
Implied Set Closure and Its Application to

Memory Consistency Verification

Surender Baswana, Shashank K. Mehta, and Vishal Powar

Indian Institute of Technology, Kanpur - 208016, India,
{sbaswana,skmehta,vishalp}@cse.iitk.ac.in

Abstract. Hangal et. al. [3] have developed a procedure to check if an
instance of the execution of a shared memory multiprocessor program, is
consistent with the Total Store Order (TSO) memory consistency model.
They also devised an algorithm based on this procedure with time com-
plexity O(n5), where n is the total number of instructions in the program.
Roy et. al. [6] have improved the implementation of the procedure and
achieved O(n4) time complexity.
We have identified the bottleneck in these algorithms as a graph problem
of independent interest, called implied-set closure (ISC) problem. In this
paper we propose an algorithm for ISC problem and show that using this
algorithm, Hangal’s consistency checking procedure can be implemented
with O(n3) time complexity. We also experimentally show that the new
algorithm is significantly faster than Roy’s algorithm.

Keywords Memory consistency model verification, Incremental transitive
closure, Total store order, Shared memory multi-processor

1 Introduction

Modern processors aggressively employ chip multiprocessing and simultaneous
multi-threading to achieve high processor performance. Traditionally memory
being the slower subsystem various techniques, such as hierarchical implemen-
tation of the memory, have been employed to reduce the bottleneck. With the
fast multiprocessors, modern architectures exploit new techniques to improve
the memory performance. Foremost of these techniques is executing the mem-
ory instructions out of program-order according to a predetermined consistency
model.

A memory consistency model specifies the restriction on the order in which
memory instructions may be executed. Commercial architectures support a vari-
ety of memory consistency models. The strictest of these is sequential-consistency
(SC), which requires that all the instructions of one processors must be executed
in their program-order. An execution is valid in this model if and only if the
global order of the instructions result from interleaving the processor-programs.
Relaxing the restrictions progressively lead to Total-Store-Order (TSO) and Re-
lease Consistency (RC), these along with further relaxed models are given in
[3].

The problem of memory consistency verification is to ensure that a given
architecture always executes every program in accordance to the memory con-
sistency model adopted in its design. This problem is shown to be NP complete
by Catlin et. al. [2]. With increasingly relaxed consistency model the verification
of compliance becomes extremely difficult. Adve and Gharachorloo [1] discuss
many issues related to these models and their implementation.

A more practical approach, adopted in industry, is to execute a test program
and then verify from its execution trace that indeed it was executed in accordance
with the consistency model. This approach can never prove that the design
is error free but a large number of tests can give significant confidence. The
test programs are multi-threaded programs of memory instructions: Store, Load,
Memorybar etc. We call each thread a processor-program.

In this paper we address the problem of analyzing the execution trace. Hangal
et. al. [3] have developed TSOtool for Sun Microsystem’s processors to analyze
the outcome of test programs run under TSO model. Their algorithm has O(n5)
time complexity and O(n2) space complexity, where n is the number of instruc-
tions in the test program. The basic procedure is general enough to be applicable
to other memory consistency models.

Roy et. al. [6] have developed Intel MPRIT Tool for the same task by improv-
ing the general algorithm by Hangal, reducing the time complexity to O(n4).
Once again, this algorithm can be applied to any consistency model without
change in the time complexity.

Manovit and Hangal [5] have also implemented the procedure of [3] with time
complexity O(k.n3) where k is the number of processors. This implementation
crucially depends on the total order on Store instructions in TSO. Therefore
their approach cannot be applied to consistency model other than TSO.

Our contribution in this paper is to identify a graph problem called implied-
set-closure(ISC) which is the abstraction of the bottleneck of the above men-
tioned general high-level algorithm. We present an efficient incremental algo-
rithm for ISC problem based on the incremental transitive closure algorithm by
Italiano [4]. The application of this algorithm reduces the time complexity of the
general memory consistency verification algorithm to O(n3), which is a signifi-
cant improvement over the O(n4) bound achieved by the previous best algorithm
of Roy et al. [6]. The space requirement of the algorithm remains Θ(n2). Other
salient feature of our algorithm is its compact and simple description and no
hidden constant, which makes it an ideal candidate to be a practical algorithm
(a quality not possessed by many theoretically efficient algorithms). We also
compared our algorithm with the algorithm of Roy et al. [6] experimentally in
an identical computing environment. In MPRIT, the algorithm of Roy et. al. is
implemented using vector instructions. For our experiment we implemented both
algorithms without vector instructions. The results show that the new algorithm
outperforms their algorithm in real time.

The remainder of the paper is organized as follows. In the following section,
we reproduce the description of the memory consistency verification problem
and its algorithm given in [3, 6]. In Section 3 a graph problem, which we refer by

the name implied set closure (ISC) problem, is formally defined and its relation
to the memory consistency problem is established. In Section 4, we develop an
algorithm for ISC, and also argue about the optimality of its theoretical time
complexity. In Section 5, experimental results comparing the performance of the
new algorithm to the previous best algorithm are presented.

2 Formal description of TSO model and consistency
verification algorithm

We reproduce here the formal description of TSO model and the high level
consistency verification algorithm presented in [3]. The axiomatic description of
the model is originally borrowed from Sindhu et. al. [7]. The model used by [6]
is slightly generalized which will also be covered in the following discussion.

A Load instruction is considered executed when the issuing processor receives
the data, while a Store instruction is considered executed when it is visible to
all processors in the system. It is assumed that each instruction eventually gets
executed, i.e., no instruction takes infinite time to complete. The notations used
here are as follows.

Li
a a Load from location a by processor i

Si
a a Store to location a by processor i

⌊Li
a; Si

a⌋ an Atomic operation to location a by processor i

V al[Li
a] the value read by Li

a

V al[Si
a] the value written by Si

a

Oi
a either a Li

a or a Si
a

S(Li
a) the store instruction Sj

a s.t. V al(Sj
a) = V al(Li

a) (it is assumed
that each Store instruction in the test program stores a
unique value so S(Li

a) is well defined.)
There are two partial-ordering relations defined over the set of all memory

instructions: local ‘;’ and global ‘≤’. x; y iff x and y are in the same processor-
program with x before y; and x ≤ y iff it is required by TSO axioms or by the
data dependency, that instruction x must be executed before y. In the latter
ordering x and y may belong to different processor-programs. Now we present
the axioms of total-store-order (TSO) memory consistency model.

Total Store Order ∀Si
a, S

j
b : (Sj

b ≤ Si
a ∨ Si

a ≤ S
j
b).

Atomic Operation ⌊Li
a; S

i
a⌋ ⇒ (Li

a ≤ Si
a) ∧ (∀S

j
b : S

j
b ≤ Li

a ∨ Si
a ≤ S

j
b).

Value Coherence V al[Li
a] = V al[max≤[{Sj

a : Sj
a ≤ Li

a} ∪ {Si
a : Si

a; Li
a}]].

Local Ordering This tells when the local ordering must be preserved in the
global ordering. We first present Roy et.al.’s [6] version of the axiom. If Oi

a; Oi
b

then subject to various criteria depending on the the type of the operations
(load or store) and the type of the locations a, b (write-back, write-through, write
protected, uncacheable, uncacheable speculative write combine), we require Oi

a ≤
Oi

b. The criteria can be expressed by a function f : ({load, store} × {location-
types})2 → {0, 1} and state the axiom as
(Oi

a; Oi
b) ∧ (f(type(Oi

a), type(a), type(Oi
b), type(b)) = 1) ⇒ (Oi

a ≤ Oi
b).

This axiom is stated in a restricted way in [3] where a specific f is assumed,
namely, f(i1, l1, i2, l2) = 1 iff i1 6= store or i2 6= load.

Axiomatic description of other memory consistency models are similarly de-
scribed in [7].

2.1 Consistency verification problem

TSOtool developed by Hangal et. al. [3] generates a test program, for a mul-
tiprocessor system (consisting only of memory instructions), executes it on the
system or a system simulator, and then analyzes the outcome of the run to
check if it is consistent with the axioms of the TSO model. In order to carry
out the analysis each Store instruction stores a unique value. It allows to de-
termine S(Li

a) for each Li
a unambiguously. Their main contribution is the con-

sistency checking algorithm. We will present the high level description of the
algorithm in this section. The implementation of this algorithm has O(n5) time
complexity, where n is the total number of (memory) instructions included in
all processor-programs. Roy at. al. [6] improved the implementation leading to
the time complexity O(n4). In the following sections we will show that it can be
further improved to O(n3).

Algorithm 1 analyzes the program output by computing a directed graph
(V, E) based on the outcome of the program. The nodes, V , of this graph are the
instructions of the program. An edge is placed from node O1 to O2 if O1 ≤ O2.
If the graph contains a cycle, i.e., ≤ is not found to be a partial ordering, then
we can conclude that the requirement of the consistency model must have been
violated in the execution.

We reproduce here the rules of including the edges in the graph from [3, 6]
which incorporate the TSO axioms.
Static Edges: This rule is due to the local ordering axiom.

R1: If f(type(Oi
a), type(a), type(Oi

b), type(b)) = 1, then include edge (Oi
a, Oi

b).
The edges due to this rule can be determined from the program itself and

they are independent of the outcome of the run. Assuming that the function can
be evaluated in O(1) time, the static edges can be computed in O(n2) time.
Observed Edges: These rules are direct implication of the Value-Coherence and
the Total-Store axioms.

R2: If (S(Li
a) = Sj

a) ∧ (i 6= j), then add the edge (Sj
a, Li

a).
R3: If (S(Li

a) = Sj
a) ∧ (S′i

a ; Li
a), then add the edge (S′i

a , Sj
a)

The first part of these conditions is decided by finding S such that V al(L) =
V al(S) for a given L. This is because each Store instruction stores a unique
value. Thus these edges can be computed only after the outcome of the run is
known. The second part of the conditions only depend on the program. Hence
it is easy to see that the observed edges can be computed in O(n2) time.
Inferred Edges: These rules are the indirect implications of Value Coherence
axiom.

R4: If (S(Li
a) = Sj

a) ∧ (S′k
a ≤ Li

a) ∧ (S′k
a 6= Sj

a), then add the edge (S′k
a , Sj

a).
R5: If (S(Li

a) = Sj
a) ∧ (Sj

a ≤ S′k
a), then add the edge (Li

a, S′k
a).

The conditions in this case, unlike in the earlier cases, depend on the structure
(edges) of the graph. As the new inferred edges are added to E new pairs of
vertices Li

a, S′k
a or S′k

a , Sj
a may satisfy the respective precondition and be eligible

for an edge between them. Thus inferred edges need to be computed iteratively.
The computation of the inferred edges is the bottleneck in the performance of
the algorithm, so the complexity of Algorithm 1 is determined by steps 9 and
12. In Sections 3 and 4 we describe an efficient solution for these steps.

2.2 Example

We present an example borrowed from [3] to show how above described rules
detect inconsistency.

Let S[X]#n denote a store instruction which stores n in location X ; and
L[X] = n denote a load instruction which loads value n from location X . In this
example we assume that f(i1, l1, i2, l2) = 1 iff i1 6= store or i2 6= load. Consider
the following 4-thread program along with the relevant information from an
execution.

P1 P2 P3 P4

S[B]#91 S[A]#2 S[B]#92 L[B] = 92
S[A]#1 L[A] = 2 L[B] = 91
L[A] = 2 L[B] = 92
In Figure 1 we show the directed graph generated using the rules. All edges

due to rules R1, R2 and R3 are easy to deduce from the rules. Here is the ex-
planation for the two R4 edges. Since S[B]#91 ≤ S[A]#1 ≤ S[A]#2 ≤ L[A] =
2 ≤ L[B] = 92. So from R4 there must be an edge from S[B]#92 to S[B]#91.
We also have S[B]#92 ≤ L[B] = 92 ≤ L[B] = 91. Again from R4, there should
be an edge from S[B]#91 to S[B]#92. These edges from a cycle so we conclude
that the TSO model is violated in this execution.

S [B] # 9 1

S [A] # 1

L [A] = 2

S [A] # 2

P 1

P 2

P 3

S [B] # 9 2

L [A] = 2

L [B] = 9 2

P 4

L [B] = 9 2

L [B] = 9 1

R 1

R 3

R 4
R 2

R 1

R 4

R 1

R 2

R 2

R 2

Fig. 1. Edges due to application of rules

2.3 Limitation of Algorithm 1

We have seen that a cycle in the graph implies that TSO model is violated but
the converse is not true.

The TSO requires that all Stores must be totally ordered. There may be
some cases where insufficient data dependence information is present to totally
order all the Stores. To remain true to TSO, all total orders must be considered
which are consistent with the partial order on stores determined by the data
dependence. This would make the worst case complexity of the algorithm expo-
nential [3]. The procedure chooses to ignore this lacunae in an attempt to trade
off accuracy for reasonable analysis time.

All the three algorithms that implement this procedure are designed with this
limitation. As explained above, the Store instructions do not get totally ordered
in the global ordering (as required by TSO) only when there is insufficient data
dependence. This situation arises when different threads do not have sufficient
interaction. In practice this situation can easily be resolved by having Load
instruction for each location in several threads. Therefore these algorithms are
extremely useful in spite of the incompleteness.

3 Implied-Set Closure (ISC) problem

Definition 1. Given a directed graph G = (V, E0) and and a mapping T : V ×
V → powerset(V × V). Then the implied-set closure of G is GISC = (V, EISC

0)
where EISC

0 is the smallest edge set such that
(i) E0 ⊂ EISC

0 ,
(ii) if EISC

0 has a (directed) path from a to b, then T (a, b) ⊆ EISC
0 ∀a, b ∈ V .

If any two edge sets satisfy the above conditions, then their intersection also
satisfies the same. Therefore there is a unique smallest set satisfying the condi-
tions. Observe that if T (a, b) = {(a, b)}, then ISC problem reduces to transitive
closure problem.

3.1 Relation to Memory Consistency Verification Problem

The computation of the edges generated by the rules R4 and R5 is an instance
of the computation of implied-set closure problem as explained below.

Let E0 be the edge set E in Algorithm 1 after step 8. Define (i) T (Sk
a , Li

a) =
{(Sk

a ,S(Li
a)} for every Sk

a and Li
a such that Sk

a 6= S(Li
a), (ii) T (Sj

a, Sk
a) =

{(Li
a, Sk

a) : S(Li
a) = Sj

a}, (iii) T (x, y) = ∅ for all the remaining ordered pairs
(x, y). Then the final set E in Algorithm 1, computed after step 14, is EISC

0 with
respect to the T mapping described above.

4 Algorithm for ISC problem

We present an algorithm for implied-set closure problem which is based on in-
cremental algorithm for transitive closure proposed by Italiano [4].

Data: Sequence of memory-instructions for each processor (Swap is considered
both, a Load and a Store instruction), value associated with each
Load/Store instruction. V denotes the set of all instruction

Result: It outputs true if the execution of the program obeys all TSO axioms,
else outputs false

for each L ∈ V do1

if V al[L] = V al[S] then2

S(L) = S3

end4

end5

initialize graph (V, E) to (V, ∅);6

/* R1: */

Add edges to E according to R1;7

/* R2, R3: */

Add edges to E according to R2 and R3;8

/* R4: */

while ∃L, S′ such that S′

a 6= S(La) = Sa and (S′

a, La) ∈ E do9

Add edge (S′

a, Sa) to E;10

end11

/* R5: */

while ∃La, S′

a such that S′

a 6= S(La) = Sa and (Sa, S′

a) ∈ E do12

Add edge (La, S′

a) to E;13

end14

if E contains a cycle then15

declare that TSO violation found;16

end17

else18

declare no violation found;19

end20

Algorithm 1: Algorithm to analyze a program output for TSO violation

4.1 An incremental algorithm for ISC problem

Algorithm 2 computes the implied-set closure of a set of directed-edges E0 ⊆
V × V . For convenience we shall denote the existence of a directed path from a

to b in graph H , in the algorithm, by a b and the transitive closure of H by
Hc.

The correctness of the algorithm can be established by observing that at the
end of each iteration of the while-loop following four assertion are always true:
(i) E0 ⊆ H ∪ X , (ii) HC = Hc, (iii) For each pair of vertices u, v, if u v in
H , then T (u, v) ⊆ H ∪ X , (iv) H ∪ X ⊆ EISC

0 , where EISC
0 is the implied-set-

closure of E0. Condition (iii) is equivalent to: for each pair of vertices u, v, if
(u, v) ∈ HC, then T (u, v) ⊆ H ∪ X .

The algorithm terminates since H grows monotonically. On termination, X

is empty so the loop invariant conditions imply that finally H = EISC
0 .

In the next step we will show how to efficiently compute the incremental
transitive closure of step 8 of Algorithm 2.

Data: vertex set V ; edge set E0; implied-edge-sets T (a, b) for all pairs
(a, b) ∈ V × V

Result: H = EISC
0 and HC = Hc (transitive closure of H)

H ← ∅;1

HC ← ∅;2

X ← E0;3

while X 6= ∅ do4

(x, y)← Select(X);5

/* pick an arbitrary edge (a, b) from X and delete it from the set

*/

H ′ ← H ∪ {(x, y)};6

if (x, y) /∈ HC then7

HC′ ← (HC ∪ {(x, y)})c;8

end9

else10

HC′ = HC;11

end12

/* here superscript ‘c’ denotes transitive-closure */

for each (u, v) ∈ (HC′ −HC) do13

X ← X ∪ (T (u, v)−H ′);14

end15

H ← H ′;16

HC ← HC′;17

end18

return H ;19

Algorithm 2: An incremental algorithm to compute implied-set closure of E0

4.2 Improved Algorithm for ISC problem

In order to update the transitive closure of the graph upon insertion of an edge,
the algorithm uses following observation to minimize the computation required.
Let (x, y) be an edge added to H . If y was already reachable from x, then
the transitive closure of the graph will remain unchanged. Otherwise, transitive
closure needs to be updated. In particular, we need to add the edges implied
by the transitivity in context of all those vertices w such that w x ∧ w 6 y

prior to insertion of edge (x, y) because vertex reachable from y has subsequently
become reachable from w too. In order to update the transitive closure for each
such vertex w, a simple way is to scan all vertices reachable from y. This will
require O(n) work per vertex and leads to O(n4) time algorithm as designed by
Roy et al. [6]. However, note that it would suffice if we can efficiently compute
only those vertices which are reachable from y but not reachable from w (prior
to the current edge insertion). Let us denote this set by D(w, y). The following
Lemma would pave the way for its efficient computation, and hence updating
the transitive closure.

Lemma 1. For each vertex v ∈ D(w, y), and any path P from y to v, each
vertex lying on P is also present in D(w, y).

The set D(w, y) is a subset of the set of vertices reachable from y, and we
know that the latter can be computed by performing DFS (or BFS) traversal
in the graph starting from y. In order to compute D(w, y) efficiently, it would
suffice to perform a bounded DFS traversal in the graph starting from y wherein
we extend DFS recursively only along those vertices which were not reachable
from w prior to insertion of the edge (x, y). This is because, as follows from
Lemma 1, the DFS traversal pursued from a vertex already reachable from w

won’t lead to any vertex of set D(w, y), and so there is no point extending DFS
traversal beyond such vertices.

Algorithm 3 is the bounded depth-first search based procedure to update
transitive closure for a vertex w upon insertion of an edge. This algorithm im-
plicitly computes D(w, y).

HC ← HC ∪ (w, y);1

for each (y, z) ∈ H do2

if (w, z) 6∈ HC then3

bDFS(w, z);4

end5

end6

Algorithm 3: bDFS(w, y)

Based on the above discussion, it follows that we can replace Step 8 in Algo-
rithm 2 by the following step.

Step 8 for Algorithm 2:
for each w ∈ V do

if ((w, x) ∈ HC)&((w, y) 6∈ HC) then bDFS(w, y); end

end

Along with this modification we also absorb the for-loop at step 13 of Algo-
rithm 2 in the bounded DFS routine. The final algorithm is given in Algorithm 4.
Here H is stored in two data-structures, adjacency-list HL as well as adjacency-
matrix HM . HL[a] points to the list of vertices to which there are edges in H

from a, and HM [a, b] = 1 iff (a, b) ∈ H . The transitive closure of H is stored as
adjacency matrix, where HC[a, b] = 1 iff (a, b) belongs to Hc.

4.3 Time and Space Complexity

Analysis of running time: Let the number of vertices in V be n, number of
edges in E0 be m, and m denote the number of edges in the implied-set closure
of E0.

The for-loop in Algorithm 4 runs n times in each call and while-loops iterates
m times so total time complexity of the algorithm, excluding the cost of bDFS′-
calls is O(mn).

We bound the cost due to bDFS′-calls in two parts, one for each for-loop.
Observe that the bDFS′-routine is never called again with the same argu-
ments. Therefore the cumulative cost of all calls due to the second for-loop

Data: vertex set V ; edge set E0; induced-edge-sets T (a, b) for all pairs
(a, b) ∈ V × V

Result: HL is the adjacency list of the implied-set-closure, and HC stores its
transitive closure

HL← ∅;1

HM ← ∅;2

HC ← ∅;3

X ← E0;4

while X 6= ∅ do5

(x, y)← Select(S);6

Insert y in HL[x];7

HM [x, y]← 1;8

if HC[x, y] = 0 then9

for each w ∈ V do10

if HC[w, x] = 1 and HC[w, y] = 0 then11

bDFS′(w, y)12

end13

end14

end15

end16

return HL, HC;17

Algorithm 4: Algorithm to compute implied-set closure: Final version

HC[w, y]← 1;1

for each (u, v) ∈ T (w, y) do2

if HM [u, v] 6= 1 then3

X ← X ∪ {(u, v)}4

end5

end6

for each z ∈ HL[y] do7

if HC[w, z] = 0 then8

bDFS′(w, z);9

end10

end11

Algorithm 5: subroutine bDFS′(w, y)

is
∑

w

∑
y degH(y), where degH(y) denotes the out-degree of y in H , which is

O(mn). The contribution of the first for-loop can be estimated by observing
that each T (w, y) is scanned at most once and the membership test takes O(1)
time. So its cost is O(

∑
(w,y)∈HC |T (w, y)|). The total time complexity of the

algorithm is O(mn +
∑

(w,y)∈HC |T (w, y)|).
Note that the second component in the expression can’t be got rid of by any

algorithm of ISC problem because this is also the input size for the problem
and each algorithm has to scan it at least once. The additional cost is O(mn).
It seems quite difficult, if not infeasible, to beat this bound since the ordinary
transitive closure problem is a special case of the ISC problem and there does not
exist any combinatorial algorithm for transitive closure problem with running
time o(mn) where m = |E0|.
Space requirement: The algorithm uses adjacency list as well as adjacency
matrix representation for the graph H which amounts to Θ(m + n2) = Θ(n2)
space. In addition we use n×n matrix HC. Hence, in addition to the input which
consists of original edge set E) and the lists T (a, b) for each (a, b) ∈ V × V , the
algorithm uses only Θ(n2) additional space.

Theorem 1. For a given graph on n vertices, a base set of edges E0, and sets
T (a, b) ∀(a, b) ∈ V × V of implied edges, there exists an algorithm which solves
the ISC problem in O(mn +

∑
a,b |T (a, b)|) time and Θ(n2) space, in addition

to the space used by input, where m is the number of edges in the implied-set
closure of E.

In Section 3 we have seen that computation of edges due to rules R4 and R5

in Algorithm 1, which dominates the time complexity, is the implied-set closure
of the edge set resulting after applications of the first three rules. Therefore the
time complexity for memory consistency verification problem is the same as that
for computing the corresponding implied-set closure.

In this ISC problem the non-empty T (a, b) sets are either of the form T (S, S′)
or T (S, L), so

∑
a,b |T (a, b)| =

∑
S,S′ |T (S, S′)| +

∑
S,L |T (S, L)| . From the def-

inition it is clear that T (S, S′) ∩ T (x, y) 6= ∅ iff S = x and S′ = y. Hence∑
S,S′ |T (S, S′)| ≤ |V × V |. Again from the definition |T (S, L)| ≤ 1 so

∑
S,L |T (S, L)| ≤

∑
S,L 1 ≤ |V × V |. This gives

∑
a,b |T (a, b)| < 2n2. We have

the following corollary.

Corollary 1. Memory consistency verification problem can be solved in O(n3)
time and O(n2) space, where n is the total number of instructions in the test
program.

5 Experimental Results

Theoretically, the new algorithm achieves a speed-up by a factor of n over the
worst case time complexity of the previous best algorithm of Roy et al. [6]. To
show that there are no hidden large constants, we compared it with the algorithm
of Roy et. al. [6] experimentally (see Table 1).

Our experiments are based on test programs with 2, 4, 6, and 8 program-
threads. In each case the number of instructions per thread were kept the same
and these varied from 100 instruction per thread to 500 instruction per thread.
Each result reported here is the average of 100 programs in each category. The
test programs were generated by Intel’s MPRIT tool [6]. Here Algorithm A refers
to the algorithm reported here and Algorithm B is that of Roy et. al. [6] .

To make a fair comparison, the algorithms were executed in an identical en-
vironment consisting of a single processor. The experiment used implementation
of Roy et. al. [6] algorithm without vector instructions.

Time Instructions per thread
(ms) 100 200 300 400 500

#threads algo A algo B algo A algo B algo A algo B algo A algo B algo A algo B

2 119 82 230 240 591 626 1216 1350 2216 2476

4 149 163 614 953 1834 3289 4198 7913 8181 16071

6 225 332 1222 2997 3926 11023 9508 27914 18593 57671

8 328 688 2082 7216 7204 28183 16846 69851 32904 146350
Table 1. Experimental results

In each experiment the number of instructions is fixed. So n is equal to
the number of instructions-per-thread times the number of threads. As number
of threads increase, n increases and consequently performance gap increases.
Besides, we see that algorithm A performs significantly better compared to al-
gorithm B in case of 100 instructions per thread with 8 thread, while the gap is
insignificant when instruction per thread is 400 and threads are 2. In both the
cases n = 800, but the reason for this difference is the number of threads. The
number of inferred edges increases with more threads, and expensive computa-
tion involves the computation of these edges.

Intel’s MPRIT Tool incorporates an implementation of the algorithm of Roy
et al. [6] using vector instructions on SIMD processor which performs 128 bit
operations per instruction. This results in a significant speedup (about a factor of
100). Yet asymptotically, for large values of n, the new algorithm will outperform
even the vector-instruction aided implementation of the algorithm in [6].

5.1 Parallelization of the new algorithm

Step 10 in Algorithm 4 involves processing for each w ∈ V . In each iteration of
the for-loop all computations exclusively depend on the HC edges of the form
(w, ∗) and the sets T (w, ∗). This implies that computations in different iterations
are mutually independent. Therefore in a multi-processor environment different
processor could be assigned different passes of this loop to be performed in
parallel.

6 Conclusion

In this work we studied the memory consistency compliance algorithm of Hangal
et.al. [3] which was improved by Roy et. al. [6]. The former had O(n5) complex-
ity, while the latter was improved to O(n4). We identified the bottleneck in
these algorithms and proposed it as a graph problem called induced-set closure
problem. We proposed an efficient algorithm for this problem using Italiano’s
[4] incremental algorithm for transitive closure and showed that using this ap-
proach the memory consistency compliance algorithm can be implemented in
O(n3) time. An efficient parallel implementation of our algorithm remains a
task for the future research.

7 Acknowledgment

We thank Amitabha Roy for introducing the memory consistency compliance
problem to us. We thank Mainak Chaudhuri for explaining various concepts in
the area of memory architecture. We also thank Mayur Shardul for pointing out
an error in the bound for |

∑
T (S, S′)| in an earlier draft.

References

1. S. V. Adve and K. Gharachorloo. Shared memory consistency models : A tutorial.
In Digital Western Research Laboratory Technical Report, 1995.

2. J. Cantin, M. Lipasti, and J. Smith. The complexity of verifying memory coher-
ence. In Proceedings of 15th Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 254–255, 2003.

3. S. Hangal, D. Vahia, C. Manovit, and J.-Y. J. Lu. TSOtool : A program for verifying
systems using the memory consistency model. In In Proceedings of the 31st annual
international symposium on computer architecture (ISCA), pages 114–123, 2004.

4. G. F. Italiano. Amortized efficiency of a path retrieval data structure. Theoretical
Computer Science, 48:273 –281, 1986.

5. C. Manovit and S. Hangal. Efficient algorithm for verifying memory consistency.
In In Proceedings of the 17th annual ACM symposium on Parallelism in algorithms
and architectures (SPAA’05), pages 245–252, 2005.

6. A. Roy, S. Zeisset, C. J. Fleckenstein, and J. C. Huang. Fast and generalized
polynomial time memory consistency verification. In In Proceedings of the 18th
International Conference of Computer Aided Verification (CAV), pages 503–516,
2006.

7. P. S. Sindhu, J. M. Frailong, and M. Cekleov. Formal specification of memory
models. In Xerox PARC Technical Report, 1991.

