Brief Introduction to Smart
Contracts and Solidity

CS 731: Blockchain Technology and Applications
Instructor : Chavhan Sujeet Yashavant

What is Ethereum??

[It’s a Blockchain, With following additions }

e A built-in programming Language
e Two types of accounts
o User Accounts (Controlled by Private Keys)
o Contract Accounts (Controlled by Code)
e Anyone can create an app by defining it as a Contract

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Smart Contracts

Gllllllllllln qlllllllllll?

Smart contracts

e Tiny computer programs
e Stored inside a blockchain

Ref: https://savjee.be/videos/simply-explained /smart-contracts/

Smart Contract

e A code that resides on blockchalin
e EXxecutes when certain predetermined conditions are

satisfied

Smart Contract

agreement between mutually distrusting participants
automatically enforced by the consensus mechanism of
the blockchain

without relying on a trusted authority.

Ref: Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. "A survey of attacks on ethereum smart contracts (sok)." International

conference on principles of security and trust. Springer, Berlin, Heidelberg, 2017. 6

What a Contract can Do?

e Send ETH to other contracts

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

What a Contract can Do?

e Send ETH to other contracts

e Read/write Storage

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

What a Contract can Do?

e Send ETH to other contracts
e Read/write Storage

e Call (i.e. start execution in) other Contracts

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Smart Contract Execution

e Every (full) node on Ethereum network processes

every transaction

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

10

Smart Contract Execution

1 pragma solidity 70.4.17;
2 contract Inbox

string public message;
function Inbox(string initialMessage) public {

message = initialMessage;

}

function SetMessage (string newMessage) public {
message = newMessage;

Solidity
Compiler

11

Smart Contract Execution

EVM
(Ethereum
Virtual
Machine)

12

Ethereum Virtual Machine (EVM)

e Global Singleton Computing Machine with a shared

ledger of data

13

Crowdfunding platform

Ref: https://savjee.be/videos/simply-explained /smart-contracts/

\

Minimum goal

14

Crowdfunding platform

Ref: https://savjee.be/videos/simply-explained /smart-contracts/

15

Crowdfunding platform

Ref: https://savjee.be/videos/simply-explained /smart-contracts/

16

Crowdfunding platform

Ref: https://savjee.be/videos/simply-explained /smart-contracts/

17

Crowdfunding platform

Ref: https://savjee.be/videos/simply-explained /smart-contracts/

18

Crowdfunding platform

Funded!

Ref: https://savjee.be/videos/simply-explained /smart-contracts/

19

Kickstarter for Crowdfunding platform

Supporters Product team

Ref: https://savjee.be/videos/simply-explained /smart-contracts/

20

Kickstarter for Crowdfunding platform

Trusting a third-party is required

Ref: https://savjee.be/videos/simply-explained /smart-contracts, https://pngimg.com

21

Smart contracts

"We can build a similar system with a Smart Contracts A

without the requirement of any third party

-

22

Kickstarter with Smart Contract

Product team

23

Kickstarter with Smart Contract

Supporters

Product team

24

Kickstarter with Smart Contract

B &5
&« &~

“Product team

Supporters

25

Kickstarter with Smart Contract

Supporters

Product team

26

Kickstarter with Smart Contract

Sup$>rt$ Product team

27

Introduction to Solidity

gma solidity 70.4.17;
ntract Inbox {
string public message;
function Inbox(string initialMessage) publi
message = initialMessage;

ction setMessage(string newMessage) public
message = newMessage;

Ca nct : on g et Me SSa g e (
blic view (gf”iﬂ&

message,

Introduction to Solidity: Version Pragma

pragma solidity 70.4.17;

Instructions to the compiler on how to treat the code.

All solidity source code should start with a “version pragma” which is a
declaration of the version of the solidity compiler this code should use.
This helps the code from being incompatible with the future versions of the

compiler which may bring changes.

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Introductlon to Solidity: Contract keyword

ragma solidity 70.4.17;
ontract Inbox {
tring public message;
function Inbox(string initialMessage) public
message = initialMessage;

function setMessage(string newMessage) public
message = newMessage;

function getMessage

message,

It deglare‘s a contract under which is the code encapsulated.

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Introductlon to Solidity: State Variables
pragma solidity "0.4.17;
contract Inbox {
string public message;
n Inbox(string initialMessage) public
message = initialMessage;

n setMessage(string newMessage) public
message = newMessage;

n getMessage (

oublic vie\ (string) {
Permapently storéd’if“contract storage — written
} to Ethereum Blockchain.

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Introductlon to Solldlty Function declaration

solidity ~0.4.17;
Inbox { Constructor

tring public message; ,//

function Inbox(string initialMessage)
message = initialMessage;

function setMessage(string newMessage)
message = newMessage;

function getMessage(

message,

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Introductlon to Solidity: Function Visibility
"agma solidity 70.4.17; Visibility
ntract Inbox {
string public message;
function Inbox(string
message = initialMess

function setMessage(string newMessage) public
message = _n€wMessage; View

keyword
£ inct Ot g etW

(string) {

message,

Introduction to Solidity: Function Visibility

Public - any contract and account can call

Private - only inside the contract that defines the
function

External - only other contracts and accounts can call
Internal - only inside contract that inherits an internal
function

Ref: https://solidity-by-example.org/visibility /

Introduction to Solidity: View and Pure functions

e View function declares that no state will be changed.
e Pure function declares that no state variable will be

changed or read.

Ref: https://solidity-by-example.org/visibility /

Introduction to Solidity: Code Execution on Real
Blockchain (Try this after success on Local

Blockchain)
e Testnet (most of the course projects will do it):

o Can use Remix and Metamask
o Can use hardhat to deploy on Goerli Testnet

e Mainnet
o Require real money

o Do not try unless you become expert

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Introduction to Solidity: Code Execution on
Local Blockchain (Try this first)
e Offline (Blockchain inside local machine): | will post a
video link on Discord about how to do it. It takes time.
o Can use Remix and Ganache
e Online (Blockchain inside browser): Remix IDE
o Simple one, first try this

o Let's see a Demo

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Crowdfunding
Smart Contract

~0.4.19;
Crowdfunding {
owner;
5 deadline;

> goal;

(addre => uint256) pu pledgeOf;
Crowdfunding(uint256 numberOfDays,
owner = .sender;
deadline = now + (numberOfDays * 1 days);

goal = goal;

1 pledge(uint256 amount)
(now < deadline);
(.value == amount);
pledgeOf [.sender] += amount;

claimFunds () ic {
(addre () .balance >= goal);
(now >= deadline);
(.sender == owner);

.sender.transfer(i) .balance);

getRefund() public {
(adc () .balance < goal);
(now >= deadline);
ui 6 amount = pledgeOf[.sender];
pledgeOf[.sender] = 0;
.sender.transfer(amount) ;

Currency
Example

minter;
— t balances;

Sent (amount) ;

constructor() {
minter = .sender;

mint(I receiver, amount)
(.sender == minter);
balances[receiver] += amount;

error InsufficientBalance(requested,

send (! receiver, amount)
if (amount > balances| .sender])
InsufficientBalance({
requested: amount,
available: balances]| .sender]
1 i
balances]| .sender] -= amount;
balances[receiver] += amount;
Sent (.sender, receiver, amount);

available);

Gas

e Halting problem
o Can't tell whether a program will halt or run

infinitely

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

40

Gas

e Halting problem
o Can't tell whether a program will halt or run
infinitely
e Solution: Gas Limit

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

41

Gas Limit

e Each opcode has a fixed amount of gas assigned and
is a measure of computational effort
e Gas is the execution fee, paid by the sender of the

transaction that triggered the computation

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

42

Gas Limit

e User sets max amount of Gas for a transaction
e Gas is lost if a user run out of Gas Limit, all changes

are reversed
e |f a transaction uses less gas than gas limit, then user

gets remaining Gas

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

43

Gas Limit

e Total fees = Total amount of Gas used X gas Price

e The gas price is not fixed

Ref: DEVCONT1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

44

Why Optimization?

e Caller needs to pay Gas according to Computational

Steps

Ref: Brandstatter, Tamara, et al. "Characterizing Efficiency Optimizations in Solidity Smart Contracts." 2020

IEEE International Conference on Blockchain (Blockchain). IEEE, 2020. °

Why Optimization?

e Caller needs to pay Gas according to Computational
Steps

e Optimization = Gas Saving = Money Saving

Ref: Brandstatter, Tamara, et al. "Characterizing Efficiency Optimizations in Solidity Smart Contracts." 2020

IEEE International Conference on Blockchain (Blockchain). IEEE, 2020. “°

Why Optimization?

e Caller needs to pay Gas according to Computational
Steps

e Optimization = Gas Saving = Money Saving

e A smart contract gets invoked many times, a small

optimization can result in huge saving

Ref: Brandstatter, Tamara, et al. "Characterizing Efficiency Optimizations in Solidity Smart Contracts." 2020

IEEE International Conference on Blockchain (Blockchain). IEEE, 2020. Y

Gas Costly Pattern 1: Dead Code
Unoptimized Code Optimized Code

function p1 (uint x) function pl opt (uint x)

{ . {
f (x> 5) if (x > 5)

if (x*x < 20) {

Statement 1 Statement 2
Statement 2 }

}
Statement 3 Statement 3

Ref: Chen, Ting, et al. "Under-optimized smart contracts devour your money." 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017. e

Gas Costly Pattern 2: Opaque Predicate

Unoptimized Code Optimized Code

Eunction p2 (uint X) | fynction p2_opt (uint x)

if (x > 5)

Ref: Chen, Ting, et al. "Under-optimized smart contracts devour your money." 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017. o

Gas Costly Pattern 3: Constant outcome of
a Loop

1 function p4 returns (uint) {
2 uint sum = 0;

3 for (uint 1 = 1; 1 <= 100; i++)
4 sum += i;
5
6

return sum;

}

1 function p4_opt returns (uint) {
2 return 5050;

3}

Ref: Chen, Ting, et al. "Under-optimized smart contracts devour your money." 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017.

50

Gas Costly Pattern 4: Comparison with Unilateral
Outcome in a Loop

unction p7 (uint x, uint y) returns (uint)

f
{

for (int 1 = 0; 1 < 100; i++)
if (¢ > 0)
y = X;
return y;

function p7_opt (uint x, uint y) returns (uint)
{
if (x > 0)
for (int 1 = 0; 1 < 100; i++)
y += X;
return y;

Ref: Chen, Ting, et al. "Under-optimized smart contracts devour your money." 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017. !

Smart Contract Security

e Correctness is ensured by the consensus mechanism
e Unfortunately, correctness is not sufficient to make

Smart Contracts secure.

Ref: Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. "A survey of attacks on ethereum smart contracts (sok)." International

conference on principles of security and trust. Springer, Berlin, Heidelberg, 2017. 52

Smart Contract Vuln 1: Overflow and Underflow

(address => uint256) balanceOf;

transfer(address to, uint256 value) {
(balanceOf[msg.sender] ~value);

balanceOf[msg.sender] _value;
balanceOf[to] _value;

fer(address to, uint256 value) {

(balanceOf[msg.sender] ~value
balanceOf[to] + value balanceOf[to]);

balanceOf[msg.sender] _value;
balanceOf[to] _value;

Ref: Sayeed, Sarwar, Hector Marco-Gisbert, and Tom Caira. "Smart contract: Attacks and protections." IEEE
Access 8 (2020): 24416-24427.

Smart Contract Vuln 2: Default Visibilities

Puzzle {
uint256 amount 0.5;
submit answer (string answer) {

msg.sender.tranfer(amount);

Ref: Sayeed, Sarwar, Hector Marco-Gisbert, and Tom Caira. "Smart contract: Attacks and protections." IEEE
Access 8 (2020): 24416-24427.

54

Smart Contract Vuln 3: Timestamp Dependence

e A smart contract that utilizes a current timestamp to

produce random numbers in order to determine lottery
results

e Miners can put a timestamp within 30 seconds of block
validation

e Miners can alter outcome of random number generator

Ref: Sayeed, Sarwar, Hector Marco-Gisbert, and Tom Caira. "Smart contract: Attacks and protections." IEEE
Access 8 (2020): 24416-24427. 55

Smart Contract Vuln 3: Timestamp Dependence

solidity 70.5.0;

ct TimedCrowdsale {
vent Finished();
ent notFinished();

ion isSaleFinished() private
.timestamp >= 1546300800;

unction run() public {
if (isSaleFinished()) {
emit Finished();
} else {
11t notFinished();

Ref: https://swcregistry.io/docs/SWC-116

56

THE END

Backup Slides

Gas assigned per Opcode

Operation Gas Description
ADD/SUB 3
MUL/DIV 0 Arithmetic Operation
ADDMOD/MULMOD 8
AND/OR/XOR 3 Comparison Operation
LT/GT/SLT/SGT/EQ 2
POP 3 Stack Operation

Ref: Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger."

Ethereum project yellow paper (2014)

59

Gas assigned per Opcode

Operation Gas Description
BALANCE 400 Get balance of an
account
CREATE 32000 Create a new account
using CREATE
CALL 25000 Message-call into an
account

Ref: Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger."

Ethereum project yellow paper (2014)

60

Gas assigned per Opcode

Operation Gas Description
MLOAD/MSTORE 3 Memory Operation
JUMP 8 Unconditional Jump
JUMPI 10 Conditional Jump
SLOAD 200
Storage Operation
SSTORE 5000/20000

Ref: Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger."
Ethereum project yellow paper (2014)

