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Abstract. Toric ideals have many applications including solving integer
programs. Several algorithms for computing the toric ideal of an integer
matrix are available in the literature. Since it is an NP hard problem the
present approaches can only solve relatively small problems. We propose
a new approach which improves upon a well known saturation technique.

1 Introduction

Let A be an integer matrix, and let ker(A) be the lattice kernel of A, i.e., integer
solutions of Au = 0. For any u ∈ ker(A), let u+ denote the vector such that
u+[i] = u[i] if u[i] > 0 else u+[i] = 0. Vector u− is given by u+ − u. For any
positive integer vector v ∈ Nn monomial xv[1]1 x

v[2]
2 · · ·xv[n]

n is concisely denoted
by xv. The polynomial ideal generated by {xu+ − xu−|u ∈ ker(A)} is called the
toric ideal of A and it is denoted by IA. In this paper we address the problem
of computing a generator of IA, which we loosely call the problem of computing
a toric ideal.

This problem has some useful applications including solving integer programs
[1–3], computing primitive partition identities [4] chapters 6 and 7, and solving
scheduling problem [5] among a few others.

There are several algorithm in the literature to compute IA for a given d×n
matrix A. Each of these algorithms requires the computations of one or more
Gröbner bases. These include an algorithm, emerging as an application of The-
orem 2 section 3.3 [6], which involves the computation of a Gröbner basis of an
ideal in a polynomial ring over n+ d− 1 variables. Urbanke [7] proposed an al-
gorithm which involves of O(n) Gröbner basis computations, all in an n-variable
ring. The algorithm by Sturmfels, although very different in nature, involves
similar computation and similar performance. Both these algorithms are signif-
icantly more efficient than the first algorithm since Büchberger’s algorithm for
computing Gröbner basis is very sensitive to the number of variables. Bigatti
et.al. [8] improved Sturmfels’ algorithm, but it appears that in the worst case
their algorithm may not fare better than Sturmfels’. Recently Hemmecke and
Malkin [9] have proposed a new approach project and lift which involves the com-
putation of one Gröbner basis in a ring of j variables for j = 1, 2, . . . , n. Their
algorithm shows significant improvement over the prevailing best algorithms.
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We present an algorithm that also requires the computation of one Gröbner
basis in k[x1, · · · , xi] for each i. Unlike project and lift we continue to perform
saturation at each step by one variable as in Sturmfels’ algorithm. Therefore we
also require the computation of one Gröbner basis in each ring k[x1, · · · , xi]. In
our approach the basis is computed with respect to reverse lexicographic term
order, which is known to be the most efficient among all term orders, [10, 11].

The remainder of the paper is organized as follows. The next section intro-
duces essential background concepts and notations. Section 3 discusses surjective
ring homomorphisms and some interesting properties. Section 4 gives a simple
algorithm to compute saturation of a non-homogeneous ideal. In section 5 we
give basic steps to perform Gröbner basis computation in a limited sense. We
compute a basis which itself is not a Gröbner basis but its projection in a sub-
space is the Gröbner basis for the projected ideal. In the sixth section we describe
the new algorithm to compute the saturation of a binomial ideal. Last section
gives experimental results and conclusions.

2 Background

Suppose V is a lattice kernel basis, i.e., a basis of ker(A) which generates the
kernel vectors with integer coefficients. Let JV be the ideal generated by {xu+−
xu−|u ∈ V }. Then IA = JV : (x1 . . . xn)∞ where the r.h.s. denotes the ideal
{f ∈ k[x]|xα · f ∈ JV for some xα} called the saturation of J . Thus the
computation of a toric ideal has two steps: computation of lattice kernel basis
and the saturation of JV . The first step has a polynomial time solution by
computing the Hermite normal form of A. Therefore the complex step is the
saturation computation.

One of the most useful ideas in computational commutative algebra is Gröbner
basis of an ideal. It has found many applications in computations related to ideal
[12, 6]. The first and the best known algorithm to compute a Gröbner basis is
due to Büchberger [13]. It turns out that it is useful in the computation of the
saturation of an ideal.

One of the initial attempts to compute IA was to compute the elimination
ideal of the ideal generated by {t0t1 · · · td−1, x1t

a1−− ta1+, . . . , xnt
an−− tan+},

where ai is the i-th row of A and t are new d + 1 variables, by eliminating
t’s. Here A is d × n. The elimination ideal can be computed by computing the
Gröbner basis of the ideal under a specific term order. However, the algorithm
is too slow owing to the fact that the complexity of the Büchberger’s algorithm
is sensitive to the number of variables involved. A wiser choice is to work in the
n variables in which J lies.

An algorithm working, in n variables, for saturation is due to Urbanke [7].
It uses the fact that if the spanning set of the lattice ker(A) contains a vector
with all positive coordinates, then J = IA. In general, this might not be true
and to ensure this in A, the algorithm replaces a certain columns of A by their
negation till this holds true. Let new matrix be A′ and corresponding lattice
kernel basis be V ′. Then IA′ = JV ′ . With this ideal as the starting point, it



reaches IA by replacing the columns by their original form, one at a time, and
each such step requires computing a Gröbner basis. This approach will require
at most n/2 Gröbner bases of n variables each.

Another algorithm which also works in n variables is due to Sturmfels [14,
4]. Their algorithm makes use of theorem 3 (lemma 12.1, chapter 12 of [4]) and
the fact that (J : (x1x2 . . . xn)∞) = ((. . . (J : x∞1 ) . . .) : x∞n ). The algorithm
first computes the basis B of JV from the Hermite Normal form of A. Then
it performs n iterations of Gröbner basis computation starting with B. In the
i-th iteration it computes the Gröbner basis with a graded reverse lexicographic
term order with xi least and removes the largest common factor of the form
xαi from each member of the computed basis. It was reported in [14] that the
performances of the two algorithms are generally same. Bigatti et.al. [8] improve
Sturmfels’ algorithm.

Hemmecke and Malkin [9] presented an entirely new approach called project
and lift . Let Ij denote the ideal IA projected on x1, . . . , xj , i.e., by setting
xj+1, dots, xn to 1. They begin by computing the Gröbner basis of I1 and build
their way up to IA, one dimension at a time. In the i-th step they compute
a certain grading vector ri, and a Gröbner basis w.r.t. a term order based on
r in the ring k[x1, · · · , xi]. This approach exploits the fact that Gröbner basis
computation is very sensitive to the number of variables in the polynomial ring
containing the ideal.

A closer look at the algorithm due to Sturmfels as well as our algorithm would
reveal that both of these algorithms do not explicitly exploit the primality of the
toric ideal IA and hence both of these algorithms can be applied to any binomial
ideals. That is, both these algorithms compute the saturation of any binomial
ideal (one that has at least one basis containing only binomials.)

Let k[x] denote the polynomial ring k[x1, . . . , xn] over a field k. Also, let
B ⊂ k[x]] be a set of polynomials. Then, we denote by 〈B〉, the ideal generated
by the polynomials in B. A monomial xα1

1 . . . xαn
n would normally be compactly

written as xα.

A total ordering ≺ on the monomials of k[x] is called a term order if it
satisfies following properties: (i) it is a well-ordering (Artinian) and (ii) xα ≺
xβ ⇒ xα+γ ≺ xβ+γ for all α, β, γ. Given a term order ≺ on k[x], we denote the
leading term of a polynomial f by in≺(f). One particular term order is being
repeatedly used in this paper - the graded reverse lexicographic order. This is
frequently the most efficient ordering to compute Gröbner basis. Let d be a
grading vector and ≺d be the graded reverse lexicographic order. Then, given
two monomials xα and xβ , we say xα ≺d x

β if α · d < β · d or if they are equal,
then the last non-zero coordinate in α − β is negative. One more aspect of this
term order that would now and again come to the fore is the least variable of the
order. So, we would by ≺d,i represent a graded reverse lexicographic ordering
with xi as the least element.

Let I be an ideal in k[x] and ≺ be a term order. By in≺(I) we denote the set
{in≺(f)|f ∈ I} which is called the initial ideal if I because it is a monomial ideal.



If G = {f1, . . . , fm} is a basis of I such that in≺(I) = 〈in≺(f1), . . . , in≺(fn)〉,
then G is called a Gröbner basis of I.

Let f be a polynomial and B be a set of polynomials in k[x]. If there is fi ∈ B
and a term c ·xα in f such that in≺(fi) divides c ·xα and if the quotient is c′ ·xβ
then f → f − c′ · xβ ∗ fi is called a reduction step. If a sequence of reductions
lead to f ′ by the polynomials of B such that f ′ is irreducible by any member of
B, then we say that f is reduced to f ′ by B. If G is a Gröbner basis such that
each f ∈ G is irreducible by G \ {f}, then G is called reduced Gröbner basis.
This basis is unique for a given ordering. We will denote it by G≺(I).

3 Surjective ring homomorphism

In this paper φ will denote a surjective ring homomorphism k[x]→ k[y], where
k[x] denotes k[x1 . . . , xn] and k[y] denotes k[y1, . . . , ym].

Definition 1. Let S ⊆ k[x] be a set. Then, we define φ(S) = {φ(f) | f ∈ S}.

Lemma 1. Let f1, . . . , fs ∈ k[x]. Then, φ(〈f1, . . . , fs〉) = 〈φ(f1), . . . , φ(fs)〉.

Proof. Let f ′ ∈ φ(〈f1, . . . , fs〉). Then, ∃f ∈ 〈f1, . . . , fs〉 such that φ(f) = f ′.
Then ∃g1, . . . gs ∈ k[x] such that f =

∑
i gifi. It implies φ(f) = φ(

∑
i gifi).

Hence f ′ =
∑
i φ(gi)φ(fi). Which implies f ′ ∈ 〈φ(f1), . . . , φ(fs)〉.

Conversely, let f ′ ∈ 〈φ(f1), . . . , φ(fs)〉. Then, ∃g′1, . . . , g′s ∈ k[y] such that
f ′ =

∑
i g
′
iφ(fi). From surjectivity, ∃g1, . . . , gs ∈ k[x] such that φ(g1) = g′1, . . . ,

φ(gs) = g′s. So, f ′ =
∑
i φ(gi)φ(fi) = φ(

∑
i gifi). Since

∑
i gifi ∈ 〈f1, · · · , fs〉,

f ′ ∈ φ(〈f1, · · · , fs〉). �

Definition 2. Kernel of a homomorphism φ is ker(φ) = {f ∈ k[x] | φ(f) = 0}.

From the first theorem of isomorphism, k[x]/ker(φ) is isomorphic to k[y].
We shall denote this isomorphism by Φ.

Definition 3. Let S be a subset of k[x]. Then φ−1(S) = {f ∈ k[x]|φ(f) ∈ S}.

Observation 1 Let J be an ideal in k[y]. Then φ−1(J) is an ideal. Also J ,
Φ−1(J), and φ−1(J)/ker(φ) are isomorphic.

Projections are examples of surjective homomorphisms which will be used in
algorithms discussed in this paper.

Definition 4. Let V be a set of variables and V ′ ⊂ V . Then the map φ :
k[V ]→ k[V \V ′] is a said to be a projection map if φ(f) = f |x=1∀x∈V ′ . We shall
denote the projections k[x] → k[x1, . . . , xi−1, xi+1, . . . , xn], k[xi, · · · , xi+j , z] →
k[xi, · · · , xi+j ], and k[x]→ k[xi+1, . . . , xn] by πi, πz, and Πi respectively.

Observation 2 πi, πy and Πi are surjective ring homomorphisms.



4 Homogeneous polynomials and saturation

4.1 Homogenization

Definition 5. Let f ∈ k[x] and d ∈ Nn. We say f is homogeneous w.r.t. d if
for all monomials xα ∈ f , d · α are equal. Vector d is called the grading vector.

Let d ∈ Nn+1 be a 0/1 vector such that dn+1 = 1. Now we define a mapping
hd : k[x]→ k[x, z] such that hd(f) is homogeneous w.r.t. d for any f ∈ k[x]. Let
f =

∑
i cix

αi ∈ k[x]. Let α′i ∈ Nn+1 such that its 1 to n components coincide
with those of αi and its n + 1 component is 0. Let ci0x

αi0 be a term in f such
that α′i0 · d ≥ α′i · d for all i. Let δi = (α′i0 − α

′
i) · d. Define hd(f) =

∑
i x

αizδi .
We shall denote hd(f) by f̃ when d is known from the context. Observe that
πz(f̃) = f . If B = {fi}i is a set of polynomials of k[x], then by homogenization
of B we would mean the set B̃ given by {f̃i}i.

4.2 Colon Ideals

Definition 6. Let J ⊆ k[x] be an ideal. Then J : x∞i denotes the ideal {f ∈
k[x] | xai f ∈ J for some a}. (. . . (J : x∞1 ) . . .) : x∞i is equal to J : (x1 · · ·xi)∞
which is given by {f ∈ k[x] | xαf ∈ J for some α ∈ Nn}.

In general the computation of J : x∞i is expensive, see section 4 in chapter 4
of [6]. But in a special case when J is a homogeneous ideal an efficient method
to compute J : x∞i is known as described in the following theorem.
Notation Let f be a polynomial and a be the largest integer such that xaj
divides f , then we denote the quotient of the division by f ÷ x∞j . If B be a set
of polynomials, then B : x∞i denotes the set {f ÷ x∞i |f ∈ B}.

Theorem 3 (lemma 12.1, [4]). Let J ⊆ k[x] be a homogeneous ideal w.r.t.
the grading vector d. Also let G≺d,j

(J) = {fi}i. Then {fi ÷ x∞j }i is a Gröbner
basis of J : x∞j .

A trivial lemma follows.

Lemma 2. Let J ⊆ k[x] be any ideal. Then πi(J : x∞j ) = πi(J) : x∞j .

Using these results, Algorithm 2 computes J : x∞j when ideal J is not homo-
geneous.

5 Shadow algorithms under a surjective homomorphism

Let I be an ideal in k[x]. Lemma 1 shows that φ(I) is an ideal in k[y]. In this
section we show how to compute a basis B of I such that φ(B) is a Gröbner
basis of φ(I).

Let α and β be two vectors in Nn, and let α[i] and β[i] denotes their ith

components. Then, α ∨ β is the vector given by (α ∨ β)[i] = max{α[i], β[i]}.



Data: A generating set, B, of an ideal J ⊆ k[x]; An index i; A grading vector
d ∈ Nn+1 be the vector with all components one.

Result: The Gröbner basis of 〈B〉 : x∞i
B̃ := {f̃ |f ∈ B};1

Compute G≺d,i(〈B̃〉);2

Compute B′ = { f ÷ x∞i | f ∈ G≺d,i(〈B̃〉) };3

return πy(B′).4

Algorithm 2: Computation of 〈B〉 : x∞i

In this and the next section we will assume the existence of an oracle which
computes any one member h of φ−1(m) for any monomial m ∈ k[y]. With an
abuse of the notation we shall denote this by h := φ−1(m) as a step in the
algorithms given below.

Let ≺ denote a term order in k[y]. Consider any h1, h2 ∈ k[y]. Let c1yα1 =
in≺(h1) and c2yα2 = in≺(h2). Also let β1 = (α1∨α2)−α1 and β2 = (α1∨α2)−α2.
Then the S-polynomial of these polynomials is given by S(h1, h2) = c2y

β1h1 −
c1y

β2h2. Observe that if in≺(h2) divides in≺(h1), then S(h1, h2) is the reduction
of h1 by h2. Algorithm 3 computes g1, g2 ∈ k[x] for given f1, f2 ∈ k[x] such that
φ(g1)φ(f1)− φ(g2)φ(f2) = S(φ(f1), φ(f2)).

Data: f1, f2 ∈ k[x], a surjective ring homomorphism φ : k[x]→ k[y], a term
order ≺ over k[y], an oracle that computes any one member of φ−1(m)
for any monomial m of k[y]

Result: Two polynomials g1, g2 ∈ k[x] such that
φ(f1g1 − f2g2) = S(φ(f1), φ(f2))

Let c1 · yα1 = in≺(φ(f1)), c2 · yα2 = in≺(φ(f2));1

β1 := (α1 ∨ α2)− α1;2

β2 := (α1 ∨ α2)− α2;3

return g1 := φ−1(c2y
β1); g2 := φ−1(c1y

β2) ;4

Algorithm 3: A(f1, f2, φ,≺): computation of g1, g2 for given f1, f2

Observation 4 (g1, g2) = A(f1, f2, φ,≺)⇒ φ(g1f1 − g2f2) = S(φ(f1), φ(f2)).

5.1 Generalized division algorithm

Let g, g1, · · · , gs ∈ k[y] and ≺ be a term order in k[y]. Then g =
∑
i qigi + r is

said to be a standard expression for g if (i) in≺(qigi) � in≺(g) ∀i and (ii) no
monomial of r is divisible by in≺(gi) for any i, i.e., no monomial of r belongs to
〈{in≺(gi)|1 ≤ i ≤ s}〉. Standard expression generalizes the concept of division of
a polynomial by another polynomial to the division of a polynomial by a set of
polynomials. Here r is called the remainder and qi are called the quotients of the
division of g by {g1, · · · , gs}. The algorithm to perform such a division is well
known, see section 3 in chapter 2 of [6]. Let f, f1, · · · , fs ∈ k[x]. In Algorithm 4



we present a pseudo-division algorithm for f by f1, · · · , fs such that its image in
k[y] gives a standard expression for φ(f) w.r.t. φ(f1), · · · , φ(fs).

Data: f ∈ k[x]; {f1, . . . , fs} ⊂ k[x]; a surjective ring homomorphism,
φ : k[x]→ k[y]; a term order ≺ over k[y]; an oracle to compute one
member of φ−1(m) for any monomial m of k[y].

Result: f̄ , q1, . . . , qs, r ∈ k[x] such that f̄f =
P
j qjfj + r and

φ(f̄)φ(f) =
P
j φ(qj)φ(fj) + φ(r) is a standard expression for φ(f)

under ≺, where φ(f̄) is a constant
f̄ := 1; q1 := 0, . . . , qs := 0; r := 0;1

p := f ;2

while φ(p) 6= 0 do3

if ∃ i s.t. in≺(φ(fi) divides in≺(φ(p)) then4

(g1, g2) := A(p, fi, φ,≺);5

/* φ(g1) is a constant */

f̄ := f̄ ∗ g1; q1 := q1 ∗ g1, . . . , qs := qs ∗ g1; r := r ∗ g1;6

p := p ∗ g1 − fi ∗ g2;7

qi := qi + g28

end9

else10

g1 := φ−1(in≺(φ(p)));11

r := r + g1;12

p := p− g113

end14

end15

/* φ(p) = 0 */

r := r + p.16

Algorithm 4: SHADOW DIV(f, {f1, . . . , fs}, φ,≺)

Observe that the leading term of φ(p) strictly decreases after each pass of
the while loop. Combining with this fact that ≺ is a well-ordering we observe
that the algorithm terminates. Also observe that f̄ · f =

∑
j qjfj + r + p is an

invariant of the loop. Thus we have the following claim.

Lemma 3. Algorithm 4, SHADOW DIV(f, f1, . . . , fs, φ,≺), terminates to give
f̄ · f =

∑
j qj · fj + r and φ(f) = (1/φ(f̄))(

∑
j φ(qj)φ(fj) + φ(r)) is a standard

expression for φ(f) under ≺, where φ(f̄) is a non-zero constant.

5.2 Büchberger’s Algorithm with generalized division

Now we present Algorithm 5 to compute a basis of any ideal in k[x] such that
the image of the basis under φ is a Gröbner basis of the image of the ideal.

Lemma 4. Algorithm 5 terminates.



Data: B = { f1, . . . , fs } ⊆ k[x]; a surjective ring homomorphism
φ : k[x]→ k[y], a term order, ≺, in k[y]

Result: A subset C1 ⊂ k[x] such that 〈C1〉 = 〈B〉 and φ(C1) is a Gröbner basis
of φ(〈B〉), a subset C2 ⊂ k[x] such that φ(C2) is the reduced Gröbner
basis of φ(〈B〉) and for each f ∈ 〈B〉 there is h ∈ φ−1(1) such that
h · f ∈ 〈C2〉

Bnew := B;1

repeat2

Bold := Bnew;3

for each pair f1, f2 ∈ Bnew s.t. f1 6= f2 and φ(f1) 6= 0, φ(f2) 6= 0 do4

(g1, g2) := A(f1, f2, φ,≺);5

compute SHADOW DIV(g1f1 − g2f2, Bnew, φ,≺);6

if r 6= 0 then7

Bnew := Bnew ∪ {r}8

end9

end10

until Bnew = Bold;11

C1 := Bnew;12

Bold := Bnew;13

for each f ∈ Bold do14

compute SHADOW DIV(f,Bnew \ {f}, φ,≺);15

Bnew := Bnew \ {f};16

if r 6= 0 then17

Bnew := Bnew ∪ {r};18

end19

end20

C2 := Bnew;21

Algorithm 5: SHADOW BÜCH(B,φ,≺)

Proof. We first consider the computation of C1.
The algorithm iterates only if we detect that Bnew 6= Bold. Let Bi denote

the basis after the i-th iteration. So there must have been f, g ∈ Bi−1 such that
the remainder, r, of division of g1f − g2g by Bi−1 is non-zero.

Then from Lemma 3, in≺(r) /∈ 〈in≺(φ(Bi−1))〉. Thus, 〈in≺(φ(B0))〉 (
〈in≺(φ(B1))〉 ( 〈in≺(φ(B2))〉 ( · · ·. k[y] is Noetherian hence this chain must be
finite and consequently the algorithm must stop after finitely many iterations.

The termination of the second part is obvious. �

In the first part of the algorithm the remainder r is appended in the successive
bases. But r = g1f − g2g −

∑
i qifi so it is already in the ideal before division,

so appending it to the basis does not expand the ideal.

Lemma 5. 〈B〉 = 〈C1〉.

Lemma 6. φ(C1) is the Gröbner basis of 〈φ(B)〉. Further, φ(C2) is the reduced
Gröbner basis for 〈φ(B)〉.



Proof. It was pointed out after Algorithm 3 that φ(g1f1−g2f2) = S(φ(f1), φ(f2)).
Upon termination, φ(r) = 0 for all f1, f2 ∈ Bnew. So from Lemma 3 the stan-
dard expression for the S-polynomial is S(φ(f1), φ(f2)) =

∑
j φ(qj)φ(fj) for all

pairs φ(f1), φ(f2) ∈ φ(Bnew). From Büchberger’s criterion φ(Bnew) is a Gröbner
basis, see [6] section 7 of chapter 2.

In the second part φ(r) is the result of the reduction of φ(f) by φ(Bnew)\{f}).
So upon termination, no polynomial in φ(Bnew) is reducible by the rest of the
polynomials. Thus φ(Bnew) is the reduced Gröbner basis. �

Lemma 7. For every f ∈ 〈B〉 there exists h ∈ φ−1(1) such that h · f ∈ 〈C2〉.

Proof. In the second part of SHADOW BÜCH, let the successive bases after
each reduction be C1 = B0, B1, · · · , Bk = C2 such that Bi+1 = (Bi ∪ {r}) \ {f}
where r is the result of reduction of f ∈ Bi by Bi \ {f}. We will show that for
each j, if g ∈ B0, then there exists h ∈ φ−1(1)such that h · g ∈ Bj .

The claim is trivially true for j = 1. In order to prove the claim by induction
let us assume that it holds for j ≤ i.

We have Bi \ {f} = Bi+1 \ {r}. From SHADOW DIV algorithm we know
that for some constant c there exists f̄ ∈ φ−1(c) such that f̄ · f ∈ Bi+1. Let
g ∈ 〈B0〉 then from induction hypothesis ∃ḡ ∈ φ−1(1) such that ḡ ·g ∈ 〈Bi〉. Thus
ḡ ·g =

∑
k qkfk where fk ∈ Bi. If f does not occur in the sum then ḡ ·g ∈ 〈Bi+1〉.

Otherwise, suppose f1 = f . So (1/c)f̄ · ḡ · g = (1/c)
∑
k qk(f̄fk) ∈ Bi+1. The

desired h = (1/c)f̄ · ḡ. �

Remark If we assume that the computation of φ and φ−1 of a polynomial takes
constant time, then the time complexity of SHADOW BÜCH is same as that of
Büchberger’s algorithm on input φ(B).

5.3 Projection homomorphism and binomial ideal

From now onwards we shall restrict our consideration to only projection homo-
morphisms. In the following we shall use z to denote those x-variables which are
set to 1 by the projection homomorphism and the remaining variables will be
denoted by symbol y. For example, if we are considering φ = Πi then x1, · · · , xi
will be denoted by z1, · · · , zi and xi+1, · · · , xn will be denoted by y1, · · · , yn−i
The steps computing φ−1() in A (algorithm 3) and SHADOW DIV (algorithm
5) are described as follows.

In algorithm A for j = 1 and 2, fj must contain a sub-polynomial of the form
hj(z).yαj such that φ(hj(z)) = cj and in≺(φ(f ′j)) is strictly less than in≺(φ(f))
where f ′j = fj − hj(z).yαj . We define steps 4 and 5 as g1 := h2(z)yβ1 and
g2 := h1(z)yβ2 .

In algorithm SHADOW DIV there exists a sub-polynomial h(z)yα in p(x)
such that in≺(φ(p − h(z)yα)) is strictly less than in≺(φ(p)). We define step 10
as g1 := h(z)yα.

Observation 5 If φ is a projection homomorphism and f1, f2 are homogeneous
w.r.t. d and (g1, g2) = A(f1, f2, φ,≺), then g1f1 − g2f2 is also homogeneous
w.r.t. d.



We further restrict our discussion to binomial ideals. If a binomial f = xα1−
xα2 is such that φ(f) is non-zero, then φ(xα1) 6= φ(xα2). Hence g1, g2 in steps
4,5 in A and g1 in step 10 in SHADOW BÜCH are all monomials.

Observation 6 If φ is a projection, f1 and f2 are binomials and (g1, g2) =
A(f1, f2, φ,≺), then f1g1 − f2g2 is the S-polynomial of f1, f2, hence it is also a
binomial.

Observation 7 If φ is a projection and B is a set of binomials, then f̄ com-
puted by SHADOW DIV (f,B, φ,≺) is a monomial. Additionally, if f and each
member of B is homogeneous, then so is the remainder r.

In the notation for the variables in this section, f̄ computed by SHADOW DIV
is zα for some α. Using this fact in the proof of Lemma 7 we get the following
lemma which is at the heart of algorithm proposed in the next section.

Lemma 8. If φ is a projection, B is a set of binomials, and C2 is computed by
SHADOW
BÜCH(B,φ,≺), then for each binomial f ∈ 〈B〉 there exists a monomial zα such
that zαf ∈ 〈C2〉.

6 A fast algorithm for toric ideals

Let B be a finite set of binomials from k[x]. In Algorithm 6 we present a new
algorithm to compute 〈B〉 : (x1 . . . xn)∞ which is the key step in the computation
of (generator set of) a toric ideal IA given a matrix A.

Data: B ⊂ k[x], a finite set of binomials
Result: A generating set of 〈B〉 : (x1 . . . xn)∞

for i = n− 1 to 0 do1

d := (01, . . . , 0i, 1i+1, . . . , 1n, 1y);2

B̃ = {f̃ |f ∈ B};3

C̃2 := SHADOW BÜCH(B̃,Πi,≺d,i+1);4

B := πy(C̃2 ÷ x∞i+1);5

end6

return B;7

Algorithm 6: Computation of I : (x1 · · ·xn)∞ for a binomial ideal I

To prove the correctness of Algorithm 6 let us assume that at the start of
an iteration the value of B is Bold and at its end it is Bnew. From Lemma 8
〈C̃2〉 : (x1 · · ·xi)∞ = 〈B̃〉 : (x1 · · ·xi)∞ and from Lemma 6 Πi(C̃2) is the reduced
Gröbner basis of 〈Π(B̃)〉. From Theorem 3 〈C̃2÷x∞i+1〉 = 〈C̃2〉 : x∞i+1. Hence 〈C̃2÷
x∞i+1〉 : (x1 · · ·xi)∞ = (〈C̃2〉 : (x1 · · ·xi)∞) : x∞i+1 = (〈B̃〉 : (x1 · · ·xi)∞) : x∞i+1 =
(〈B̃〉 : (x1 · · ·xi+1)∞). Taking the projection πy we get 〈Bnew〉 : (x1 · · ·xi)∞ =
〈Bold〉 : (x1 · · ·xi+1)∞. Thus we have the correctness theorem.



Theorem 8. Algorithm 6 correctly computes 〈B〉 : (x1 · · ·xn)∞.

The advantage of the new algorithm as follows. In this algorithm the dimen-
sion of the y-space is 1 in the first iteration, 2 in the second iteration, so on.
Symbolically let t(i) denote the time complexity of the Büchberger’s algorithm
in i variable problem. Then, as remarked after Lemma 7, the cost of the proposed
algorithm is

∑n
i=1 t(i) against the Sturmfels’ algorithm’s cost n · t(n).

7 Experimental Results

In this section we present the results of performance of the new algorithm and
compare it with the existing algorithm by Sturmfels [14]. Due to time constraint
we could not perform comparative study with project and lift by Hemmecke and
Malkin [9].

In these experiments we randomly generate binomials and compute JV :
(x1 . . . xn)∞. The programs were written in C. There are cases where one can
ignore certain S-polynomial reduction in the Büchberger algorithm for Gröbner
basis computation. There is a significant literature on criteria to select such
S-polynomials. We only applied one such criterion, referred as criterion tail in
Proposition 3.15 of [15] in the implementation of the new algorithm as well
as to Sturmfels algorithm. Since every such criterion can be applied to both
algorithms, we believe the performance gains shown here will remain same after
the implementations are fully optimized.

Table 1 shows performances of the two algorithms. Although only a few
cases are shown in the table we ran an extensive experiment and in each and
every case, unless the overall time was very very small, the proposed algorithm
was faster. Also, as expected the performance ratio improves as the number of
variables increase.

Table 1.

Number of Size of basis Time taken (in sec.) Speedup
variables Initial Final Sturmfels Proposed

6 2 5 0.0 0.0 -
4 51 0.001 0.0 -

8 4 186 0.20 0.02 10
6 597 10.0 1.17 8.6

10 6 729 27.70 0.74 37.4
8 357 5.48 0.87 6.3

12 6 423 5.80 0.32 18.1
8 2695 1147.07 32.98 34.8

14 10 751 601.0 20.52 29.3



We observed an unanticipated downside of the proposed algorithm. In this
algorithm reduction ignores the invisible variables (lower indexed). During the
reduction (recall f̄ in SHADOW DIV) the exponents of these variables are found
to grow to significantly large values. This may lead to numbers exceeding the
representation range of the machine in large problems.
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