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Abstract. Let k[x1, . . . , xn] be a polynomial ring in n variables, and let
I ⊂ k[x1, . . . , xn] be a homogeneous binomial ideal. We describe a fast
algorithm to compute the saturation, I : (x1 · · ·xn)∞. In the special case
when I is a toric ideal, we present some preliminary results comparing
our algorithm with Project and Lift by Hemmecke and Malkin.

1 Introduction

1.1 Problem Description

Let k[x1, . . . , xn] be a polynomial ring in n variables over the field k, and let
I ⊂ k[x1, . . . , xn] be an ideal. Ideals are said to be homogeneous, if they have a
basis consisting of homogeneous polynomials. Binomials in this ring are defined
as polynomials with at most two terms [5]. Thus, a binomial is a polynomial of
the form cxα+dxβ , where c, d are arbitrary coefficients. Pure difference binomials
are special cases of binomials of the form xα − xβ . Ideals with a binomial basis
are called binomial ideals. Toric ideals, the kernel of a specific kind of polynomial
ring homomorphisms, are examples of pure difference binomial ideals.

Saturation of an ideal, I, by a polynomial f , denoted by I : f , is defined as
the ideal

I : f = 〈{ g ∈ k[x1, . . . , xn] : f · g ∈ I }〉.

Similarly, I : f∞ is defined as

I : f∞ = 〈{ g ∈ k[x1, . . . , xn] : ∃a ∈ N, fa · g ∈ I }〉.

We describe a fast algorithm to compute the saturation, I : (x1 · · ·xn)∞, of
a homogeneous binomial ideal I.

This problem finds applications in computing the radicals, minimal primes,
cellular decompositions, etc., of a homogeneous binomial ideal, see [5]. This is
also the key step in the computation of a toric ideal.

1.2 Related Work in Literature

The authors are not aware of any published work addressing this problem but
there are several related works in the literature.



There are algorithms to compute the saturation of any ideal in k[x1, . . . , xn]
(not just binomial ideals). One such algorithm is described in exercise 4.4.7 in [4].
It involves a Gröbner basis computation in n+ 1 variables. Another solution is
due to Sturmfels’ [8] which involves n Gröbner basis computations in n variables.

There are also several efficient algorithms for saturating a pure difference
binomial ideal in k[x1, . . . , xn]. These were developed in the context of the com-
putation of toric ideals. Computation of a toric ideal has some useful applica-
tions including solving integer programs [3, 11, 10], computing primitive partition
identities [8] (chapters 6 and 7), and solving scheduling problems [9].

Urbanke [1] proposed an algorithm which involves of O(n) Gröbner basis
computations, all in an n-variable ring, which is similar to Sturmfels’ algorithm.
Bigatti et.al. [2] proposed an algorithm to compute toric ideal but it is not based
on saturation computation.

One important fact about Buchberger’s algorithm for computing Gröbner
basis is that it is very sensitive to the number of variables of the ring. In all of
the algorithms cited so far, all of the Gröbner basis computations have been done
in the original ring having n variables. Recently there have been attempts that
saturate any pure difference binomial ideal in which computation occurs in rings
with fewer indeterminates than in the original ring. Hemmecke and Malkin [6]
have proposed a new approach, called Project and Lift, which involves the com-
putation of one Gröbner basis in a ring of j variables for j = 1, 2, . . . , n. Their
algorithm shows significant improvement over the prevailing best algorithms.
Another approach which also attempts at computation in smaller rings is by
Kesh and Mehta [7] which also requires the computation of one Gröbner basis
in k[x1, · · · , xj ] for each j.

1.3 Our Approach

Before proceeding, we will need a few notations. Ui will denote the multiplica-
tively closed set {xa1

1 · · ·x
ai−1
i−1 : aj ≥ 0, 1 ≤ j < i}. ≺i will denote a graded

reverse lexicographic term order with xi being the least. ϕi : k[x1, . . . , xn] →
k[x1, . . . , xn][U−1

i−1] is the natural localization map r 7→ r/1.

Algorithm 1 describes the saturation algorithm due to Sturmfels [8]. Algo-
rithm 2 describes the proposed algorithm. The primary motivation for the new
approach is that the time complexity of Gröbner basis is a strong function of the
number of variables. In the proposed algorithm, a Gröbner basis is computed
in the i-th iteration in i variables. The algorithm requires the computation of a
Gröbner basis over the ring k[x1, . . . , xn][U−1

i ]. The Gröbner basis over such a
ring is not known in the literature. Thus, we propose a generalization of Gröbner
basis, called Pseudo Gröbner basis, and appropriately modify the Buchberger’s
algorithm to compute it.



Data: A homogeneous binomial
ideal, I ⊂ k[x].

Result: I : (x1, . . . , xn)∞

for i← 1 to n do1

G← Gröbner basis of I2

w.r.t. ≺i ;
I ← 〈{f : x∞i : f ∈ G}〉 ;3

end4

return I ;5

Algorithm 1: Sturmfels’ Algorithm

Data: A homogeneous binomial
ideal, I ⊂ k[x].

Result: I : (x1, . . . , xn)∞

for i← 1 to n do1

G← Pseudo Gröbner basis2

of ϕi(I) w.r.t. ≺i ;
I ← 〈{ϕ−1

i (f : x∞i ) : f ∈3

G}〉 ;
end4

return I ;5

Algorithm 2: Proposed Algorithm

1.4 Refined Problem Statement

Let R be a commutative Noetherian ring with unity, and U ⊂ R be a multi-
plicatively closed set with unity but without zero. Let the set U+ be defined
as

U+ = { u : u ∈ U, or − u ∈ U, or u = 0 } .

Let S denote the localization of R w.r.t U , i.e., S = R[U−1]. Define a class of
binomials, called U -binomials, in the ring S[x1, . . . , xn] (also denoted by S[x])
as follows

u1

u′1
xα1 +

u2

u′2
xα2

where ui ∈ U+, u′i ∈ U and xαi denotes the monomial xai1
1 · · ·xain

n for i = 1, 2.
We will address the problem of efficiently saturating a homogeneous U -

binomial ideal w.r.t. all the variables in the ring, namely x1, . . . , xn.
For different choices of R and U , this problem reduces to many standard

problems found in the literature. If R is a field, then this problem reduces to
saturating a binomial ideal in the standard polynomial ring. Restricting R to a
field and U to { +1,−1 } considering only pure difference binomials, it reduces
to the problem of saturating a pure difference binomial ideal.

The rest of the paper is arranged as follows. Sections 2 and 3 deals with
“chain binomials” and “chain sums” for general binomial ideals. Section 4 deals
with reductions of a U -binomial by a set of U -binomials. In section 5, we will
present the notion of Pseudo Gröbner Basis for S[x], and a modified Buchberger’s
algorithm to compute it. In section 6, we present a result similar to Sturmfels’
lemma (Lemma 12.1 [8]). The final saturation algorithm is presented in section 7.
Finally, in section 8, we present some preliminary experimental results comparing
our algorithm applied to toric ideals, to that of Sturmfels’ algorithm and Project
and Lift.

2 Chain and chain-binomial

In this section we shall describe the terminology we will need to work with
general binomials.



Symbols u, v, w, . . . will denote elements of U+ and u′, v′, w′, . . . will denote
the elements of U . A term in the polynomial ring S[x] is the product of an
S element with a monomial, for example, (r/u′)xa1

1 . . . xan
n where r ∈ R and

u′ ∈ U . For simplicity in the notations, we may also write it as (r/u′)xα, where
α represents the vector (a1, . . . , an). If r ∈ U+, then we will call it a U -term. A
binomial is a polynomial with at most two terms, i.e., b = (r1/u′1)xα+(r2/u′2)xβ .
A binomial of the form xα − xβ is called a pure difference binomial. If both the
terms of a binomial are U -terms, then we will call it a U -binomial. A U -binomial
of the form (u1/u

′
1)xα + (u2/u

′
2)xα will be called balanced. Since U need not be

closed under addition, a balanced U -binomial ((u1/u
′
1) + (u2/u

′
2))xα need not

be a U -term in general. A binomial b is said to be oriented if one of its terms is
identified as first (and the other second). If b is oriented, then brev denotes the
same binomial with the opposite orientation.

In the above notations, one of the coefficients of a binomial or U -binomial
may be zero. Hence the definition of binomials (rep. U -binomials) includes single
terms (resp. U -terms). To be able to handle all binomials in a uniform manner,
we shall denote a single term (r/u′)xα as (r/u′)xα + (0/1)x�, where x� is a
symbolic monomial. This will help in avoiding to consider a separate case for
single terms in some proofs. We shall refer to such binomials as mono-binomials.
In a term-ordering, x� will be defined to be the least element. Coefficient of x�

in every occurrence will be zero.

Definition 1. A sequence of oriented binomials ((r1/u′1)xβ1b1, . . . , (rq/u′q)x
βqbq)

(repetition allowed) will be called a chain if the second term of (ri/u′i)x
βibi

cancels the first term of (ri+1/u
′
i+1)xβi+1bi+1, for each 1 ≤ i < q. Let B be

a set of U -binomials. If each bi in the chain belongs to B, then we will call
it a B-chain. The sum of the binomials of the chain (respectively, B-chain)
b̃ =

∑q
i=1(ri/u′i)x

βibi, which is itself a binomial, will be called the correspond-
ing chain binomial (respectively, B-chain binomial). It is the first term of
(r1/u′1)xβ1b1 plus the second term of (rq/u′q)x

βqbq, since all the intermediate
terms get canceled. We will call any two chains equivalent if their correspond-
ing chain-binomials are the same.

In the later sections we will be interested in the “shape” of a chain. Given a
term ordering we will call a chain ascending if the first monomial is (strictly)
less than the second monomial in each binomial of the chain with respect to
the given term-order. Similarly descending chains are defined. Another shape
of significant interest is the one in which there are three sections in the chain:
first is descending, second is horizontal (all binomials in it are balanced), and
the final section is ascending. Any of these sections can be of length zero. Such
chains will be called bitonic.

Suppose we have a sequence of oriented U -binomials such that the monomial
of the second term of the i-th binomial in the sequence is equal to the monomial
of first term of the (i + 1)-st binomial in the sequence. Then we can multiply
suitable coefficients to these U -binomials to turn this sequence into a chain
such that its chain-binomial is also a U -binomial. Let (xβ1b1, . . . ,xβqbq) be a



sequence of oriented U -binomials such that the first q − 1 binomials are not
mono-binomials. Let xβibi = xβi((ui/u′i)x

αi,1 + (vi/v′i)x
αi,2) where (ui/u′i)x

αi1

is the first term, for each i. Let βi + αi,2 = βi+1 + α(i+1),1 for all 1 ≤ i < q.
Consider the sequence (. . . , (di/d′i)x

βibi, . . .), 1 ≤ i ≤ q where d1/d
′
1 = 1/1 and

di/d
′
i = (−1)i−1(v1u′2v2u

′
3v3 · · · vi−1u

′
i/v
′
1u2v

′
2u3v

′
3 · · · v′i−1ui),

for i > 1. It is easy to see that it is a chain of U -binomials and its chain-binomial
is the U -binomial (u1/u

′
1)xα1,1 + (dq/d′q)(vq/v

′
q)x

αq,2 which will be denoted by
B(xβ1b1, . . . ,xβqbq). Note that if bq is a mono-binomial, then the second term
will be (0/1)x�.

Observation 1 Let (xβ1b1, . . . ,xβkbk) be a sequence of oriented U -binomials
where bi ∈ B and none of which are mono-binomials. Furthermore, the second
monomial of xβibi and the first monomial of xβi+1bi+1 are same for all 1 ≤ i < k.
Then B(xβ1b1, . . . ,xβkbk,xβkbrevk , . . . ,xβ1brev1 ) = 0.

3 Decomposition into chains

If B is a finite set of pure difference binomials, then every binomial in 〈B〉 is a
B-chain binomial. This property is used in the computation of a toric ideal. In
case B has general binomials this property does not hold. But in the following
theorem we will show that in ideals generated by U -binomials every polynomial
can be expressed as the sum of some B-chain binomials. This result is used in
the proof of theorems 2 and 3. For any polynomial f , Mon(f) will denote the
set of monomials in f .

Theorem 1. Let B be a finite set of U -binomials in S[x]. For every polynomial
f in I = 〈B〉, there exists a set of B-chain binomials b̃i such that f =

∑
i b̃i

where both monomials of every b̃i belongs to Mon(f) ∪ {x�}.

Proof. Let B = {b1, . . . , bn}. Consider an arbitrary polynomial f ∈ 〈B〉. So
f =

∑
i(ri/w

′
i)x

βibji where (ri/w′i)x
βi ∈ S[x], for all i. Define an edge-weighted

graph G (multi-edges and loops allowed) representing this expression in the
following manner. The vertex set of this graph is the set of distinct monomials
in (ri/w′i)x

βibi, for all i. Vertices corresponding to Mon(f)∪{x�} will be called
terminal vertices.

There is one edge for each addend binomial in the sum-expression for f . The
i-th edge is incident upon the two monomials associated with xβibi, if they are
distinct. Otherwise it forms a loop on that monomial. Weights are assigned to
two halves of each edge separately. Suppose bi = (ui/u′i)x

αi,1 +(vi/v′i)x
αi,2 . Then

we associate weight (ri/w′i)(ui/u
′
i) to the end incident on xβixαi,1 and weight

(ri/w′i)(vi/v
′
i) to the end incident on xβixαi,2 .

It should be clear from the construction that the sum of end-weights incident
upon a non-terminal vertex must be zero. Hence the degree of non-terminal
vertices can never be one. Each end-weight incident on x� is zero, so their sum
is also zero. See example in figure 1.



Fig. 1. An example of chain decomposition

Consider any connected component, C, of G. The polynomial corresponding
to C is the sum of its monomials, weighted with the sum of end-weights incident
on it. This is also the sum of addend binomials corresponding to the edges in C.
So the polynomial associated with G is the sum of polynomials of all components
of G, which is f .

If a component does not contain any Mon(f) vertex, then the corresponding
polynomial will be zero. So we can delete it from the graph without affecting
the total polynomial. Similarly any isolated Mon(f) vertex with no loop-edge
also contributes zero and can be deleted from the graph. So we can assume that
every connected component of G has at least one Mon(f) vertex and degree of all
terminal vertices is at least 1 and as observed earlier, the degree of non-terminal
vertices is at least 2.

We will establish the claim of the theorem by induction on the number of
edges in the graph. If the graph has one edge, then the corresponding expression
is a trivial B-chain binomial with both monomials from Mon(f) ∪ {x�}. Next
we will consider the graphs with more than one edge.

If there is a component with at least two terminal vertices, then select a short-
est path w between two different vertices of Mon(f) ∪ {x�} in the component.
In case all components have only one Mon(f) node, then from lemma 1 given
below, we conclude that a closed walk w exists passing through the terminal
vertex and has at least one edge on it which is traversed only once.

In either case, the walk w has at least one edge on it which is not traversed
more than once and both its end-vertices (the two end-vertices may be same if
w is a closed walk) are terminals. Furthermore, if one of the end-vertices is x�,
then w must be a path, not a closed walk. Hence, all edges on it are traversed
only once. In particular, the edge incident on x� is traversed only once.

Let (rj1/w
′
j1

)xβj1 bj1 , (rj2/w
′
j2

)xβj2 bj2 , . . . , (rjk/w
′
jk

)xβjk bjk be the sequence
of the binomials associated with the successive the edges of the walk. Orient
these binomials such that walk proceeds from the first to the second term of
each binomial. Then the second monomial of i-th binomial is same as the first
monomial of (i+ 1)-st binomial of the walk/sequence.

Suppose the t-th edge in the walk is traversed only once. In case the walk
ends in x�, take t to be the edge incident on x�. Let jt = l. Consider the
chain binomial b̃ = B((rld′t/w

′
ldt)x

βj1 bj1 , . . . , (rld
′
t/w

′
ldt)x

βjk bjk), where dt/d′t is
as defined in the end of section 2. Observe that in the chain expression of b̃
the t-th addend is (rl/w′l)x

βlbl and all the remaining addends correspond to



other than l-th edge of the graph. From the definition of binomial b̃, both its
monomials are from the set {Mon(f) ∪ {x�}.

Let f ′ = f − b̃. Express f ′ as a sum expression by combining the sum ex-
pressions of f and b̃. The coefficients of a given binomial in the sum expression
of f and of b̃ combine to a single coefficient of the form r/u′. Hence, we get a
sum-expression for f ′ where the binomials are the same as in the expression of f
but their coefficients may change. The coefficient of xβlbl in f ′ sum-expression
is zero. So the number of addend binomials in f ′ expression is at least one less
that that in f expression. Therefore the graph corresponding to f ′ will have at
least one fewer edge then in the graph of f . This establishes the induction-step
and hence the proof is complete. �

Following is a graph theoretic result which was used in the above theorem.

Lemma 1. Let H be an undirected connected graph (possibly with loops and
multi-edges) with n vertices. Let s be a specified vertex. Also let the degree of
every vertex other than s be greater than one and deg(s) ≥ 1 (so if n = 1 then s
has a loop). Then, there exists a closed walk passing through s which has at least
one edge that occurs only once in it.

Proof. The number of edges in H is half of the sum of degrees of its vertices, so
it is at least d(1+2(n−1))/2e = n. A tree on n vertices has n−1 edges. So there
must exist a cycle in H. Since the graph allows loops and parallel edges, the
cycles in the graph include 1-cycles (loop) and 2-cycles (due to parallel edges).

Suppose this cycle is v0
e′0→ v1

e′1→ . . . vm−1

e′m−1→ v0,m ≥ 1. Furthermore,
suppose vi is one of the nearest vertices of the cycle from s and let e1, e2, . . . , et
be a shortest paths from s to vi. So this path only touches the cycle at vi and
the sets of the edges of the path and the cycle are disjoint. Then the desired
walk is e1, e2, . . . , et, e′i, e

′
i+1, . . . , e

′
0, e
′
1 . . . , e

′
i−1, et, et−1, . . . , e1. �

4 Reduction of U -binomials

Let B be a finite set of non-balanced U -binomials (which may include mono-
binomials) and a term order ≺. In this section we will formally describe the
reduction of any U -binomial by B with respect to the given term order. We will
assume that each binomial of B is oriented by setting the leading term as the
first term. We will denote the leading term of a binomial b by in≺(b).

Given an arbitrary U -term (u/u′)xα, algorithm 3 computes a descending
B-chain (v1/v′1)xβ1bj1 , . . . , (vp/v

′
p)x

βpbjp with corresponding B-chain binomial∑p
i=1(vi/v′i)x

βibji = (u/u′)xα− (w/w′)xγ where xγ is not divisible by the lead-

ing term of any member of B. The term (w/w′)xγ will be denoted by (u/u′)xα
B

.
Any initial sub-chain (v1/v′1)xβ1bj1 , . . . , (vp/v

′
p)x

βpbjl is called a reduction
of (u/u′)xα and if the corresponding chain-binomial is (u/u′)xα − (w1/w

′
1)xγ1 ,

then (u/u′)xα is said to haveB-reduced to (w1/w
′
1)xγ1 . In particular, (u/u′)xα

B

is the irreducible B-reduction of (u/u′)xα. If p =
∑
i(ui/u

′
i)x

αi and (wi/w′i)x
γi



be someB-reduction of (ui/u′i)x
αi for each i, then

∑
i(wi/w

′
i)x

γi is aB-reduction
of p.

Data: A finite set, B, of non-balanced U -binomials; a U -term (u/u′)xα

Result: A U -term (w/w′)xγ which is irreducible by B and a B-chain
corresponding to binomial (u/u′)xα − (w/w′)xγ .

(w/w′)xγ := (u/u′)xα ;1

i := 0 ;2

while some leading monomial in B divides xγ do3

select b = (µ1/µ
′
1)xδ1 + (µ2/µ

′
2)xδ2 from B s.t. the leading monomial xδ14

divides xγ ;
i := i+ 1 ;5

xβji := xγ/xδ1 ;6

vi/v
′
i := (−w/w′)(µ′1/µ1) ;7

w/w′ := (vi/v
′
i)(µ2/µ

′
2);8

xγ := xβji · xδ2 ;9

end10

return (w/w′)xγ , ((v1/v
′
1)xβbj1 , . . . , (vi/v

′
i)x

βibji) ;11

Algorithm 3: Division algorithm for a U -monomial by a set of non-balanced U -
binomials

The reduction of binomials is of special interest here. Suppose we have a
non-balanced U -binomial b = (u1/u

′
1)xα1 + (u2/u

′
2)xα2 and a finite set B of

non-balanced U -binomials in which the first term is greater than the second
term. Let (w1/w

′
1)xγ1 and (w2/w

′
2)xγ2 be the reductions of (u1/u

′
1)xα1 and

(u2/u
′
2)xα2 respectively. So b′ = (w1/w

′
1)xγ1 + (w2/w

′
2)xγ2 is a reduction of b.

Adjoining the reduction chain of (u1/u
′
1)xα1 with b′ (if it is non-zero) followed

by the reverse of the reduction chain of (u2/u
′
2)xα2 results into a bitonic chain

called a reduction chain of b with respect to B. Obviously, its chain-binomial
is b.

In case b is a balanced U -binomial (u1/u
′
1)xα+(u2/u

′
2)xα, we only need to re-

duce xα. Let a reduction chain and the reduction monomial be C1 and (w1/w
′
1)xγ

respectively. Then b′ = (u1/u
′
1)(w1/w

′
1)xγ + (u2/u

′
2)(w1/w

′
1)xγ is a B-reduction

of b and the corresponding reduction chain is (u1/u
′
1)C1, b

′, (u2/u
′
2)Crev1 .

For any binomial b, any B-reduction chain which reduces it to b′, is a B∪{b′}-
chain and it is bitonic. In particular, if b′ is zero then the reduction chain will
be a B-chain.

Lemma 2. Let C be a B-chain and b ∈ B. Let B′ = B \ {b} and b′ be some
B′-reduction of b. Then there is a B′ ∪ {b′}-chain which is equivalent to C.

Proof. If b does not occur in C, then C is also a B′ ∪ {b′}-chain.
The reduction chain of b by B′ is a B′ ∪ {b′}-chain. In case b occurs in C,

plug this reduction chain in places of b in C. So the resulting chain is equivalent
to C and itself a B′ ∪ {b′}-chain. �



5 Pseudo-Gröbner Basis

In the first section we saw that the saturation of an ideal in k[x] can be computed
by first computing a suitable Gröbner basis for it, as described in Sturmfels’
lemma (Lemma 12.1 [8]). Unfortunately, Gröbner basis is only defined for ideals
in k[x], where k is a field, not for S[x] as is the case here. In this section, we will
describe a type of basis for U -binomial ideals in S[x] which closely resembles a
Gröbner basis. In section 6 , we will also prove a theorem similar to the Sturmfels’
lemma which will allow us to compute the saturation of such ideals.

Definition 2. For every finite U -binomial set G, G1 and G2 will denote its
partition, where the former will represent the set of non-balanced binomials and
the latter will represent the set of balanced binomials of G.

Definition 3. Let b1 = (u1/u
′
1)xα1+(v1/v′1)xβ1 and b2 = (u2/u

′
2)xα2+(v2/v′2)xβ2

be non-balanced U -binomials belonging to S[x]. Let ≺ be a term order and
xβi ≺ xαi for i = 1, 2. Further, let b3 = (w1/w

′
1+w2/w

′
2)xα. We define two types

of S-binomials as follows: First one for a pair of two non-balanced binomials,
s(b1, b2), is given by (u1v2/u

′
1v
′
2)xβ2+γ−α2 − (v1u2/v

′
1u
′
2)xβ1+γ−α1 , where xγ is

the LCM of xα1 and xα2 . The second type is for a balanced and non-balanced
binomial. In this case s(b3, b1) is given by (w1/w

′
1 +w2/w

′
2)xβ1+γ−α1 , where xγ

is the LCM of xα and xα1 .

Assume a fixed term-order. In a chain (. . . , (vi/v′i)x
βibi, . . .), two consecutive

binomials will be said to form a peak if at least one is non-balanced and the
monomial at their junction is greater than or equal to the other two monomials.
Further suppose xβi−1bi−1 and xβi+j bi+j are non-balanced binomials and all the
intermediate binomials are balanced, then the binomials xβkbk, i ≤ k ≤ i+ j−1
are called plateau if at least one of (i−1)-st and i-th binomials or (i+ j−1)-th
and (i+ j)-th binomials form a peak. See figure 2.

Fig. 2. Types of peaks

Suppose C = (. . . , (ui−1/u
′
i−1)xβi−1bi−1, (ui/u′i)x

βibi, . . .) is a chain where
(i − 1)-st and i-th binomials form a peak. In case bi−1 and bi both are non-
balanced, then there exists a term (w/w′)xγ such that following chain is equiv-
alent to C: . . . , (ui−2/u

′
i−2)xβi−2bi−2, (w/w′)xγs(bi−1, bi), (ui+1/u

′
i+1)

xβi+1bi+1, . . .. In the second case, when bi−1 is balanced and bi is non-balanced,
then there exists a constant w1/w

′
1 and a term (w2/w

′
2)xγ such that the follow-

ing chain is equivalent to C: . . . , (ui−2/u
′
i−2)xβi−2bi−2, (w1/w

′
1)xβibi, (w2/w

′
2)xγ

s(bi−1, bi), (ui+1/u
′
i+1)xβi+1bi+1, . . .. The third case where bi−1 is non-balanced

and bi is balanced, need not be separately considered because it is same as the
second case with initial chain reversed. Observe that in these cases the original
peak is removed, see figure 3.



Fig. 3. S-polynomial reductions

Lemma 3. Let G be a finite set of U -binomials and assume a fixed term-
ordering. If for every S-polynomial s(b1, b2), b1, b2 ∈ G, has a G-chain in which
each monomial is less than or equal to at least one monomial of s(b1, b2), then
every G-chain has an equivalent bitonic G-chain.

Proof. Consider any arbitrary G-chain. If it has no peak, then it must be bitonic.
Otherwise locate one of the highest (in terms of the ordering) peaks. Replace
the two binomials forming the peak by the S-polynomial or the combination of
the S-polynomial and the non-balanced binomial as described in the previous
paragraph. Now replace the S-binomial by the corresponding G-reduction chain.
The reduction chain cannot have any monomial higher than both the monomials
of the S-binomial so no new peaks can form which is above both the monomials of
S-binomial. Substitution again turns the chain into a G-chain and it is equivalent
to the original chain. But it has one less peak or plateau at the level of the
selected peak. Iterate over this step till there is no peak left. Since term-ordering
is well-ordering, these iterations will have to terminate. �

A functional definition of Gröbner basis for any ideal in the ring k[x] is that
it is a basis of the ideal which reduces every member of the ideal to zero. We
will define pseudo Gröbner basis in a similar fashion. In the previous section we
described the reduction of a U -binomial by a set of non-balanced U -binomials.
Hence the reduction of a U -binomial by set G1 is well defined.

Definition 4. A U -binomial basis G of the ideal I = 〈G〉 will be called pseudo
Gröbner basis with respect to a given term-order if every binomial of I reduces
to 0(mod 〈G2〉).

Algorithm 4 is modified Buchberger’s algorithm which computes a pseudo
Gröbner basis for the ideal generated by an initial basis B, containing U bino-
mials. The first loop of the algorithm terminates since the initial ideal of 〈G1〉
strictly increases in each iteration and the underlying ring is Noetherian. In the
second part the S-polynomial computed in line 22 and the reduction with respect
to G1 do not change the coefficient of the monomial in the balanced binomial.



Hence all members of H have the same coefficient. In line 23 r′ reduces to zero
if any monomial in H divides it else it remains unchanged. Therefore each ad-
dition to H strictly increases the ideal generated by H. Once again ring being
Noetherian, this expansion of H must stop. Hence the algorithm terminates.

Data: B = { b1, . . . , bs } ⊆ S[x1, . . . , xn] be a set of U -binomials ; a term
order ≺

Result: A pseudo Gröbner basis (G1, G2) for 〈B〉 with respect to ≺.
G2 ← balanced members of B ;1

G1 ← B \G2 ;2

repeat3

G1,old ← G1 ;4

for each pair b1, b2 ∈ G1,old s.t. b1 6= b2 do5

r ← s(b1, b2)
G1 ;6

if r is non-balanced then7

G1 ← G1 ∪ {r} ;8

else9

if r 6= 0 then10

G2 ← G2 ∪ {r}11

end12

end13

end14

until G1,old = G1;15

H2 ← ∅;16

for each b in G2 do17

H ← {b};18

repeat19

Hold ← H;20

for each b ∈ Hold and b1 ∈ G1 do21

r′ ← s(b, b1)
G1 ;22

r ← r′
H

;23

if r 6= 0 then24

H ← H ∪ {r};25

end26

end27

until Hold = H;28

H2 ← H2 ∪H;29

end30

G2 ← H2;31

/* For reduced pGB, reduce G1 elements by other G1 elements
and G2 elements by G1. */

return (G1, G2);32

Algorithm 4: A1: Modified Buchberger’s algorithm



Theorem 2. Algorithm 4 computes a pseudo Gröbner basis of 〈B〉 with respect
to the given term ordering.

Proof. Let (G1, G2) be the output of algorithm 4. Let G = G1 ∪ G2. The S-
polynomials of a pair of binomials in the ideal also belong to the ideal. Similarly
the G1 reduction of a binomial of the ideal also belongs to the ideal. Hence the
ideal remains fixed during the computation, i.e., 〈B〉 = 〈G〉.

In order to show that (G1, G2) is a pseudo-Gröbner basis of 〈G〉 we need to
show that G1 reduces every polynomial of 〈G〉 to polynomial in 〈G2〉. Due to
theorem 1 it is sufficient to show that G1 reduces every G-chain binomial to a
polynomial in 〈G2〉.

Let s(b1, b2) be the S-polynomial of some b1, b2 ∈ G. Then it is itself a
G ∪ {s(b1, b2)}-chain (i.e., a chain of only one binomial). The reduction chain

of s(b1, b2) is a G-chain since s(b1, b2)
G1 belongs to G. From Lemma 3 every

G-chain has an equivalent bitonic G-chain.
Consider an arbitrary G-chain binomial b = (u1/u

′
1)xα1 + (u2/u

′
2)xα2 . From

the previous paragraph we know that there is a bitonic G-chain with b as its
chain binomial. Let C1, C2 and C3 be its descending, horizontal, and ascending
sections. So the C1 and Cr3 (reverse of C3) are reduction chains of (u1/u

′
1)xα1 and

(u2/u
′
2)xα2 respectively. Let their reduced terms be (v1/v′1)xβ1 and (v2/v′2)xβ2

respectively. Then the chain-binomial of C2 is b′ = (−v1/v′1)xβ1 + (−v2/v′2)xβ2 .
Since all balanced binomials of G belong to G2, C2 is a G2-chain and b′ ∈ 〈G2〉.
�

6 Saturation with respect to xi

In this section we we will prove a result similar to lemma 12.1 of [8] which will
result into an algorithm to compute 〈B〉 : x∞i efficiently.

Theorem 3. Let (G1, G2) be the pseudo Gröbner basis of a homogeneous U -
binomial ideal I in S[x] with respect to graded reverse lexicographic term order
with xi least. Then (G′1 = G1 ÷ x∞i , G′2 = G2 ÷ x∞i ) is a pseudo Gröbner basis
of I : x∞i .

Proof. From theorem 1 we know that every polynomial f in I can be expressed
as a sum of G-chain binomials and their monomials are monomials of f . So it
is sufficient to show that for each G-chain binomial b, b′ = b÷ x∞i is a G′-chain
binomial.

Let b = (u1/u
′
1)xα1 + (u2/u

′
2)xα2 be a G-chain binomial. From lemma 3

there is a bitonic G-chain for b, say, (v1/v′1)xβ1b1, . . . , (vk/v′k)xβkbk. Hence every
monomial in the chain is less than either xα1 or xα2 . Let a be the largest integer
such that xai divides b, i.e., xai divides xα1 and xα2 . Since the term ordering is
graded reverse lexicographic with xi least, xai must divide every monomial of the
chain. Hence there exists β′j such that (xβj bj)÷xai = xβ

′
j (bj÷x∞i ). So b÷x∞i = b÷

xai =
∑
j(vj/v

′
j)x

β′j (bj÷x∞i ) and (v1/v′1)xβ
′
1(b1÷x∞i ), . . . , (vk/v′k)xβ

′
k(bk÷x∞i )

is a chain with chain-binomial equal to b ÷ x∞i . Thus b ÷ x∞i is a G′-chain
binomial. �



7 Final Algorithm

Let R0 be a commutative Noetherian ring with unity, and U0 ⊂ R0 be a mul-
tiplicatively closed set with unity but without zero. Let the set U+

0 be defined
as

U+
0 = { u : u ∈ U0, or − u ∈ U0, or u = 0 } .

Let S0 denote the localization of R0 w.r.t U0, i.e., S0 = R0[U−1
0 ]. Here we define

a few notations to simplify the description of the algorithm. Let Ui be the set of
all monomials in x1, . . . , xi and Si = S0[x1, . . . , xi][U−1

i ].
Let f(x) be a polynomial in Si[xi+1, . . . , xn]. Let k be the largest integer such

that xki occurs in the denominators of one or more terms of f . Then x∞i ∗ f(x)
denotes xki ∗ f(x). If B is a set of polynomials of Si[xi+1, . . . , xn], then x∞i ∗ B
denotes { x∞i ∗ f(x) : f(x) ∈ B }.

We will be dealing with several polynomial rings simultaneously. In case of
ambiguity about the underlying ring we will denote the ideal generated by a set
of polynomials B in a ring S[x] by 〈B〉S[x].

Our algorithm is based on the following identities where B is a finite set
of polynomials in S0[x1, . . . , xn] and for each i, Bi denotes a basis of 〈B〉Sn

∩
Si[xi+1, . . . , xn].

Lemma 4. (i) 〈B〉S0[x1,...,xn] : (x1 . . . xn)∞ = 〈B〉Sn
∩ S0[x1, . . . , xn]

(ii) 〈B〉Sn ∩ Si−1[xi, . . . , xn] = 〈x∞i ∗Bi〉Si−1[xi,...,xn] : (xi)∞

Proof. (i) Let f ∈ 〈B〉Sn
∩ S0[x1, . . . , xn] so f =∑

j(rj/u
′
j)(x

αj/xβj )bj where bj ∈ B. The terms in the denominator in expression
get canceled since f has no terms in the denominator. So

xβ1+β2+....f =
∑
j

xαj+β1...+βj−1+βj+1+....bj ∈ 〈B〉S0[x1,...,xn]

. Therefore f ∈ 〈B〉S0[x1,...,xn] : (x1 . . . xn)∞.
Conversely, Let f ∈ 〈B〉S0[x1,...,xn] : (x1 . . . xn)∞. So for some xβ , xβf =∑
i(ri/u

′
i)x

αibi where bi ∈ B. So f =
∑
i(x

αi/xβ)bi ∈ 〈B〉Sn
. Since f has no

terms in the denominators of its terms, f ∈ 〈B〉Sn
∩ S0[x1, . . . , xn].

(ii) Let f ∈ 〈B〉Sn ∩ Si−1[xi, . . . , xn]. So f ∈ 〈Bi〉. Let f =
∑

(xαj/xβj )bj
where bj ∈ Bi and xβj are monomials on xi, xi+1, . . .. Let m be the largest expo-
nent of xi in the denominators in the sum-expression. So there are integers ti such
that xmi f =

∑
(xtii xαj/xβj )(x∞i ∗bj). This sum belongs to 〈x∞i ∗Bi〉Si−1[xi,...,xn].

So f ∈ 〈x∞i ∗Bi〉Si−1[xi,...,xn] : (xi)∞.
Now the converse. x∞i ∗Bi ⊂ 〈B〉Sn∩Si−1[xi, . . . , xn]. So 〈x∞i ∗Bi〉Si−1[xi,...,xn] ⊂

〈B〉Sn
∩Si−1[xi, . . . , xn]. Now we will show that the ideal on the right hand side is

saturated with respect to xi. Let xki f ∈ 〈B〉Sn
∩Si−1[xi, . . . , xn] where xi, . . . , xn

are not in the denominators in f . So (1/xki )(xki f) ∈ 〈B〉Sn
or f ∈ 〈B〉Sn

. Since
f does not have xi, . . . , xn in the denominators, f ∈ 〈B〉Sn ∩ Si−1[xi, . . . , xn]. �

Using Theorem 3 we compute the saturation 〈x∞i ∗ Bi〉Si−1[xi,...,xn] : (xi)∞.
Hence the final algorithm is as follows.



Data: Finite set B of homogeneous U0-binomials in S0[x1, . . . , xn].
Result: A pseudo-Gröbner basis of 〈B〉S0[x1,...,xn] : (x1 · · ·xn)∞

G1 := {b ∈ B|b is non-balanced };1

G2 := {b ∈ B|b is balanced };2

for i← n to 1 do3

if i > 1 then4

Homogenize G1 using a new variable z;5

end6

(G′1, G
′
2) := (x∞i ∗G1, x

∞
i ∗G2);7

(G1, G2) := A2(G1, G2, rev. lex order with i least );8

(G1, G2) := (G1 ÷ x∞i , G2)÷ x∞i );9

(G1, G2) := (G1|z=1, G2|z=1);10

end11

return (G1, G2).12

Algorithm 5: A3:Computation of 〈B〉S0[x1,...,xn] : (x1 · · ·xn)∞

The graded reverse lexicographic term order requires a homogeneous ideal,
hence we require homogenization for n ≥ i > 1 cases. In case of i = 1, the ideal
is given to be homogeneous.

Theorems 2, 3 and lemma 4 establish the correctness of this algorithm.

Theorem 4. Let R0 be Noetherian commutative ring with unity. Let U0 ⊂ R0

be a multiplicatively closed set. Let B be a finite set of homogeneous U0-binomials
in S0[x1, . . . , xn]. Then algorithm A3 computes a pseudo-Gröbner basis of 〈B〉 :
(x1 · · ·xn)∞.

8 Preliminary Experimental Results

In the table given below, we present some preliminary experimental results of
the application of the proposed algorithm in computing toric ideals. To apply
our general algorithm to this specific case, we choose R0 to be a field k, and U0

to be {1}. Thus, S0 = k and the polynomial ring S0[x] is simply k[x].
We compare our algorithm with Sturmfels’ [8] and the Project and Lift algo-

rithm [6], the best algorithm known to date to compute toric ideals. As expected,
the table shows that our algorithm performs much better than the Sturmfels’
original algorithm, as our algorithm is specifically designed for binomial ideals.

To compare with Project and Lift algorithm, we implemented it as reported
on page 19 of [6], without optimizations reported subsequently. 4ti2[6] is the
optimal implementation of their algorithm. Similar optimizations are applicable
in our algorithm and it too is implemented without the same. The typical results
are presented in the table given below.

Our intuition as to why our algorithm is doing better compared to Project
and Lift is that, though Project and Lift does a large part of its calculations
in rings of variables less than n, it still uses Sturmfels’ saturation algorithm
as a subroutine, though the extent it uses the algorithm depends on the input



Number of Size of basis Time taken (in sec.)
variables Initial Final Sturmfels’ Project and Lift Proposed

8 4 186 .30 0.12 0.10
6 597 2.61 .6 0.64

10 6 729 3.2 1.1 0.50
8 357 2.4 .40 0.29

12 6 423 1.7 .90 0.27
8 2695 305 60 27.2

14 10 1035 10.5 4.2 2.5

Table 1. Preliminary experimental results comparing Project-and-Lift and our pro-
posed algorithm

ideal. On the other hand, our algorithm computes all saturations by the same
approach.
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