acquire(lock)
Thread 2
succeeds

Thread 2 invokes
acquire(lock)

Thread 2
succeeds

Thread 1 invokes
acquire(lock)

Thread 1 fails

Linearization Point

• Linearization point is between the function invocation and response

• A single atomic step where the method call “takes effect”

CS698L Swarnendu Biswas

What are the linearization points for add(), remove(), and
contains() for the coarsely-synchronized Set?

Sequential Consistency vs Linearizability

Sequential Consistency

• Method calls appear to happen
instantaneously in some
sequential order

• A sequentially consistent history
is not necessarily linearizable

Linearizability

• Method calls appear to happen
instantaneously at some point
between its invocation and
response

• Every linearizable history is sequ
entially consistent

CS698L Swarnendu Biswas

Linearizability vs Serializability

CS698L Swarnendu Biswas

time

Thread 1
invokes

acquire(lock)

Thread 1’s
acquire

succeeds

Thread 2
invokes

release(lock)

Thread 2’s
release

succeeds

Thread 1
invokes

release(lock)

Thread 1’s
release

succeeds

Thread 2
invokes

release(lock)

Thread 2’s
release

succeeds

Thread 1
invokes

acquire(lock)

Thread 1’s
acquire

succeeds

Thread 1
invokes

release(lock)

Thread 1’s
release

succeeds

Not
linearizable

Serializable

Linearizability vs Serializability

Linearizability

• Property about operations on
individual objects
• Local property

• Requires real-time ordering

Serializability

• Property about transactions or
group of operations on one or
more objects
• Global property

• Requires output is equivalent to
some serial ordering

CS698L Swarnendu Biswas

Linearizability vs Serializability

Linearizability

• Property about operations on
individual objects
• Local property

• Requires real-time ordering

Serializability

• Property about transactions or
group of operations on one or
more objects
• Global property

• Requires output is equivalent to
some serial ordering

CS698L Swarnendu Biswas

“Linearizability can be viewed as a special case of strict serializability where
transactions are restricted to consist of a single operation applied to a single
object” – Herlihy and Wing

Ideas in Implementing a Concurrent Data
Structure

Coarse-grained synchronization

• Easy to get right, low concurrency, not scalable

Fine-grained synchronization

• Difficult to get right, more concurrent and scalable

???

CS698L Swarnendu Biswas

Ideas in Implementing a Concurrent Data
Structure

Coarse-grained synchronization

• Easy to get right, low concurrency, not scalable

Fine-grained synchronization

• Difficult to get right, more concurrent and scalable

Optimistic synchronization

• Avoid synchronization to search, good for low contention cases

Lazy synchronization

• Defer expensive data structure manipulation operations

Nonblocking synchronization

CS698L Swarnendu Biswas

Types of Synchronization

Coarse-grained synchronization

Fine-grained synchronization

Optimistic synchronization

Lazy synchronization

Nonblocking synchronization

CS698L Swarnendu Biswas

Fine-Grained Synchronization

• Add a lock object to each list
node

class Node {
T data;
int key;
Node next;
Lock lock;

}

CS698L Swarnendu Biswas

What are possible ideas to implement add() and
remove()?

Is one lock per node enough?

Thread 1

node0.mtx_lock.lock();

node1 = node0.next;

node0.mtx_lock.unlock();

node1.mtx_lock.lock();

Thread 2

// Remove node1 from list

CS698L Swarnendu Biswas

Is one lock per node enough?

CS698L Swarnendu Biswas

head

b

tail

aX

• Thread 1 is executing remove(a)

• Thread 2 is executing remove(b)

cX

remove(a) remove(b)

1

2 3

Fine-Grained Synchronization: add()
public boolean add(T x) {

int key = x.hashcode();

head.lock();

Node pred = head;

try {

Node curr = pred.next;

curr.lock();

try {

while (curr.key < key) {

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

if (key == curr.key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

}

} finally {

curr.unlock();

}

} finally {

pred.unlock();

}

}

CS698L Swarnendu Biswas

Fine-Grained Synchronization: add()
public boolean add(T x) {

int key = x.hashcode();

head.lock();

Node pred = head;

try {

Node curr = pred.next;

curr.lock();

try {

while (curr.key < key) {

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

if (key == curr.key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

}

} finally {

curr.unlock();

}

} finally {

pred.unlock();

}

}

CS698L Swarnendu Biswas

Where is the linearization point?

Fine-Grained Synchronization: add()
public boolean add(T x) {

int key = x.hashcode();

head.lock();

Node pred = head;

try {

Node curr = pred.next;

curr.lock();

try {

while (curr.key < key) {

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

if (key == curr.key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

}

} finally {

curr.unlock();

}

} finally {

pred.unlock();

}

}

CS698L Swarnendu Biswas

Where is the linearization point?
• x is absent, predecessor node is locked
• x is present, next higher node is locked

Fine-Grained Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

head.lock();

Node pred = null, curr = null;

try {

pred = head; curr = pred.next;

curr.lock();

try {

while (curr.key < key) {

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

} finally {

curr.unlock();

}

} finally {

pred.unlock();

}

}

CS698L Swarnendu Biswas

Fine-Grained Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

head.lock();

Node pred = null, curr = null;

try {

pred = head; curr = pred.next;

curr.lock();

try {

while (curr.key < key) {

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

} finally {

curr.unlock();

}

} finally {

pred.unlock();

}

}

CS698L Swarnendu Biswas

What is the linearization point?

Fine-Grained Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

head.lock();

Node pred = null, curr = null;

try {

pred = head; curr = pred.next;

curr.lock();

try {

while (curr.key < key) {

pred.unlock();

pred = curr;

curr = curr.next;

curr.lock();

}

if (key == curr.key) {

pred.next = curr.next;

return true;

} else {

return false;

}

} finally {

curr.unlock();

}

} finally {

pred.unlock();

}

}

CS698L Swarnendu Biswas

Where is the linearization point?
• x is present, predecessor node is locked
• x is absent, next higher node is locked

Need to avoid Deadlocks

• Deadlocks are always a problem with lock-based programming

• For the Set data structure, each thread must acquire locks in some
pre-determined order

CS698L Swarnendu Biswas

Fine-Grained Set Design

CS698L Swarnendu Biswas

Are there other problems with our fine-grained Set design?

Fine-Grained Set Design

CS698L Swarnendu Biswas

Are there other problems with our fine-grained Set design?
• Potentially long sequence of lock acquire and release

operations
• Prohibits concurrent accesses to disjoint parts of the data

structure

Optimistic Synchronization

Optimistic strategy

• Access data without acquiring a lock, lock only when required

• Validate that the condition before locking is still valid

• If valid, then continue with access/mutation

• If invalid, start over

CS698L Swarnendu Biswas

Optimistic strategy works well if conflicts are rare

Optimistic Synchronization: add()
public boolean add(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

pred.lock(); curr.lock();

try {

if (validate(pred, curr)) {

if (curr.key == key) {

return false;

} else {

Node node = new Node(x);

node.next = curr; prev.next = node;

return true;

}

}

} finally {

curr.unlock(); pred.unlock();

}

}

}

CS698L Swarnendu Biswas

How could you validate?

• Double check that the optimistic
result is still valid

• Check that prev is reachable
from head and

prev.next == curr

boolean validate(Node prev, Node curr) {

Node node = head;

while (node.key <= prev.key) {

if (node == prev)

return prev.next == curr;

node = node.next;

}

return false;

}

CS698L Swarnendu Biswas

Is validation necessary?

CS698L Swarnendu Biswas

Is validation necessary?

CS698L Swarnendu Biswas

a

head

z

tail

p

curr

prev

X

• Thread 1 is executing remove(p)

1

2

Optimistic Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

pred.lock(); curr.lock();

try {

if (validate(pred, curr)) {

if (curr.key == key) {

pred.next = curr.next;

return true;

} else {

return false;

}

}

} finally {

curr.unlock(); pred.unlock();

}

} }

CS698L Swarnendu Biswas

Optimistic Synchronization: contains()
public boolean contains(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr;

curr = curr.next;

}

pred.lock(); curr.lock();

try {

if (validate(pred, curr)) {

return curr.key == key;

}

} finally {

curr.unlock(); pred.unlock();

}

}

}

CS698L Swarnendu Biswas

Optimistic Synchronization Design

CS698L Swarnendu Biswas

Are there problems with our optimistic synchronization-
based Set design?

Optimistic Synchronization Design

CS698L Swarnendu Biswas

Are there problems with our optimistic synchronization-
based Set design?
• Validation can be costly (for e.g., need to traverse the list)
• Need lock operations for contains()

• Bad design in general

Lazy Synchronization

Delay
mutation

operations for
a later time

• Add a mark/flag on each node to indicate
logical deletion

• Invariant: every unmarked node is
reachable from head

Behavior

•contains(): needs only one wait-free traversal

•add(): traverses the list, locks the predecessor,
and inserts the node

•remove(): mark the target node logically
removing it, then redirect the predecessor’s next
link physically removing it

CS698L Swarnendu Biswas

Lazy Synchronization: add()
public boolean add(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr; curr = curr.next;

}

pred.lock();

try {

curr.lock();

try {

if (validate(pred, curr)) {

if (curr.key == key) {

return false;

} else {

Node node = new Node(x);

node.next = curr;

prev.next = node;

return true;

} }

} finally {

curr.unlock(); }

} } finally {

pred.unlock();

} } }

CS698L Swarnendu Biswas

How could you validate?

• Check that both prev and curr
are unmarked and

prev.next == curr

boolean validate(Node prev, Node curr) {

return !prev.marked && !curr.marked &&
prev.next == curr;

}

CS698L Swarnendu Biswas

Lazy Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

while (true) {

Node pred = head;

Node curr = pred.next;

while (curr.key < key) {

pred = curr; curr = curr.next;

}

pred.lock();

try {

curr.lock();

try {

if (validate(pred, curr)) {

if (curr.key != key) {

return false;

} else {

curr.marked = true;

prev.next = curr.next;

return true;

}

}

} finally {

curr.unlock(); }

}

} finally {

pred.unlock();

} } }
CS698L Swarnendu Biswas

Does this validation scheme work?

CS698L Swarnendu Biswas

head
prev curr

, 0b, 0

tail

a, 1, 0 X

• Thread 1 is executing remove(b)

• Thread 2 is executing remove(a)

1 1

2

33

Does this validation scheme work?

CS698L Swarnendu Biswas

head
prev

a, 0, 0

curr

, 0b, 0

tail

X

p, 0

• Thread 1 is executing remove(b)

• Thread 2 is executing add(p)

1 1

2

3 3

Lazy Synchronization: contains()

public boolean contains(T x) {

int key = x.hashcode();

Node curr = head;

while (curr.key < key) {

curr = curr.next;

}

return curr.key == key && !curr.marked;

}

CS698L Swarnendu Biswas

Detecting Conflicting Accesses: Example 1

CS698L Swarnendu Biswas

curr1

, 0z, 0

tail

X
p, 1

head
prev1

a, 0, 0

x, 1

• Thread 1 is executing contains(x)

• Thread 2 executes remove(p..x)

1

2

1

Detecting Conflicting Accesses: Example 2

CS698L Swarnendu Biswas

curr1

, 0z, 0

tail

p, 1

head

a, 0, 0

x, 1

• Thread 1 is executing contains(x), traversing
along the marked portion of the list (p…x)

• Thread 2 is executing add(x)

x, 0

1

2

3

Nonblocking Synchronization

• Why do we need nonblocking designs?

• Eliminate locks altogether

• Idea: Use RMW instructions like CAS to update next field

CS698L Swarnendu Biswas

Nonblocking Synchronization with CAS

CS698L Swarnendu Biswas

• Thread 1 is executing remove(a)

X
tailhead

a, 1, 0 , 0c, 0

b, 0

remove(a)

• Thread 2 is executing add(b)

add(b)

X

1

2

Nonblocking Synchronization with CAS

CS698L Swarnendu Biswas

head

b, 1 , 0

tail

a, 1, 0 X

• Thread 1 is executing remove(a)

• Thread 2 is executing remove(b)

c, 0X

remove(a) remove(b) 12

Possible Workaround

• Cannot allow updates to a node once it has been logically or
physically removed from the list

• Treat the next and marked fields as atomic

CS698L Swarnendu Biswas

In Java, we have AtomicMarkableReference<T> from the
java.util.concurrent.atomic package

address bit

AtomicMarkableReference<T>

• public boolean compareAndSet(T expectedReference,

T newReference,

boolean expectedMark,

boolean newMark);

• public boolean attemptMark(T expectedReference,

boolean newMark);

• public T get(boolean[] marked);

CS698L Swarnendu Biswas

Designing the Nonblocking Set

• The next field is of type AtomicMarkableReference<Node>

• A thread logically removes a node by setting the mark bit in the next
field

• As threads traverse the list, they clean up the list by physically
removing marked nodes

• Threads performing add() and remove() do not traverse marked
nodes, they remove them before continuing

CS698L Swarnendu Biswas

Why?

Helper Code
• Helper method public Window find(Node head, int key)

• Traverses the list seeking to set pred to the node with the largest key less
than key, and curr to the node with the least key greater than or equal to
key

class Window {

public Node pred, curr;

Window(Node myPred, Node myCurr) {

pred = myPred; curr = myCurr;

}

}

CS698L Swarnendu Biswas

Helper Code
public Window find(Node head, int key) {

Node pred = null, curr = null, succ = null;

boolean[] marked = {false};

boolean snip;

retry: while (true) {

pred = head;

curr = pred.next.getReference();

while (true) {

succ = curr.next.get(marked);

while (marked[0]) {

snip = pred.next.compareAndSet(curr, succ, false,
false);

if (!snip) continue retry;

curr = succ;

succ = curr.next.get(marked);

}

if (curr.key >= key)

return new Window(pred,
curr);

pred = curr;

curr = succ;

}

}

}

CS698L Swarnendu Biswas

Nonblocking Synchronization: add()

public boolean add(T x) {

int key = x.hashcode();

while (true) {

Window w = find(head, key);

Node pred = w.pred, curr = w.curr;

if (curr.key == key) return false;

else {

Node node = new Node(x);

node.next = new AtomicMarkableReference(curr, false);

if (pred.next.compareAndSet(curr, node, false, false))

return true;

} } }

CS698L Swarnendu Biswas

Nonblocking Synchronization: remove()
public boolean remove(T x) {

int key = x.hashcode();

boolean snip;

while (true) {

Window w = find(head, key);

Node pred = w.pred, curr = w.curr;

if (curr.key != key) return false;

else {

Node succ = curr.next.getReference();

snip = curr.next.compareAndSet(succ,succ,false,true);

if (!snip) continue;

pred.next.compareAndSet(curr, succ, false, false);

return true;

} } }CS698L Swarnendu Biswas

Nonblocking Synchronization: contains()

public boolean contains(T x) {

boolean[] marked = new boolean[];

int key = x.hashcode();

Node curr = head;

while (curr.key < key) {

curr = curr.next;

Node succ = curr.next.get(marked);

}

return curr.key == key && !marked[0];

}

CS698L Swarnendu Biswas

Lock-free Programming and ABA Problem

CS698L Swarnendu Biswas

tailhead

ba c

• Thread 1 will execute deq(a)

d

Lock-free Programming and ABA Problem

CS698L Swarnendu Biswas

tailhead

ba c

• Thread 1 is executing deq(a), gets delayed

d

Lock-free Programming and ABA Problem

CS698L Swarnendu Biswas

tailhead

ba c

• Other threads execute deq(a, b, c, d),
then execute enq(a)

d

Lock-free Programming and ABA Problem

CS698L Swarnendu Biswas

tailhead

a b

• Other threads execute deq(a, b, c, d),
then execute enq(a)

Lock-free Programming and ABA Problem

CS698L Swarnendu Biswas

• Thread 1 is executes CAS for deq(a), CAS
succeeds

tailhead

a b

head.compareAndSet(first, next)

To Lock or Not to Lock!

• Combine blocking and nonblocking schemes

• For e.g., lazily synchronized Set

•add() and remove() were blocking

•contains() was nonblocking

Use a middle path more often than not

CS698L Swarnendu Biswas

Please spend several hours reasoning about the correctness
of your concurrent data structures, if you are writing one!

References

• M. Herlihy and N. Shavit – The Art of Multiprocessor Programming.

• M. Moir and N. Shavit – Concurrent Data Structures.

• Stephen Tu – Techniques for Implementing Concurrent Data Structures on Modern Multicore Machines.

CS698L Swarnendu Biswas

