
 Brief Introduction to Smart
Contracts and Solidity

CS 731: Blockchain Technology and Applications
Instructor : Chavhan Sujeet Yashavant

What is Ethereum?

It’s a Blockchain, With following additions

● A built-in programming Language
● Two types of accounts

○ User Accounts (Controlled by Private Keys)
○ Contract Accounts (Controlled by Code)

● Anyone can create an app by defining it as a Contract

2Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Smart Contracts

3

Smart contracts

● Tiny computer programs
● Stored inside a blockchain

Ref: https://savjee.be/videos/simply-explained/smart-contracts/
4

Smart Contract

5

● A code that resides on blockchain

● Executes when certain predetermined conditions are

satisfied

Smart Contract

6

● agreement between mutually distrusting participants

● automatically enforced by the consensus mechanism of

the blockchain

● without relying on a trusted authority.

Ref: Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. "A survey of attacks on ethereum smart contracts (sok)." International
conference on principles of security and trust. Springer, Berlin, Heidelberg, 2017.

What a Contract can Do?

● Send ETH to other contracts

7Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

What a Contract can Do?

● Send ETH to other contracts

● Read/write Storage

Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin 8

What a Contract can Do?

● Send ETH to other contracts

● Read/write Storage

● Call (i.e. start execution in) other Contracts

9Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Smart Contract Execution

● Every (full) node on Ethereum network processes

every transaction

10Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Smart Contract Execution

11

Solidity
Compiler

Smart Contract Execution

12

EVM
(Ethereum

Virtual
Machine)

Ethereum Virtual Machine (EVM)

13

● Global Singleton Computing Machine with a shared

ledger of data

Crowdfunding platform

14
Ref: https://savjee.be/videos/simply-explained/smart-contracts/

Minimum goal

Crowdfunding platform

15
Ref: https://savjee.be/videos/simply-explained/smart-contracts/

Crowdfunding platform

16
Ref: https://savjee.be/videos/simply-explained/smart-contracts/

Crowdfunding platform

17
Ref: https://savjee.be/videos/simply-explained/smart-contracts/

Crowdfunding platform

18
Ref: https://savjee.be/videos/simply-explained/smart-contracts/

Crowdfunding platform

19
Ref: https://savjee.be/videos/simply-explained/smart-contracts/

Funded!

Kickstarter for Crowdfunding platform

20

��

Ref: https://savjee.be/videos/simply-explained/smart-contracts/

����
����

������
Product teamSupporters

Kickstarter for Crowdfunding platform

21
Ref: https://savjee.be/videos/simply-explained/smart-contracts, https://pngimg.com

Trusting a third-party is required

Smart contracts

22

We can build a similar system with a Smart Contracts
without the requirement of any third party

Kickstarter with Smart Contract

23

👨
💲💲👳 💲💲

👲
💲💲

👵
💲💲

������

Product teamSupporters

Kickstarter with Smart Contract

24

👨
👳

👲
👵

������

Product teamSupporters

💲💲💲
💲
💲💲💲
💲

Kickstarter with Smart Contract

25

👨
👳

👲
👵

������

Product teamSupporters

💲💲💲
💲
💲💲💲
💲

Funded!

Kickstarter with Smart Contract

26

👨
👳

👲
👵

������

Product teamSupporters

💲💲💲
💲
💲💲💲
💲

Kickstarter with Smart Contract

27

👨
💲💲👳 💲💲

👲
💲💲

👵
💲💲

������

Product teamSupporters

Failed!

Introduction to Solidity

Introduction to Solidity: Version Pragma

● Instructions to the compiler on how to treat the code.

● All solidity source code should start with a “version pragma” which is a

declaration of the version of the solidity compiler this code should use.

● This helps the code from being incompatible with the future versions of the

compiler which may bring changes.

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Introduction to Solidity: Contract keyword

It declares a contract under which is the code encapsulated.

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Introduction to Solidity: State Variables

Permanently stored in contract storage → written
to Ethereum Blockchain.

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Introduction to Solidity: Function declaration

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Constructor

Introduction to Solidity: Function Visibility
Visibility

View
keyword

Introduction to Solidity: Function Visibility
Visibility

● Public - any contract and account can call
● Private - only inside the contract that defines the

function
● External - only other contracts and accounts can call
● Internal - only inside contract that inherits an internal

function

Ref: https://solidity-by-example.org/visibility/

Introduction to Solidity: View and Pure functions
Visibility

● View function declares that no state will be changed.

● Pure function declares that no state variable will be

changed or read.

Ref: https://solidity-by-example.org/visibility/

Introduction to Solidity: Code Execution on Real
Blockchain (Try this after success on Local

Blockchain)

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Constructor

● Testnet (most of the course projects will do it):

○ Can use Remix and Metamask
○ Can use hardhat to deploy on Goerli Testnet

● Mainnet

○ Require real money

○ Do not try unless you become expert

Introduction to Solidity: Code Execution on
Local Blockchain (Try this first)

Ref: https://www.geeksforgeeks.org/introduction-to-solidity

Constructor

● Offline (Blockchain inside local machine): I will post a

video link on Discord about how to do it. It takes time.

○ Can use Remix and Ganache

● Online (Blockchain inside browser): Remix IDE

○ Simple one, first try this

○ Let’s see a Demo

Crowdfunding
Smart Contract

Currency
Example

Gas

● Halting problem

○ Can’t tell whether a program will halt or run

infinitely

40Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Gas

● Halting problem

○ Can’t tell whether a program will halt or run

infinitely

● Solution: Gas Limit

41Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Gas Limit

42

● Each opcode has a fixed amount of gas assigned and

is a measure of computational effort

● Gas is the execution fee, paid by the sender of the

transaction that triggered the computation

Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Gas Limit

43

● User sets max amount of Gas for a transaction

● Gas is lost if a user run out of Gas Limit, all changes

are reversed

● If a transaction uses less gas than gas limit, then user

gets remaining Gas

Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Gas Limit

44

● Total fees = Total amount of Gas used ❌ gas Price

● The gas price is not fixed

Ref: DEVCON1: Understanding the Ethereum Blockchain Protocol - Vitalik Buterin

Why Optimization?

● Caller needs to pay Gas according to Computational

Steps

45
Ref: Brandstätter, Tamara, et al. "Characterizing Efficiency Optimizations in Solidity Smart Contracts." 2020

IEEE International Conference on Blockchain (Blockchain). IEEE, 2020.

Why Optimization?

● Caller needs to pay Gas according to Computational

Steps

● Optimization ⇒ Gas Saving ⇒ Money Saving

46
Ref: Brandstätter, Tamara, et al. "Characterizing Efficiency Optimizations in Solidity Smart Contracts." 2020

IEEE International Conference on Blockchain (Blockchain). IEEE, 2020.

Why Optimization?

● Caller needs to pay Gas according to Computational

Steps

● Optimization ⇒ Gas Saving ⇒ Money Saving

● A smart contract gets invoked many times, a small

optimization can result in huge saving

47
Ref: Brandstätter, Tamara, et al. "Characterizing Efficiency Optimizations in Solidity Smart Contracts." 2020

IEEE International Conference on Blockchain (Blockchain). IEEE, 2020.

Gas Costly Pattern 1: Dead Code

48
Ref: Chen, Ting, et al. "Under-optimized smart contracts devour your money." 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017.

Unoptimized Code Optimized Code

Gas Costly Pattern 2: Opaque Predicate

49
Ref: Chen, Ting, et al. "Under-optimized smart contracts devour your money." 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017.

Unoptimized Code Optimized Code

Gas Costly Pattern 3: Constant outcome of
a Loop

50

Ref: Chen, Ting, et al. "Under-optimized smart contracts devour your money." 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017.

Gas Costly Pattern 4: Comparison with Unilateral
Outcome in a Loop

51
Ref: Chen, Ting, et al. "Under-optimized smart contracts devour your money." 2017 IEEE 24th International

Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017.

Smart Contract Security

52

● Correctness is ensured by the consensus mechanism

● Unfortunately, correctness is not sufficient to make

Smart Contracts secure.

Ref: Atzei, Nicola, Massimo Bartoletti, and Tiziana Cimoli. "A survey of attacks on ethereum smart contracts (sok)." International
conference on principles of security and trust. Springer, Berlin, Heidelberg, 2017.

Smart Contract Vuln 1: Overflow and Underflow

53
Ref: Sayeed, Sarwar, Hector Marco-Gisbert, and Tom Caira. "Smart contract: Attacks and protections." IEEE
Access 8 (2020): 24416-24427.

Smart Contract Vuln 2: Default Visibilities

54
Ref: Sayeed, Sarwar, Hector Marco-Gisbert, and Tom Caira. "Smart contract: Attacks and protections." IEEE
Access 8 (2020): 24416-24427.

Smart Contract Vuln 3: Timestamp Dependence

55
Ref: Sayeed, Sarwar, Hector Marco-Gisbert, and Tom Caira. "Smart contract: Attacks and protections." IEEE
Access 8 (2020): 24416-24427.

● A smart contract that utilizes a current timestamp to
produce random numbers in order to determine lottery
results

● Miners can put a timestamp within 30 seconds of block
validation

● Miners can alter outcome of random number generator

Smart Contract Vuln 3: Timestamp Dependence

56
Ref: https://swcregistry.io/docs/SWC-116

THE END
57

Backup Slides

Gas assigned per Opcode

59

Operation Gas Description

ADD/SUB 3

Arithmetic OperationMUL/DIV 5

ADDMOD/MULMOD 8

AND/OR/XOR 3 Comparison Operation

LT/GT/SLT/SGT/EQ 2
Stack Operation

POP 3

Ref: Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger."
Ethereum project yellow paper (2014)

60

Operation Gas Description

BALANCE 400 Get balance of an
account

CREATE 32000 Create a new account
using CREATE

CALL 25000 Message-call into an
account

Gas assigned per Opcode

Ref: Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger."
Ethereum project yellow paper (2014)

Gas assigned per Opcode

61

Operation Gas Description

MLOAD/MSTORE 3 Memory Operation

JUMP 8 Unconditional Jump

JUMPI 10 Conditional Jump

SLOAD 200
Storage Operation

SSTORE 5000/20000

Ref: Wood, Gavin. "Ethereum: A secure decentralised generalised transaction ledger."
Ethereum project yellow paper (2014)

