
Partial Degree Bounded Edge Packing Problem
with Arbitrary Bounds

Pawan Aurora, Sumit Singh, and Shashank K Mehta

Indian Institute of Technology, Kanpur - 208016, India
paurora@iitk.ac.in,ssumit@iitk.ac.in,skmehta@cse.iitk.ac.in

Abstract. Given a graph G = (V,E) and a non-negative integer cu for
each u ∈ V . Partial Degree Bounded Edge Packing (PDBEP) problem
is to find a subgraph G′ = (V,E′) with maximum |E′| such that for each
edge (u, v) ∈ E′, either degG′(u) ≤ cu or degG′(v) ≤ cv. The problem has
been shown to be NP-hard even for uniform degree constraint (i.e., all cu
being equal). Approximation algorithms for uniform degree cases with
cu equal to 1 and 2 with approximation ratio of 2 and 32/11 respectively
are known. In this work we study general degree constraint case (arbi-
trary degree constraint for each vertex) and present two combinatorial
approximation algorithms with approximation factors 4 and 2. We also
study a related integer program for which we present an iterative round-
ing algorithm with approximation factor 1.5/(1 − ε) for any positive ε.
This also leads to a 3/(1 − ε)2 factor approximation algorithm for the
general PDBEP problem. For special cases (large values of cv/degv’s)
the factor improves up to 1.5/(1− ε). Next we study the same problem
with weighted edges. In this case we present a 2 + log2 n approximation
algorithm. In the literature exact O(n2) complexity algorithm for trees
is known in case of uniform degree constraint. We improve this result by
giving an O(n · logn) complexity exact algorithm for trees with general
degree constraint.

Keywords: Edge-Packing Problems, Iterative Rounding, Lagrangian Relax-
ation.

1 Introduction

The partial degree bounded edge packing problem (PDBEP) is described as fol-
lows: Given a graph G = (V,E) and degree-bound function c : V → Z∗ (Z∗ is the
set of non-negative integers), compute a maximum cardinality set E′ ⊆ E which
satisfies the degree condition: (d′u ≤ cu) ∨ (d′v ≤ cv) for each e = (u, v) ∈ E′.
Here d′x denotes the degree of vertex x in the graph G′ = (V,E′). Without loss
of generality, we will assume that cv ≤ dv for all v ∈ V where dv denotes the
degree of v in G.

In the weighted version of the problem edges are assigned non-negative
weights and we want to compute a set of edges E′ with maximum cumulative
weight subject to the degree condition described above.



In [4], the PDBEP problem was motivated by an application in binary string
representation. It was shown there that the maximum expressible independent
subset (MEIS) problem on 2-regular set can be reduced to PDBEP problem
with uniform constraint c = 2. The PDBEP problem finds another interesting
application in resource allocation. Given n types of resources and m jobs, each
job needs two types of resources. A job j, which requires resources u and v, can
be accomplished if u is not shared by more than cu jobs or v is not shared by
more than cv jobs. Interpreting the resources as the vertices of the input graph
and the jobs as edges, the PDBEP problem is to compute the maximum number
of jobs that can be accomplished.

1.1 Related Work

The decision problem of edge packing when there is a uniform degree constraint
of 1 is a parametric dual of the Dominating Set (DS) problem. It was studied
in [3]. It was also studied under the framework of parameterized complexity by
Dehne, Fellows, Fernau, Prieto and Rosamond in [1].

Recently Peng Zhang [4] showed that the PDBEP problem with uniform
degree constraint (cv = k for all v) is NP-hard even for k = 1 for general graphs.
They gave approximation algorithms for the PDBEP problem under uniform
degree constraints of k = 1 and k = 2 with approximation factors 2 and 32/11
respectively. They showed that PDBEP on trees with uniform degree constraint
can be solved exactly in O(n2) time.

1.2 Our Contribution

We propose three different approximation algorithms for the problem with gen-
eral degree constraints (i.e., for arbitrary non-negative function c). Two of these
algorithms are combinatorial in nature and their approximation ratios are 4 and
2. The third algorithm is a consequence of studying a related integer program
(IP) for which we present a 1.5/(1 − ε) approximation iterative rounding [2]
algorithm. It turns out that any α approximation of this IP is a 2α/(1− ε) ap-
proximation of the PDBEP problem for any ε > 0. That gives us a 3/(1 − ε)2
factor approximation to the PDBEP problem. However for large degree con-
straint with respect to the degree, the approximation factor can improve up to
1.5/(1− ε). The results detailed above are for general graphs with arbitrary de-
gree constraint and the approximation factor is also improved for cv = 2 (uniform
constraint) case in [4].

Next we consider the PDBEP problem with arbitrary degree constraint for
edge-weighted graphs. In this case we present a combinatorial approximation al-
gorithm with approximation factor of 2+log2 n. Edge-weighted PDBEP problem
is not addressed in the literature, to the best of our knowledge.

Finally we present an exact algorithm for unweighted trees with arbitrary
degree constraint function. The time complexity of this algorithm is O(n log n).
This is an improvement over the O(n2) algorithm in [4] which is applicable to
only the uniform degree constraint case.



2 Approximation Algorithms for the unweighted case

The optimum solution of a PDBEP problem can be bounded as follows.

Lemma 1. Let G = (V,E) be a graph with degree-bound function c : V → Z∗.
Then the optimal solution of PDBEP can have at most

∑
v∈V cv edges.

Proof. Let E′ ⊂ E be a solution of PDBEP. Let U = {v ∈ V |d′v ≤ cv}. Then
from the degree condition we see that U is a vertex cover in the graph (V,E′).
Hence |E′| ≤

∑
u∈U cu ≤

∑
v∈V cv. �

2.1 Edge Addition based Algorithm

Compute a maximal solution Y by iteratively adding edges, i.e., in each iteration
select a new edge and add it to Y if it does not result into degree violation on
both end-vertices. Let dY (x) denote the degree of a vertex x in the graph (V, Y ).
Partition the vertex set into sets: A = {v|dY (v) < cv}, B = {v|dY (v) = cv}, and
C = {v|dY (v) > cv}. Observe that every edge of the set E \ Y which is incident
on a vertex in A, has its other vertex in B. Hence for any a1, a2 ∈ A the E \E′
edges incident on a1 are all distinct from those incident on a2. Construct another
edge set Z containing any cv − dY (v) edges from E \ Y , incident on v for each
v ∈ A. Observe that Z also satisfies the degree constraints. Output the larger of
Y and Z. See Algorithm 1. We have the following result about the correctness
of the algorithm.

Lemma 2. The algorithm outputs a set which satisfies the degree constraint.

Consider the set Y ∪Z. In this set the degree of each vertex is not less than
its degree-bound. Hence the cardinality of the output of the algorithm is at least∑
v cv/4. From Lemma 1 the approximation ratio is bounded by 4.

Theorem 1. The Algorithm 1 has approximation factor 4.

2.2 Edge Deletion based Algorithm

The second algorithm for PDBEP is based on elimination of edges from the
edge set. Starting with the input edge set E, iteratively we delete the edges in
violation, i.e., in each iteration one edge (u, v) is deleted if the current degree of
u is greater than cu and that of v is greater than cv. The surviving edge set Y
is the result of the algorithm. See Algorithm 2.

Clearly Y satisfies the degree condition. Also observe that dY (v) ≥ cv for
all v ∈ V . Hence |Y | ≥

∑
v cv/2. From Lemma 1, |Y | ≥ OPT/2 where OPT

denotes the optimum solution.

Theorem 2. The Algorithm 2 has approximation ratio 2.



Data: A connected graph G = (V,E) and a function c : V → Z∗ such that
cv ≤ d(v) for each vertex v.

Result: Approximation for the largest subset of E which satisfies the
degree-condition.

Y := ∅;
for e ∈ E do

if Y ∪ {e} satisfies the degree-condition then
Y := Y ∪ {e};

end

end
Compute A := {v ∈ V |dY (v) < cv};
Z := ∅;
for v ∈ A do

Select arbitrary cv − dY (v) edges incident on v in E \ Y and insert into Z;
end
if |Y | ≥ |Z| then

return Y ;
else

return Z;
end

Algorithm 1: Edge Addition Based Algorithm

2.3 LP based Algorithm

In this section we explore a linear programming based approach to design an
approximation algorithm for PDBEP.

The Integer Program The natural IP formulation of the problem is as follows.

IP1: max ψ =
∑
e∈E

ye, subject to

ye ≤ xu + xv ∀e = (u, v) ∈ E,∑
e∈δ(v)

ye ≤ cvxv + dv(1− xv) ∀v ∈ V,

where δ(v) denotes the set of edges incident on v,

xv ∈ {0, 1} ∀v ∈ V, ye ∈ {0, 1} ∀e ∈ E

The solution computed by the program is E′ = {e|ye = 1}. The linear pro-
gramming relaxation of the above integer program will be referred to as LP1.

Lemma 3. The integrality gap of LP1 is Ω(n) where n is the number of vertices
in the graph.

Proof. Consider the following instance of the problem. LetG be a complete graph
on n vertices {v0, v1, . . . , vn−1} and the degree constraint be cv = 1∀v ∈ V . We
now construct a feasible fractional solution of LP1 as follows. Let xv = 0.5 for all



Data: A connected graph G = (V,E) and a function c : V → Z∗ such that cv is
the degree bound for vertex v.

Result: Approximation for the largest subset of E which satisfies the
degree-condition.

Y := E;
for e = (u, v) ∈ Y do

if dY (u) > cu and dY (v) > cv then
Y ← Y \ {e};

end

end
return Y ;

Algorithm 2: Edge Deletion Based Algorithm

v and ye = 1 for all e = (vi, vj) where j is in the interval ((i−bn/4c)(mod n), (i+
bn/4c)(mod n)). The value of the objective function for this solution is at least
(n− 1)2/4. On the other hand, from Lemma 1, the optimal solution for the IP1
cannot be more than n. Hence the integrality gap is Ω(n). �

High integrality gap necessitates an alternative approach.

Approximate Integer Program We propose an alternative integer program
IP2, for any ε > 0, which is a form of Lagrangian relaxation of IP1. We will show
that its maximal solutions are also solutions of IP1 and any α approximation
of IP2 is a 2α/(1 − ε) approximation of IP1. A maximal solution of IP2 is a
solution in which changing the value of any ye or any zv either renders the
solution infeasible or does not improve its objective function value. It is easy to
show that in a maximal solution zv = max{0,

∑
e∈δ(v) ye − cv} for all v.

IP2: max φ = 2
∑
e∈E

ye − (1 + ε)
∑
v∈V

zv, subject to∑
e∈δ(v)

ye ≤ cv + zv ∀v ∈ V,

zv ∈ {0, 1, 2, . . .} ∀v ∈ V, ye ∈ {0, 1} ∀e ∈ E

Note that any subset of edges E′ is a feasible solution of IP2 if we choose zv =
max{0,

∑
e∈δ(v) ye − cv} for all v. Besides, these values of z will give maximum

value of the objective function over other consistent values of z. Hence z values
are not required to be specified in the solutions of IP2. We will denote

∑
v zv by

Z.

Lemma 4. Every maximal solution of the integer program IP2 is also a feasible
solution of PDBEP.

Proof. Consider any maximal solution E′ of IP2. In a maximal solution zv =
max{0,

∑
e∈δ(v) ye − cv} for all v. Assume that it is not a feasible solution of



PDBEP. Then there must exist an edge e = (u, v) ∈ E′ such that zu ≥ 1 and
zv ≥ 1. Define an alternative solution E′′ = E′ \ {e} and decrement zu and zv
by 1 each. Observe that the objective function of the new solution increases by
2ε. This contradicts that E′ is a maximal solution. �

In a maximal solution E′ of IP2, Z is the count of excess edges incident on
violating vertices. Hence Z ≤ |E′|. In this case it is easy to see that Z/|E′| ≤
maxv{(dv − cv)/dv}.

Lemma 5. Any α approximate solution of IP2, which is also maximal, is a
2α/(1− ε) approximation of PDBEP problem.

Proof. Let E′1 be an α-approximation maximal solution of IP2 and E′2 be an
optimum solution of PDBEP. Then E′2 is also a solution of IP2 with y2e = 1 for
e ∈ E′2 and z2v = max{0,

∑
e∈δ(v) y2e− cv}. Then φ(E′1) = 2|E′1|− (1 + ε)Z1 and

φ(E′2) = 2|E′2| − (1 + ε)Z2. Let OPT denote the optimum value of IP2. Then
φ(E′2) ≤ OPT and OPT/α ≤ φ(E′1). So 2|E′2|−(1+ε)Z2 ≤ α(2|E′1|−(1+ε)Z1).
Suppose Z2 ≤ β|E′2|. Then |E′2|/|E′1| ≤ 2α/(2 − (1 + ε)β). Since β ≤ 1, we get
the desired approximation factor. �

Corollary 1. If cv ≥ (1 − β)dv ∀v, then any α approximate solution of IP2,
which is also maximal, is a 2α/(2− (1 + ε)β) approximation of PDBEP.

In this case Z2 ≤ β|E′2|. Now the result follows from the previous proof.

2.4 Algorithm for IP2

We propose Algorithm 3 which approximates the IP2 problem within a constant
factor of approximation. LP2 is the linear program relaxation of IP2. Here we
assume that an additional constraint is imposed, namely, {zv = 0|v ∈ C} where
we require a solution in which every v ∈ C must necessarily satisfy the degree
constraint. The input to the problem is (H = (V,E), C). Algorithm starts with
E′ = ∅ and builds it up one edge at a time by iterative rounding. In each iteration
we discard at least one edge from further consideration. Hence it requires at
most |E| iterations (actually it requires at most |V |+1 iterations, see the remark
below.) To simplify the analysis Algorithm 3 is presented in the recursive format.

LP2: max φ = 2
∑
e∈E

ye − (1 + ε)
∑
v∈V

zv, subject to∑
e∈δ(v)

ye ≤ cv + zv ∀v ∈ V \ C,

∑
e∈δ(v)

ye ≤ cv ∀v ∈ C,

zv ≥ 0 ∀v ∈ V, ye ≥ 0 ∀e ∈ E, −ye ≥ −1 ∀e ∈ E

In the following analysis we will focus on two problems: (H,C) of some i-th
nested recursive call and (H1, C1) of the next call in Algorithm 3. For simplicity
we will refer to them as the problems of graphs H and H1 respectively.



Lemma 6. In a corner solution of LP2 on a non-empty graph there is at least
one edge e with ye = 0 or ye ≥ 1/2.

Proof. Assume the contrary that in an extreme point solution of LP2 all ye are
in the open interval (0, 1/2). Let us partition the vertices as follows. Let n1
vertices have cv > 0 and zv > 0, n2 vertices have cv > 0 and zv = 0 and n3
vertices have cv = 0 and zv > 0. Note that the case of cv = 0 and zv = 0 cannot
arise because ye > 0 for all e. In each case let n′i vertices have the condition∑
e∈δ(v) ye ≤ cv + zv tight (an equality) and n′′i vertices have the condition a

strict inequality. Let the number of edges be m.
The total number of variables is n1+n2+n3+m. In n′1+n′2 cases

∑
e∈δ(v) ye =

cv+zv where cv ≥ 1 and each ye < 0.5 so there must be at least 3 edges incident
on such vertices. Since the graph has no isolated vertices, every vertex has at
least one incident edge. Hence m ≥ (3n′1 +3n′2 +n′′1 +n′′2 +n3)/2. So the number
of variables is at least n′1 + n′2 + (1.5)(n1 + n2 + n3).

Now we find the number of tight conditions. None of the ye touches their
bounds. The number of zv which are equal to zero is n2, and the number of
instances when

∑
e∈δ(v) ye = cv + zv is n′1 + n′2 + n′3. Hence the total number

of conditions which are tight is n2 + n′1 + n′2 + n′3. Since the solution is an
extreme point, the number of tight conditions must not be less than the number
of variables. So n2 + n′1 + n′2 + n′3 ≥ n′1 + n′2 + (1.5)(n1 + n2 + n3). This implies
that n1 = n2 = n3 = 0, which is absurd since the input graph is not empty. �

Remark: The program LP2 has |E|+ |V | variables and 2|E|+ 2|V | constraints.
Hence in the first iteration the optimal solution must have at least |E| − |V |
tight edge-constraints (i.e., ye = 0 or ye = 1.) All these can be processed simul-
taneously so in the second round at most |V | edges will remain in the residual
graph. Thus the total number of iterations cannot exceed |V |+ 1.

Lemma 7. If ye ≥ 1/2 in the solution of LP2 where e = (u, v), then (cu >
0, zu = 0) or (cv > 0, zv = 0).

Proof. Assume that zv > 0 and zu > 0 in the solution. Let the minimum of zv,
zu, and ye be β. Subtracting β from these variables results in a feasible solution
with objective function value greater than the optimum by 2β · ε. This is absurd.
Hence zu and zv both cannot be positive.

Next assume that cu = 0 and zu = 0. Then ye must be zero, contradicting
the fact that ye ≥ 1/2. Similarly cv = 0 and zv = 0 is also not possible.

Therefore at least one of (cu > 0, zu = 0) and (cv > 0, zv = 0) holds. �

Lemma 8. The Algorithm 3 returns a feasible solution of PDBEP.

Proof. The claim is trivially true when the graph is empty. We will use induction.
In the case of ye = 0, the solution of H1 is also a solution of H. From

induction hypothesis it is feasible for PDBEP for H1 hence it is also feasible for
PDBEP for H.

Consider the second case, i.e., ye ≥ 1/2. Let e = (u, v). From Lemma 7
fv = a > 0 and zv = 0. Since z1v = 0 and f1v = a− 1, in the solution of H1 at



most a−1 edges can be incident on v. So in the solution of H, there are at most
a edges incident on v and fv = a. Thus e is valid in the solution of H.

Now consider vertex u in this case. If fu > 0, then it is similar to v. But if
fu = 0, then f1u is also 0. If z1u > 0, i.e., the solution of H1 has u violating,
then edges incident on u must have their other ends on non-violating vertices.
Replacing e will not affect any other edges. Next if z1u = 0 then solution of H1

will have no edge incident on u. Now putting back e, we find e is incident on u
and fu = 0 so u turns into a violating vertex (zu = 1). But e is the only edge
incident on u and its other end v is not violating. Other edges are valid due to
induction hypothesis. Hence the solution of H is a feasible solution of PDBEP.
�

Now we analyze the performance of the algorithm.

Data: A connected graph G = (V,E) and a function c : V → N
Result: A solution of PDBEP problem.
for v ∈ V do

fv := cv;
end
C := ∅;
E′ := SolveIP2(G,C, f); /* see the function SolveIP2 */

return E′;
Algorithm 3: Iterative Rounding based Algorithm in Recursive Format

Lemma 9. Algorithm 3 gives a 1.5/(1− ε) approximation of IP2.

Proof. Let c denote 1.5/(1− ε). We will denote the optimal LP2 solutions of H
and H1 by F and F1 respectively. Similarly I and I1 will denote the solutions
computed by the algorithm for H and H1 respectively. f1∗ and z1∗ denote the
parameters associated with H1. We will assume that zx = max{0,

∑
e∈δ(x) ye −

fx} for integral solutions to compute their φ-values. Again we will prove the
claim by induction. The base case is trivially true. From induction hypothesis
φ(F1)/φ(I1) ≤ c and our goal is to show the same bound holds for φ(F )/φ(I).

In the event of ye = 0 in F , φ(F ) = φ(F1) and φ(I) = φ(I1). Hence
φ(F )/φ(I) = φ(F1)/φ(I1).

In case ye = α ≥ 1/2 we will consider two cases: (i) fu > 0 and (ii) fu = 0 in
F . In the first case I differs from I1 in three aspects: ye = 1 in I, fv = f1v + 1
and fu = f1u + 1. So zv and zu remain unchanged, i.e., zv = z1v and zu = z1u.
Thus φ(I) = φ(I1) + 2. In the second case also ye increases by 1 and zv remains
unchanged but zu increases by 1 because in this case fu = f1u = 0. Hence
φ(I) = φ(I1) + 1− ε.

In the remaining part of the proof we will construct a solution of LP2 for H1

from F , the optimal solution of LP2 for H.
Again we will consider the two cases separately. First the case of fu > 0. Set

ye = 0. If
∑
e′∈δ(v)\{e} ye′ ≥ 1−α then subtract the values of ye′ for e′ ∈ δ(v)\{e}

in arbitrary manner so that the sum
∑
e′∈δ(v)\{e} ye′ decreases by 1 − α. If∑

e′∈δ(v)\{e} ye′ < 1− α, then set ye′ to zero for all edges incident on v. Repeat



Function: SolveIP2(H = (VH , EH), C, f)
if EH := ∅ then

return ∅;
end
Delete all isolated vertices from VH ;
(y, z) = LPSolver(H,C);
/* solve LP2 with degree-bounds f(x) for all x ∈ VH */

if ∃e ∈ EH with ye = 0 then
H1 := (VH , EH \ {e});
C1 := C;
E′ := SolveIP2(H1, C1, f);

else
From Lemma 6 there exists an edge e := (u, v) with ye ≥ 1/2;
From Lemma 7 without loss of generality we assume (fv > 0, zv = 0);
fv := fv − 1;
C1 := C ∪ {v};
fu := max{fu − 1, 0};
H1 := (VH , EH \ {e});
E′ := SolveIP2(H1, C1, f) ∪ {e};
/* Including e in E′ means ye is rounded up to 1. In case fu = 0,

zu is implicitly raised to ensure that
∑
e′∈δ(u) ye′ ≤ fu + zu

continues to hold. We do not explicitly increase zu value

since it is not output as a part of the solution. */

end
return E′;

this step for edges incident on u. Retain values of all other variables as in F
(in particular, the values of zu and zv). Observe that these values constitute a
solution of LP2 for H1. Call this solution F ′1. From induction hypothesis φ(F1) ≤
cφ(I1). Hence we have φ(F ′1) ≤ cφ(I1). Then φ(F ′1) ≥ φ(F ) − 2(1 + 1 − α) ≥
φ(F )− 3. We have φ(F ) ≤ φ(F ′1) + 3 ≤ cφ(I1) + 3 = c(φ(I)− 2) + 3 ≤ cφ(I).

In the second case fu = 0. Once again repeat the step described for edges
incident on v and set ye to zero. In this case zu ≥ α so subtract α from it. It is
easy to see that again the resulting variable values form an LP2 solution of H1,
call it F ′1. So φ(F ′1) = φ(F )− (2− (1 + ε)α). So φ(F ) = φ(F ′1) + (2− (1 + ε)α) ≤
cφ(I1) + (2 − (1 + ε)α). Plugging φ(I) − 1 + ε for φ(I1) and simplifying the
expression gives φ(F ) ≤ cφ(I). This completes the proof. �

Combining lemmas 5 and 9 we have the following result.

Theorem 3. Algorithm 3 approximates PDBEP with approximation factor 3/(1−
ε)2.

From Corollary 1 we have the following result.

Corollary 2. If cv ≥ (1−β)dv for all v, then Algorithm 3 approximates PDBEP
with approximation factor 3/((2− (1 + ε)β)(1− ε)).



3 Approximation Algorithm for the weighted case

Let H(v) denote the heaviest cv edges incident on vertex v, called heavy set
of vertex v. Then from a generalization of Lemma 1 the optimum solution of
PDBEP in weighted-edge case is bounded by

∑
v∈V

∑
e∈H(v) w(e) where w(e)

denotes the weight of edge e. We will describe a method to construct upto
1 + log |V | solutions, which cover ∪v∈VH(v). Then the heaviest solution gives a
2 + log |V | approximation of the problem.

3.1 The Algorithm

Input: A graph (V,E) with non-negative edge-weight function w(). Let |V | = n.
Step 0: Add infinitesimally small weights to ensure that all weights are dis-

tinct, without affecting heavy sets.
Step 1: E1 = E \ {e = (u, v) ∈ E|e /∈ H(u) and e /∈ H(v)}.
Step 2: T = {e = (u, v) ∈ E|e ∈ H(u) and e ∈ H(v)}.
Step 3: E2 = E1 \ T . Clearly each edge of E2 is in the heavy set of only one

of its end-vertices. Suppose e = (u, v) ∈ E2 with e /∈ H(u) and e ∈ H(v). Then
we will think of e as directed from u to v.

Step 4: Label the vertices from 0 to n− 1 such that if edge (u, v) is directed
from u to v, then Label(u) < Label(v). Define subsets of E2-edges, A0, . . . , Ak−1,
where k = log2 n, as follows. Ar consists of edges (u, v) directed from u to v,
such that the most significant r − 1 bits of binary expansion of the labels of u
and v are same and r-th bit differs. Note that this bit will be 0 for u.

Step 5: Output that set among the log n+ 1 sets, T,A0, . . . , Ak−1, which has
maximum cumulative edge weight.

Theorem 4. The algorithm gives a feasible solution with approximation factor
2 + log2 n.

Proof. Set T constitutes a feasible solution since both ends of each edge in it
satisfy the degree constraint. The directed E2 edges define an acyclic graph,
hence the labeling can be performed by topological sorting. Clearly E2 = ∪rAr.
In Ar all arrows are pointed from u with r-th most significant bit zero to v with
r-th most significant bit one. Hence it is a bipartite graph where all arrows have
heads in one set and the tails in the other. All vertices on the head side satisfy
the degree conditions because all their incident edges are in their heavy sets.
Therefore Ar are feasible solutions. We have T ∪ (∪rAr) = E1. Observe that
∪vH(v) = E1. Only T -edges have both ends in heavy sets. Using the fact that
OPT ≤

∑
v w(H(v)), we deduce that OPT ≤ 2w(T ) +

∑
r w(Ar). So the weight

of the set output in step 5 is at least OPT/(2 + log2 n). �

4 Exact Algorithm for Trees

In this section we give a polynomial time exact algorithm for the unweighted
PDBEP problem for the special case when the input graph is a tree. We will



denote the degree of a vertex v in the input graph by d(v) and its degree in a
solution under consideration by d′(v).

Let T be a rooted tree with root R. For any vertex v we denote the subtree
rooted at v by T (v). Consider all feasible solutions of PDBEP of graph T (v)
in which degree of v is at most cv − 1, call them H-solutions (white). Let h(v)
be the number of edges in the largest such solution. Similarly let g(v) be the
optimal G-solution (grey) in which the degree of v is restricted to be equal to
cv. Lastly b(v) will denote the optimal B-solution (black) which are solutions of
T (v) under the restriction that degree of v be at least cv and every neighbor of v
in the solution satisfies the degree condition. It may be observed that one class
of solutions of T (v) are included in G-solutions as well as in B-solutions. These
are the solutions in which d′(v) = cv and every neighbor u of v in the solution
has d′(u) ≤ cu. If in any of these cases there are no feasible solutions, then the
corresponding optimal value is assumed to be zero. Hence the optimum solution
of PDBEP for T is the maximum of h(R), g(R), and b(R) and all three values
are zero for leaf nodes.

Let Ch(v) denote the set of child-nodes of v in T (v). We partition Ch(v)
into H(v) = {u ∈ Ch(v)|h(u) ≥ max{g(u), b(u)}}, G(v) = {u ∈ Ch(v)|g(u) >
max{h(u), b(u)}}, B(v) = Ch(V ) \ (G(v) ∪ H(v)). While constructing a G-
solution of T (v) from the solutions of the children of v we can include the edge
(v, u) for any vertex u in H(v) ∪ B(v) along with the optimal solution of T (u)
without disturbing the degree conditions of the edges in this solution. But we can
add edge (v, u) to the solution, for any u ∈ G(v), only by selecting a B-solution
or an H-solution of T (u) because if we use a G-solution for T (u), then vertex u
which was earlier satisfying the degree condition, will now have degree cu + 1.

Next, while constructing a B-solution of T (v) we can connect v to any number
of H(v) vertices and use their optimal H-solutions. In the same case, in order
to connect v with u ∈ B(v) ∪G(v) we must use the optimal H-solution of T (u)
(which is not the best solution of T (u)).

Suppose we want to build the optimum G-solution of v. If |H(v)| + |B(v)|
is less than cv, then we must pick additional cv − |H(v)| − |B(v)| vertices from
G(v) to connect with v. If k = cv − |H(v)| − |B(v)| > 0, then we define S′(v) to
be the set of k members of G(v) having least g(u)−max{h(u), b(u)}. Otherwise
S′(v) = ∅. S′(v) are those vertices which we will like to connect v with.

Suppose we want to build the best B-solution for T (v) and |H(v)| < cv.
Then we will connect v with exactly cv children because connecting with any
additional child will either keep the value same or make it worse because for
connecting with a G(v) or B(v) node we will be forced to use their H-solution
which is not their best solution. If k = cv − |H(v)| > 0, then we define S′′(v) to
be the set of k members of G(v) ∪ B(v) with smallest key values where key is
g(u)−h(u) for u ∈ G(v) and b(u)−h(u) for u ∈ B(v). Otherwise S′′(v) = ∅. Now
we have following lemma which leads to a simple dynamic program for PDBEP.

Lemma 10. For any internal vertex v of T ,



(i) h(v) =
∑
u∈B(v) b(u)+

∑
u∈H(v) h(u)+

∑
u∈G(v) g(u)+min{cv−1, |H(v)|+

|B(v)|}.
If d(v) = cv and v 6= R, then set b(v) = g(v) = 0 otherwise

(ii) g(v) =
∑
u∈B(v) b(u) +

∑
u∈H(v) h(u) +

∑
u∈G(v)\S′(v) g(u) +∑

u∈S′(v) max{h(u), b(u)}+ cv.

(iii) b(v) =
∑
u∈H(v)∪S′′(v) h(u)+

∑
u∈B(v)\S′′(v) b(u)+

∑
u∈G(v)\S′′(v) g(u)+

max{cv, |H(v)|}.

Observe that if h(u) is equal to b(u) or g(u), then u is categorized as an H(v)
vertex and if b(u) = g(u) > h(u), then u is assigned to B(v) set. Hence the last
term is maximum in each of the cases in the lemma.

The algorithm initializes h(v), b(v), and g(v) to zero for the leaf vertices and
computes these values for the internal vertices bottom up. Finally it outputs
the maximum of the three values of the root R. In order to compute S′() and
S′′() sets for each vertex, we need to sort the child nodes with respect to the key
values. Thus at each vertex we incur O(|Ch| log |Ch|) cost, where Ch denotes the
set of children of that vertex. Besides, ordering the vertices so that child occurs
before the parent (topological sort) takes O(n) time. Hence the time complexity
is O(n log n).

Acknowledgement: We thank the referees of the paper for detailed feedback
and suggestions which improved the analysis of the weighted case and also the
overall presentation of the paper.

References

1. Frank Dehne, Michael Fellows, Henning Fernau, Elena Prieto, and Frances Rosa-
mond. nonblocker: Parameterized algorithmics for minimum dominating set. In Jǐŕı
Wiedermann, Gerard Tel, Jaroslav Pokorný, Mária Bieliková, and Július Štuller,
editors, SOFSEM 2006: Theory and Practice of Computer Science, volume 3831
of Lecture Notes in Computer Science, pages 237–245. Springer Berlin Heidelberg,
2006.

2. Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica, 21(1):39–60, 2001.

3. J. Nieminen. Two bounds for the domination number of a graph. Journal of the
Institute of Mathematics and its Applications, 14:183–187, 1974.

4. Peng Zhang. Partial degree bounded edge packing problem. In Proceedings of
the 6th international Frontiers in Algorithmics, and Proceedings of the 8th interna-
tional conference on Algorithmic Aspects in Information and Management, FAW-
AAIM’12, pages 359–367. Springer-Verlag, 2012.


