
A logical structure for strategies

R. Ramanujam and Sunil Simon

1 The Institute of Mathematical Sciences
C.I.T. Campus, Chennai 600 113, India.

{jam,sunils}@imsc.res.in

Abstract

We consider a logic for reasoning about composite strategies in

games, where players’ strategies are like programs, composed struc-

turally. These depend not only on conditions that hold at game po-

sitions but also on properties of other players’ strategies. We present

an axiomatization for the logic and prove its completeness.

1 Summary

Extensive form turn-based games are trees whose nodes are game positions
and branches represent moves of players. With each node is associated a
player whose turn it is to move at that game position. A player’s strategy

is then simply a subtree which contains a unique successor for every node
where it is this player’s turn to make a move, and contains all successors
(from the game tree) for nodes where other players make moves. Thus a
strategy is an advice function that tells a player what move to play when the
game reaches any specific position. In two-player win/loss games, analysis
of the game amounts to seeing if either player has a winning strategy from
any starting position, and if possible, synthesize such a winning strategy.

In multi-player games where the outcomes are not merely winning and
losing, the situation is less clear. Every player has a preference for certain
outcomes and hence cooperation as well as conflict become strategically
relevant. Moreover, each player has some expectations (and assumptions)
about strategies adopted by other players, and fashions her response ap-
propriately. In such situations, game theory tries to explain what rational
players would do.

In so-called small (normal form) games, where the game consists of a
small fixed number of moves (often one move chosen independently by each
player), strategies have little structure, and prediction of stable behaviour
(equilibrium strategy profiles) is possible. However, this not only becomes
difficult in games with richer structure and long sequences of moves, it is
also less clear how to postulate behaviour of rational players. Moreover, if
we look to game theory not only for existence of equilibria but also advice

2

to players on how to play, the structure of strategies followed by players
becomes relevant.

Even in games of perfect information, if the game structure is sufficiently
rich, we need to re-examine the notion of strategy as a function that deter-
mines a player’s move in every game position. Typically, the game position
is itself only partially known, in terms of properties that the player can test
for. Viewed in this light, strategies are like programs, built up systemati-
cally from atomic decisions like if b then a where b is a condition checked
by the player to hold (at some game position) and a is a move available to
the player at that position.

There is another dimension to strategies, namely that of responses to
other players’ moves. The notion of each player independently deciding
on a strategy needs to be re-examined as well. A player’s chosen strategy
depends on the player’s perception of apparent strategies followed by other
players. Even when opponents’ moves are visible, an opponent’s strategy
is not known completely as a function. Therefore the player’s strategy is
necessarily partial as well.

The central idea of this paper is to suggest that it helps to study strate-

gies given by their properties. Hence, assumptions about strategies can be
partial, and these assumptions can in turn be structurally built into the
specification of other strategies. This leads us to proposing a logical struc-
ture for strategies, where we can reason with assertions of the form “(partial)
strategy σ ensures the (intermediate) condition α”.

This allows us to look for induction principles which can be articulated in
the logic. For instance, we can look at what conditions must be maintained
locally (by one move) to influence an outcome eventually. Moreover, we can
compare strategies in terms of what conditions they can enforce.

The main contributions of this paper are:

• We consider non-zero-sum games over finite graphs, and consider best
response strategies (rather than winning strategies).

• The reasoning carried out works explicitly with the structure of strate-
gies rather than existence of strategies.

• We present a logic with structured strategy specifications and formulas
describe how strategies ensure outcomes.

• We present an axiom system for the logic and prove that it is complete.

1.1 Other work

Games are quite popularly used to solve certain decision problems in logic.
Probably the best example of a logical game is the Ehrenfeucht-Fräıssé game
which is played on two structures to check whether a formula of a certain

3

logic can distinguish between these structures ([Ehr61]). Games are also
used as tools to solve the satisfiability and model checking questions for
various modal and temporal logics ([Lan02]). Here, an existential and a
universal player play on a formula to decide if the formula is satisfiable.
The satisfiability problem is then characterised by the question of whether
the existential player has a winning strategy in the game. These kinds of
games designed specifically for semantic evaluation are generally called logic
games.

Recently, the advent of computational tasks on the world-wide web and
related security requirements have thrown up many game theoretic situa-
tions. For example, signing contracts on the web requires interaction be-
tween principals who do not know each other and typically distrust each
other. Protocols of this kind which involve selfish agents can be easily
viewed as strategic games of imperfect information. These are complex
interactive processes which critically involve players reasoning about each
others’ strategies to decide on how to act. In this approach, instead of de-
signing games to solve specific logical tasks, one can use logical systems to
study structure of games and to reason about them.

Game logics are situated in this context, employing modal logics (in
the style of logics of programs) to study logical structure present in games.
Parikh’s work on propositional game logic ([Par85]) initiated the study of
game structure using algebraic properties. Pauly ([Pau01]) has built on this
to provide interesting relationships between programs and games, and to de-
scribe coalitions to achieve desired goals. Bonnano ([Bon91]) suggested ob-
taining game theoretic solution concepts as characteristic formulas in modal
logic. van Benthem ([vB01]) uses dynamic logic to describe games as well
as strategies. van Ditmarsch ([vD00]) uses a dynamic epistemic language
to study complex information change caused by actions in games. The re-
lationship between games defined by game logics and that of logic games,
is studied by van Benthem in ([vB03]).

On the other hand, the work on Alternating Temporal Logic ([AHK02])
considers selective quantification over paths that are possible outcomes of
games in which players and an environment alternate moves. Here, we talk
of the existence of a strategy for a coalition of players to force an outcome.
[Gor01] draws parallels between these two lines of work, that of Pauly’s
coalition logics and alternating temporal logic. It is to be noted that in
these logics, the reasoning is about existence of strategies, and the strategies
themselves do not figure in formulas.

In the work of [HvdHMW03] and [vdHJW05], van der Hoek and co-
authors develop logics for strategic reasoning and equilibrium concepts and
this line of work is closest to ours in spirit. Our point of departure is
in bringing logical structure into strategies rather than treating strategies

4

as atomic. In particular, the strategy specifications we use are partial (in
the sense that a player may assume that an opponent plays a whenever p
holds, without knowing under what conditions the opponent strategy picks
another move b), allowing for more generality in reasoning. In the context of
programs, logics like propositional dynamic logic [HKT00] explicitly analyse
the structure of programs. This approach has been very useful in program
verification.

2 Game Arenas

We begin with a description of game models on which formulas of the logic
will be interpreted. We use the graphical model for extensive form turn-
based multiplayer games, where at most one player gets to move at each
game position.

Game Arena

Let N = {1, 2, . . . , n} be a non-empty finite set of players and Σ = {a1, a2,
. . . , am} be a finite set of action symbols, which represent moves of players.
A game arena is a finite graph G = (W,−→, w0, χ) where W is the set of
nodes which represents the game positions, −→: (W ×Σ) →W is a function
also called the move function, w0 is the initial node of the game.

Let the set of successors of w ∈ W be defined as
→
w= {w′ ∈W | w

a
−→ w′

for some a ∈ Σ}. A node w is said to be terminal if
→
w= ∅. χ : W → N

assigns to each node w in W the player who “owns” w: that is, if χ(w) = k
and w is not terminal then player k has to pick a move at w.

In an arena defined as above, the play of a game can be viewed as placing
a token on w0. If player k owns the game position w0 i.e χ(w0) = k and
she picks an action ’a’ which is enabled for her at w0, then the new game
position moves the token to w′ where w0

a
−→ w′. A play in the arena is

simply a sequence of such moves. Formally, a play in G is a finite path
ρ = w0

a1−→ w1
a2−→ . . .

ak−→ wk where wk is terminal, or it is an infinite path
ρ = w0

a1−→ w1
a2−→ . . . where ∀i : wi

ai−→ wi+1 holds. Let Plays denote the
set of all plays in the arena.

With a game arena G = (W,−→, w0, χ), we can associate its tree unfold-

ing also referred to as the extensive form game tree T = (S,⇒, s0, λ) where
(S,⇒) is a countably infinite tree rooted at s0 with edges labelled by Σ and
λ : S →W such that:

• λ(s0) = w0.

• For all s, s′ ∈ S, if s
a

=⇒ s′ then λ(s)
a

−→ λ(s′).

• If λ(s) = w and w
a

−→ w′ then there exists s′ ∈ S such that s
a

=⇒ s′

and λ(s′) = w′.

5

Given the tree unfolding of a game arena T , a node s in it, we can define
the restriction of T to s, denoted Ts to be the subtree obtained by retaining
only the unique path from root s0 to s and the subtree rooted at s.

Games and Winning Conditions

Let G be an arena as defined above. The arena merely defines the rules
about how the game progresses and terminates. More interesting are winning

conditions, which specify the game outcomes. We assume that each player
has a preference relation over the set of plays. Let �i⊆ (Plays × Plays)
be a complete, reflexive, transitive binary relation denoting the preference
relation of player i. Then the game G is given as, G = (G, {�i}i∈N).

Then a game is defined as the pair G = (G, (�i)i∈N).

Strategies

For simplicity we will restrict ourselves to two player games, i.e. N = {1, 2}.
It is easy to extend the notions introduced here to the general case where
we have n players.

Let the game graph be represented by G = (W 1,W 2,−→, s0) where W 1

is the set of positions of player 1, W 2 that of player 2. Let W = W 1 ∪W 2.
Let T be the tree unfolding of the arena and s1 a node in it. A strategy

for player 1 at node s1 is given by: µ = (S1
µ, S

2
µ,⇒µ, s1) is a subtree of Ts1

which contains the unique path from root s0 to s1 in T and is the least
subtree satisfying the following properties:

• s1 ∈ S1
µ, where χ(λ(s1)) = 1.

• For every s in the subtree of TG rooted at s1,

– if s ∈ S1
µ then for some a ∈ Σ, for each s′ such that s

a
=⇒ s′, we

have s
a

=⇒µ s
′.

– if s ∈ S2
µ, then for every b ∈ Σ, for each s′ such that s

b
=⇒ s′, we

have s
b

=⇒µ s
′.

Let Ωi denote the set of all strategies of Player i in G, for i = 1, 2. A
strategy profile 〈µ, τ〉 defines a unique play ρτ

µ in the game G.

3 The logic

We now present a logic for reasoning about composite strategies. The syntax
of the logic is presented in two layers, that of strategy specification and game

formulas.
Atomic strategy formulas specify, for a player, what conditions she tests

for before making a move. Since these are intended to be bounded memory
strategies, the conditions are stated as past time formulas of a simple tense

6

logic. Composite strategy specifications are built from atomic ones using
connectives (without negation). We crucially use an implication of the form:
“if the opponent’s play conforms to a strategy π then play σ”.

Game formulas describe the game arena in a standard modal logic, and
in addition specify the result of a player following a particular strategy at
a game position, to choose a specific move a, to ensure an intermediate
outcome α . Using these formulas one can specify how a strategy helps to
eventually win an outcome α.

Before we describe the logic and give its semantics, some prelimiaries
will be useful. Below, for any countable set X , let Past(X) be a set of
formulas given by the following syntax:

ψ ∈ Past(X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 3-ψ.

Such past formulas can be given meaning over finite sequences. Given
any sequence ξ = t0t1 · · · tm, V : {t0, · · · , tm} → 2X , and k such that
0 ≤ k ≤ m, the truth of a past formula ψ ∈ Past(X) at k, denoted ξ, k |= ψ
can be defined as follows:

• ξ, k |= p iff p ∈ V (tk).

• ξ, k |= ¬ψ iff ξ, k 6|= ψ.

• ξ, k |= ψ1 ∨ ψ2 iff ξ, k |= ψ1 or ξ, k |= ψ2.

• ξ, k |= 3-ψ iff there exists a j : 0 ≤ j ≤ k such that ξ, j |= ψ.

Strategy specifications

For simplicity of presentation, we stick with two player games, where the
players are Player 1 and Player 2. Let i = 2 when i = 1 and i = 1 when
i = 2.

Let P i = {pi
0, p

i
1, . . .} be a countable set of proposition symbols where

τi ∈ Pi, for i ∈ {1, 2}. Let P = P 1 ∪ P 2 ∪ {leaf }. τ1 and τ2 are intended to
specify, at a game position, which player’s turn it is to move. leaf specifies
whether the position is a terminal node.

Further, the logic is parametrized by the finite alphabet set Σ = {a1, a2,
. . . , am} of players’ moves and we only consider game arenas over Σ.

Let Strat i(P i), for i = 1, 2 be the set of strategy specifications given by
the following syntax:

Strat i(P i) := [ψ 7→ ak]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ

where π ∈ Strat i(P 1 ∩ P 2), ψ ∈ Past(P i) and ak ∈ Σ.
The idea is to use the above constructs to specify properties of strategies.

For instance the interpretation of a player i specification [p 7→ a]i will be

7

to choose move “a” for every i node where p holds. π ⇒ σ would say, at
any node player i sticks to the specification given by σ if on the history of
the play, all moves made by i conforms to π. In strategies, this captures
the aspect of players actions being responses to the opponents moves. As
the opponents complete strategy is not available, the player makes a choice
taking into account the apparent behaviour of the opponent on the history
of play.

For a game tree T , a node s and a strategy specification σ ∈ Strat i(P i),
we define Ts |

\σ = (Sσ,=⇒σ, s0) to be the least subtree of Ts which contains
ρs

s0
(the unique path from s0 to s) and closed under the following condition.

• For every s′ in Sσ such that s =⇒∗
σ s

′,

– s′ is an i node: s′
a

=⇒ s′′ and a ∈ σ(s′) ⇔ s′
a

=⇒σ s
′′.

– s′ is an i node: s′
a

=⇒ s′′ ⇔ s′
a

=⇒σ s
′′.

Given a game tree T and a node s in it, let ρs
s0

: s0
a1=⇒ s1 · · ·

am=⇒
sm = s denote the unique path from s0 to s. For a strategy specification
σ ∈ Strat i(P i) and a node s we define σ(s) as follows:

• [ψ 7→ a]i(s) =

{
{a} if s ∈ W i and ρs

s0
,m |= ψ

Σ otherwise

• (σ1 + σ2)(s) = σ1(s) ∪ σ2(s).

• (σ1 · σ2)(s) = σ1(s) ∩ σ2(s).

• (π ⇒ σ)(s) =

{
σ(s) if ∀j : 0 ≤ j < m, aj ∈ π(sj)
Σ otherwise

We say that a path ρs′

s : s = s1
a1=⇒ s2 · · ·

am−1

=⇒ sm = s′ in T conforms to
σ if ∀j : 1 ≤ j < m, aj ∈ σ(sj). When the path constitutes a proper play,
i.e. when s = s0, we say that the play conforms to σ.

Syntax

The syntax of the logic is given by:

Π := p ∈ P | ¬α | α1 ∨ α2 | 〈a〉α | 〈a〉α | 3-α | (σ)i : c | σ ;i β

where c ∈ Σ, σ ∈ Strat i(P i), β ∈ Past(P i). The derived connectives

∧ ⊃ and [a]α are defined as usual. Let 3-α = ¬2-¬α, 〈N〉α =
∨

a∈Σ

〈a〉α,

[N]α = ¬〈N〉¬α, 〈P 〉α =
∨

a∈Σ

〈a〉α and [P] = ¬〈P 〉¬α.

8

The formula (σ)i : c asserts, at any game position, that the strategy
specification σ for player i suggests that the move c can be played at that
position. The formula σ ;i β says that from this position, there is a way of
following the strategy σ for player i so as to ensure the outcome β. These
two modalities constitute the main constructs of our logic.

Semantics

The models for the logic are extensive form game trees along with a valua-
tion function. A model M = (T , V) where T = (S1, S2,−→, s0) is a game
tree as defined in section 2, and V : S → 2P is the valuation function, such
that:

• For i ∈ {1, 2}, τi ∈ V (s) iff s ∈ Si.

• leaf ∈ V (s) iff moves(s) = ∅.

where for any node s, moves(s) = {a|s
a

=⇒ s′}.
The truth of a formula α ∈ Π in a model M and position s (denoted

M, s |= α) is defined by induction on the structure of α, as usual. Let ρs
s0

be s0
a0=⇒ s1 · · ·

am−1

=⇒ sm = s.

• M, s |= p iff p ∈ V (s).

• M, s |= ¬α iff M, s 6|= α.

• M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2.

• M, s |= 〈a〉α iff there exists s′ ∈W such that s
a
→s′ and M, s′ |= α.

• M, s |= 〈a〉α iff m > 0, a = am−1 and M, sm−1 |= α.

• M, s |= 3-α iff there exists j : 0 ≤ j ≤ m such that M, sj |= α.

• M, s |= (σ)i : c iff c ∈ σ(s).

• M, s |= σ ;i β iff

– for all s′ in Ts |\ σ, such that s =⇒∗ s′, we have M, s′ |= β ∧
(τi ⊃ enabledσ).

where enabledσ ≡
∨

a∈Σ

(〈a〉True ∧ (σ)i : a).

The notions of satisfiablility and validity can be defined in the standard
way. A formula α is satisfiable iff there exists a model M , there exists s such
that M, s |= α. A formula α is said to be valid iff for all models M , for all
s, we have M, s |= α.

9

1
a

wwoooooooooooooo

b

''OOOOOOOOOOOOOO
s0

2

��~~
~~

~~
~~

s1 2

��~~
~~

~~
~~

s5

1

��@
@@

@@
@@

@
s2

C2 1

__@@@@@@@@

s4

1

��@
@@

@@
@@

@
s6

C1 1

__@@@@@@@@

s8

2

y

??~~~~~~~~

x

��

s3 2

y

??~~~~~~~~

x

��

s7

t2 t1

Figure 1.

4 Example

Probably the best way to illustrate the notion of strategy specification is to
look at heuristics used in large games like chess, go, checkers, etc. A heuristic
strategy is basically a partial specification, since it involves checking local
properties like patterns on the board and specifying actions when certain
conditions hold. For instance, a typical strategy specification for chess would
be of the form:

• If a pawn double attack is possible then play the action resulting in
the fork.

Note that the above specification is in contrast with a specific advice of the
form:

• If a pawn is on f2 and the opponent rook and knight are on e5 and g5
respectively then move f2-f4.

A strategy would prescribe such specific advice rather than a generic one
based on abstract game position properties. Heuristics are usually employed
when the game graph being analysed is too huge for a functional strategy
to be specified. However, we refrain from analysing chess here due to the
difficulty in formally presenting the game arena and the fact that it fails
to give much insight into the working of our logic. Below we look at a few
simple examples which illustrates the logic.

Example 4.1. Consider the game shown in Figure 1. Players alternate
moves with 1 starting at s0. There are two cycles C1 : s5 → s6 → s7 →

10

s8 → s5, C2 : s1 → s2 → s3 → s4 → s1 and two terminal nodes t1 and t2.
Let the preference ordering of player 1 be t1 �1 t2 �1 C2 �1 C1. As far
as player 2 is concerned t1 �2 C1 and he is indifferent between C2 and t2.
However, he prefers C2 or t2 over {C1, t1}. Equilibrium reasoning will advise
player 1 to choose the action “b” at s0 since at position s7 it is irrational for
2 to move x as it will result in 2’s worst outcome. However the utility differ-
ence between C1 and t1 for 2 might be negligible compared to the incentive
of staying in the “left” path. Therefore 2 might decide to punish 1 for mov-
ing b when 1 knew that {C2, t2} was equally preferred by 2. Even though
t1 is the worst outcome, at s7 player 2 can play x to implement the punish-
ment. Let V (pj) = {s3, s7}, V (pinit) = {s0}, V (pgood) = {s0, s1, s2, s3, s4}
and V (ppunish) = {s0, s5, s6, s7, t1}. The local objective of 2 will be to re-
main on the good path or to implement the punishment. Player 2 strategy
specification can be written as

π ≡ ([pinit 7→ b]1 ⇒ [pj 7→ x]2) · ([pinit 7→ a]1 ⇒ [pj 7→ y]2).

We get that π ;2 (pgood ∨ ppunish). Player 1 if he knows 2’s strategy might
be tempted to play “a” at s0 by which the play will end up in C2. Let the
proposition pworst hold at t1 which is the worst outcome for player 1. Then
we have [pinit 7→ a]1 ;1 ¬pworst . This says that if player 1 chooses a at the
initial position then he can ensure that the worst outcome is avoided.

•A ◦E ◦G

◦B

a1

a4

~~~~~~~ a3

a2 @@
@@

@@
@ ◦

D
◦

F

@@
@@

@@
@

◦
C

◦H

@@@@@@@

◦A ◦E ◦G

•B

a1

a4

~~~~~~~ a3

a2 @@
@@

@@
@ ◦

D
◦

F

@@
@@

@@
@

◦
C

◦H

@@@@@@@

(s0) (s1)

◦A ◦E ◦G

•B

a1

a4

~~~~~~~ a3

◦
D

◦
F

@@
@@

@@
@

◦
C

◦H

@@@@@@@

(s2)

Figure 2. Sabotage Game

Example 4.2. The sabotage game [Ben02] is a two player zero sum game
where one player moves along the edges of a labelled graph and the other



11

player removes an edge in each round. Formally let a Σ labelled graph R
for some alphabet set Σ is R = (V, e) where V is the set of vertices and
e : V ×Σ → V is the edge function. The sabotage game is played as follows:
initially we consider the graph R0 = (V0, e0, v0). There are two players,
Runner and Blocker who move alternatingly where the Runner starts the
run from vertex v0. In round n the Runner moves one step further along
an existing edge of the graph. i.e., he chooses a vertex vn+1 ∈ V such that
there exists some a ∈ Σ with en(vn, a) = vn+1. Afterwards the Blocker
removes one edge of the graph. i.e., he chooses two vertices u and v such
that for some a ∈ Σ, en(u, a) = v and defines the edge function en+1 to
be same as that of en except that en+1(u, a) will not be defined. The
graph Rn+1 = (V, en+1, vn+1). We can have a reachability condition as the
winning condition. i.e., the Runner wins iff he can reach a given vertex
called the goal. The game ends, if either the Runner gets stuck or if the
winning condition is satisfied.

It is easy to build a conventional game arena for the sabotage game
where player positions alternate. The game arena will have as its local
states subgraphs of R with the current position of Runner indicated. i.e.,
W = Edges × V where Edges is the set of all partial edge functions e :
V × Σ → V . Let W 1 and W 2 be the set of game positions for Runner and
Blocker respectively. The initial vertex s0 = (e0, v0) and s0 ∈ W 1. Let
s = (e, v) and s′ = (e′, v′) be any two nodes in the arena. The trasition is
defined as follows.

• if s ∈W 1 and e(v, a) = v′ then s
a

−→ s′, e = e′ and s′ ∈ W 2

• if s ∈ W 2, for some u, u′ ∈ W we have e(u, a) = u′ and e′ is is same

as e except that e′(u, a) is not defined, then s
(u,a,u′)
−→ s′, v = v′ and

s′ ∈ W 1.

Figure 2 shows the first three game positions in a possible run of the
sabotage game. The game starts with Runner moving from node A to node
B. The blocker then removes the edge a2 adjacent to node B and the game
continues. In the formulas given below, we will refer to Runner as player 1
and Blocker as player 2.

Since the Runner ’s objective is to not get stuck, he might reason as
follows. If it is the case that the Blocker always removes an edge adjacent
to the node that Runner has currently selected then try to move to a node
which has multiple outgoing edges. We use the following propositions:

• presentv: denotes that the current node of runner is v

• adj m: denotes that the adjacent node has multiple edges



12

Let rv denote the action which removes an adjacent edge of v and moveadj

denote the action which moves to the adjacent node with multiple edges.
The Runner ’s specification can be given as:

• [presentv 7→ rv]2 ⇒ [adj m 7→ moveadj ]
1

Consider the situation where all the nodes in the graph has a single
outgoing edge and the goal state is a single state. It is quite easy to show
that in such a game, the Runner wins iff the start node is the goal or if
there is an edge connecting the start node with the goal. This property can
be captured by the following proposition:

• gB
nice : denotes that in the graph the start node is not the goal and

there is no single edge between start and goal nodes. In other words
the graph is “nice” for Blocker .

• adj R
g : denotes that the Runner ’s current node is one adjacent to the

goal node.

Let rg
adj denote the action which removes the edge connecting the current

node of Runner with the goal. Consider the following formula:

• [(gB
nice ∧ adj R

g ) 7→ rg
adj ]

2
;2 (leaf ⊃ win)

This says that if the graph is “nice” for Blocker and if the current se-
lected node of Runner is one adjacent to the goal then remove the only edge
connecting it with the goal. In all the other cases the Blocker can remove
any random edge, and so this need not be mentioned in the strategy speci-
fication. This specification ensures that when the terminal node is reached
then it is winning for Blocker .

5 Axiom system

We now present our axiomatization of the valid formulas of the logic. Before
we present the axiomatization, we will find some abbreviations useful:

• root = ¬〈P 〉True defines the root node to be one that has no prede-
cessors.

• δσ
i (a) = τi ∧ (σ)i : a denotes that move “a” is enabled by σ at an i

node.

• invσ
i (a, β) = (τi ∧ (σ)i : a) ⊃ [a](σ ;i β) denotes the fact that after

an “a” move by player i which conforms to σ, σ ;i β continues to
hold.

• invσ
i
(β) = τi ⊃ [N ](σ ;i β) says that after any move of i, σ ;i β

continues to hold.



13

• conf π = 2- (〈a〉τi ⊃ 〈a〉(π)i : a) denotes that all opponent moves in the
past conform to π.

The axiom schemes

(A0) All the substitutional instances of the tautologies of propositional cal-
culus.

(A1) (a) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)

(b) [a](α1 ⊃ α2) ⊃ ([a]α1 ⊃ [a]α2)

(A2) (a) 〈a〉α ⊃ [a]α

(b) 〈a〉α ⊃ [a]α

(c) 〈a〉True ⊃ ¬〈b〉True for all b 6= a

(A3) (a) α ⊃ [a]〈a〉α

(b) α ⊃ [a]〈a〉α

(A4) (a) 3- root

(b) 2-α ≡ (α ∧ [P ]2-α)

(A5) (a) ([ψ 7→ a]i)i : a for all a ∈ Σ

(b) τi ∧ ([ψ 7→ a]i)i : c ≡ ¬ψ for all a 6= c

(A6) (a) (σ1 + σ2)i : c ≡ σ1 : c ∨ σ2 : c

(b) (σ1 · σ2)i : c ≡ σ1 : c ∧ σ2 : c

(c) (π ⇒ σ)i : c ≡ conf π
⊃ (σ)i : c

(A7) σ ;i β ⊃ (β ∧ invσ
i (a, β) ∧ invσ

i
(β) ∧ (¬leaf ⊃ enabledσ))

Inference rules

(MP) α, α ⊃ β (NG) α (NG-) α
β [a]α [a]α

(Ind -past) α ⊃ [P ]α
α ⊃ 2-α

(Ind ;) α ∧ δσ
i (a) ⊃ [a]α, α ∧ τi ⊃ [N ]α, α ∧ ¬leaf ⊃ enabledσ, α ⊃ β

α ⊃ σ ;i β

The axioms are mostly standard. After the Kripke axioms for the 〈a〉
modalities, we have axioms that ensure determinacy of both 〈a〉 and 〈a〉
modalities, and an axiom to assert the uniqueness of the latter. We then
have axioms that relate the previous and next modalities with each other, as



14

well as to assert that the past modality steps through the 〈a〉 modality. An
axiom asserts the existence of the root in the past. The rest of the axioms
describe the semantics of strategy specifications.

The rule Ind -past is standard, while Ind ; illustrates the new kind of
reasoning in the logic. It says that to infer that the formula σ ;i β holds
in all reachable states, β must hold at the asserted state and

• for a player i node after every move which conforms to σ, β continues
to hold.

• for a player i node after every enabled move, β continues to hold.

• player i does not get stuck by playing σ.

To see the soundness of (A7), suppose it is not valid. Then there exists
a node s such that M, s |= σ ;i β and one of the following holds:

• M, s 6|= β: In this case, from semantics we get that M, s 6|= σ ;i β
which is a contradiction.

• M, s 6|= invσ
i (a, β): In this case, we have s ∈ W i, M, s |= (σ)i : a and

M, s′ 6|= σ ;i β where s
a

=⇒ s′. This implies that there is a path ρsk

s′

which conforms to σ and either M, sk 6|= β or moves(sk)∩ σ(sk) = ∅.

But since s
a

=⇒ s′, we have ρsk
s conforms to σ as well. From which it

follows that M, s 6|= σ ;i β which is a contradiction.

• M, s 6|= invσ
i
(β): We have a similar argument as above.

• M, s 6|= ¬leaf ⊃ enabledσ: This means that M, s |= ¬leaf and M, s 6|=
enabledσ. Therefore moves(s) ∩ σ(s) = ∅ and by semantics we have
M, s 6|= σ ;i β which is a contradiction.

To show that the induction rule preserves validity, suppose that the
premise is valid and the conclusion is not. Then for some node s we have
M, s |= α and M, s 6|= σ ;i β. i.e. there is a path ρsk

s which conforms to σ
such that M, sk 6|= β or sk is a non-leaf node and σ(sk) ∩ moves(sk) = ∅.
Let ρsk

s be the shortest of such paths.

Suppose M, sk 6|= β, then we have the following two cases to consider.

• sk−1 ∈ W i: By assumption on the path ρsk
s , we have M, sk−1 |=

α∧δσ
i (ak−1). From validity of α ⊃ β(the premise), we haveM, sk 6|= α,

which implies M, sk−1 6|= [ak−1]α. Therefore we get M, sk−1 6|= (α ∧
δσ
i (ak−1)) ⊃ [ak−1]α, which gives us a contradiction to the validity of

a premise.



15

• sk−1 ∈W i: By assumption on the path ρsk
s , we have M, sk−1 |= α∧τi.

Using an argument similar to the previous case we also get M, sk−1 6|=
[ak−1]α. Therefore we have M, sk−1 6|= (α ∧ τi) ⊃ [N ]α, giving us a
contradiction to the validity of a premise.

If sk is a non-leaf node and σ(sk)∩moves(sk) = ∅ then we haveM, sk |=
α∧¬leaf and M, sk 6|= enabledσ. Therefore M, sk 6|= (α∧¬leaf ) ⊃ enabledσ,
which is the required contradiction.

6 Completeness

To show completeness, we prove that every consistent formula is satisfiable.
Let α0 be a consistent formula, and let W denote the set of all maximal
consistent sets (MCS). We use w,w′ to range over MCS’s. Since α0 is
consistent, there exists an MCS w0 such that α0 ∈ w0.

Define a transition relation on MCS’s as follows: w
a

−→ w′ iff {〈a〉α|α ∈
w′} ⊆ w. We will find it useful to work not only with MCS’s, but also
with sets of subformulas of α0. For a formula α let CL(α) denote the
subformula closure of α. In addition to the usual downward closure, we
also require that 3- root , leaf ∈ CL(α) and σ ;i β ∈ CL(α) implies that
β, invσ

i (a, β), invσ
i
(β), enabledσ ∈ CL(α). Let AT denote the set of all max-

imal consistent subsets of CL(α0), reffered to as atoms. Each t ∈ AT is a
finite set of formulas, we denote the conjunction of all formulas in t by t̂.
For a nonempty subset X ⊆ AT , we denote by X̃ the disjunction of all
t̂, t ∈ X . Define a transition relation on AT as follows: t

a
−→ t′ iff t̂ ∧ 〈a〉t̂′

is consistent. Call an atom t a root atom if there does not exist any atom t′

such that t′
a

−→ t for some a. Note that t0 = w0 ∩ CL(α0) ∈ AT .

Proposition 6.1. There exist t1, . . . , tk ∈ AT and a1, . . . ak ∈ Σ (k ≥ 0)

such that tk
ak−→ tk−1 . . .

a1−→ t0, where tk is a root atom.

Proof. Consider the least set R containing t0 and closed under the following
condition: if t1 ∈ R and for some a ∈ Σ there exists t2 such that t2

a
−→ t1,

then t2 ∈ R. Now, if there exists an atom t′ ∈ R such that t′ is a root then
we are done. Suppose not, then we have ⊢ R̃ ⊃ ¬root . But then we can
show that ⊢ R̃ ⊃ [P ]R̃. By rule Ind-past and above we get ⊢ R̃ ⊃ 2-¬root .

But then t0 ∈ R and hence ⊢ t̂0 ⊃ R̃ and therefore we get ⊢ t̂0 ⊃ 2-¬root ,
contradicting axiom (A4a). q.e.d.

Above, we have additional properties: for any formula 3-α ∈ tk, we also
have α ∈ tk. Further, for all j ∈ {0, · · · , k}, if 3-α ∈ tj, then there exists i
such that k ≥ i ≥ j and α ∈ ti. Both these properties are ensured by axiom
(A4b). A detailed proof can be found in appendix, lemma 8.2.

Hence it is easy to see that there exist MCS’s w1, . . . , wk ∈ W and
a1, . . . ak ∈ Σ (k ≥ 0) such that wk

ak−→ wk−1 . . .
a1−→ w0, where wj ∩



16

CL(α0) = tj . Now this path defines a (finite) tree T0 = (S0,=⇒0, s0)
rooted at s0, where S0 = {s0, s1, . . . , sk}, and for all j ∈ {0, · · · , k}, sj is
labelled by the MCS wk−j . The relation =⇒0 is defined in the obvious
manner. From now we will simply say α ∈ s where s is the tree node, to
mean that α ∈ w where w is the MCS associated with node s.

Inductively assume that we have a tree Tk = (Sk,=⇒k, s0) such that
the past formulas at every node have “witnesses” as above. Pick a node
s ∈ Sk such that 〈a〉True ∈ s but there is no s′ ∈ Sk such that s

a
=⇒ s′.

Now, if w is the MCS associated with node s, there exists an MCS w′ such
that w

a
−→ w′. Pick a new node s′ /∈ Sk and define Tk+1 = Sk ∪ {s′} and

=⇒k+1==⇒k ∪{(s, a, s′)}, where w′ is the MCS associated with s′. It is
easy to see that every node in Tk+1 has witnesses for past formulas as well.

Now consider T = (S,=⇒, s0) defined by: S =
⋃

k≥0

Sk and =⇒=
⋃

k≥0

=⇒k.

Define the model M = (T, V ) where V (s) = w ∩ P , where w is the MCS
associated with s.

Lemma 6.2. For any s ∈ S, we have the following properties.

1. if [a]α ∈ s and s
a

=⇒ s′ then α ∈ s′.

2. if 〈a〉α ∈ s then there exists s′ such that s
a

=⇒ s′ and α ∈ s′.

3. if [a]α ∈ s and s′
a

=⇒ s then α ∈ s′.

4. if 〈a〉α ∈ s then there exists s′ such that s′
a

=⇒ s and α ∈ s′.

5. if 2-α ∈ s and s′ =⇒∗ s then α ∈ s′.

6. if 3-α ∈ s then there exists s′ such that s′ =⇒∗ s and α ∈ s′.

Proof. Cases (1) to (5) can be shown using standard modal logic techniques.
(6) follows from the existense of a root atom (proposition 6.1) and axiom
(A4b). q.e.d.

Lemma 6.3. For all ψ ∈ Past(P ), for all s ∈ S, ψ ∈ s iff ρs, s |= ψ.

Proof. This follows from lemma 6.2 using an inductive argument. q.e.d.

Lemma 6.4. For all i, for all σ ∈ Strati(P i), for all c ∈ Σ, for all s ∈ S,
(σ)i : c ∈ s iff c ∈ σ(s).

Proof. The proof is by induction on the structure of σ. The nontrivial cases
are as follows:
σ ≡ [ψ 7→ a]:
(⇒) Suppose ([ψ 7→ a]i)i : c ∈ s. If c = a then the claim holds trivially.



17

If c 6= a then from (A5a) we get that ¬ψ ∈ s, from lemma 6.3 ρs, s 6|= ψ.
Therefore by definition we have [ψ 7→ a]i(s) = Σ and c ∈ σ(w).
(⇐) Conversly, suppose ([ψ 7→ a]i)i : c 6∈ s. From (A5a) we have a 6= c.
From (A5b) we get ψ ∈ s. By lemma 6.3 ρs, s |= ψ. Therefore c 6∈ σ(s) by
definition.
σ ≡ π ⇒ σ′: Let ρs

s0
: s0

a0=⇒ · · ·
ak−1

=⇒ sk = s be the unique path from the
root to s.
(⇒) Suppose (π ⇒ σ′)i : c ∈ s. To show c ∈ (π ⇒ σ′)(s). Suffices to show
that ρs

s0
conforms to π implies c ∈ σ′(s). From (A6c) we have conf π

⊃ (σ′)i :
c ∈ s. Rewriting this we get 3- (〈a〉τi ∧ [a](¬(π)i : a)) ∨ (σ′)i : c ∈ s. We
have two cases,

• if (σ′)i : c ∈ s then by induction hypothesis we get c ∈ σ′(s). Therefore
by definition c ∈ (π ⇒ σ)i(s).

• otherwise we have 3- (〈a〉τi ∧ [a](¬(π)i : a)) ∈ s. From lemma 6.2(6),
there exits sl ∈ ρs such that 〈a〉τi ∧ [a](¬(π)i : a) ∈ sl. By lemma

6.2(4) there exists sl−1 ∈ ρs ∩W
i such that sl−1

a
=⇒ sl. From lemma

6.2(3), ¬(π)i : a ∈ sl−1. Since sl−1 is an MCS, we have (π)i : a 6∈ sl−1.
By induction hypothesis, a 6∈ π(sl−1), therefore we have ρs

s0
does not

conform to π.

(⇐) Conversly, using (A6c) and a similar argument it can be shown that if
(π ⇒ σ′)i : c 6∈ s then c 6∈ (π ⇒ σ′)(s). q.e.d.

Theorem 6.5. For all α ∈ Π, for all s ∈ S, α ∈ s iff M, s |= α.

Proof. The proof is by induction on the structure of α.
α ≡ (σ)i : c.
From lemma 6.4 we have (σ)i : c ∈ s iff c ∈ σ(s) iff by semantics M, s |=
(σ)i : c.
α ≡ σ ;i β.
(⇒) We show the following:

1. If σ ;i β ∈ s and there exits a transition s
a

=⇒ s′ such that a ∈ σ(s),
then {β, σ ;i β} ⊆ s′.
Suppose σ ;i β ∈ s, from (A7) we have β ∈ s. We have two cases to
consider.

• s ∈ W i: We have τi ∈ s. Since a ∈ σ(s), by lemma 6.4 we have
(σ)i : a ∈ s. From (A7) we get [a](σ ;i β) ∈ s. By lemma 6.2(1)
we have σ ;i β ∈ s′.

• s ∈ W i: We have τi ∈ s. From (A7) we get [N ](σ ;i β) ∈ s,
since s is an MCS we have for every a ∈ Σ, [a](σ ;i β) ∈ s. By
lemma 6.2(1) we have σ ;i β ∈ s′.



18

By applying (A7) at s′ we get β ∈ s′.

2. If σ ;i β ∈ s and s is a non-leaf node, then ∃s′ such that s
a

=⇒ s′

and a ∈ σ(s).

Suppose s is a non-leaf node. From (A7),
∨

a∈Σ

(〈a〉True ∧ (σ)i : a) ∈ s.

Since s is an MCS, there exists an a such that 〈a〉True ∧ (σ)i : a ∈ s.

By lemma 6.2(2), there exists an s′ such that s
a

=⇒ s′ and by lemma
6.4 a ∈ σ(s).

(1) ensures that whenever σ ;i β ∈ s and there exists a path ρsk
s which

conforms to σ, then we have {β, σ ;i β} ⊆ sk. Since β ∈ Past(P ), by
lemma 6.3 we have M, sk |= β. (2) ensures that for all paths ρsk

s which con-
forms to σ, if sk is a non-leaf node, then moves(sk)∩ σ(sk) 6= ∅. Therefore
we get M, s |= σ ;i β.
(⇐) Conversly suppose σ ;i β 6∈ s, to show M, s 6|= σ ;i β. Suffices to
show that there exists a path ρsk

s that conforms to σ such that M, sk 6|= β
or sk is a non-leaf node and moves(sk) ∩ σ(sk) = ∅.

Lemma 6.6. For all t ∈ AT , σ ;i β 6∈ t implies there exists a path

ρtk

t : t = t1
a1−→AT t2 . . .

ak−1

−→AT tk which conforms to σ such that one of
the following conditions hold.

• β 6∈ tk.

• tk is a non-leaf node and moves(tk) ∩ σ(tk) = ∅.

We have t = s ∩ CL(σ ;i β) is an atom. By lemma 6.6(proof given in

appendix), there exists a path in the atom graph t = t1
a1−→AT t2 . . .

ak−→AT

tk such that β 6∈ tk or tk is a non-leaf node and moves(tk) ∩ σ(tk) = ∅. t1
can be extended to the MCS s. Let t′2 = t2∪{α|[a1]α ∈ s}. Its easy to check

that t′2 is consistent. Consider any MCS s2 extending t′2, we have s
a1=⇒ s2.

Continuing in this manner we get a path in s = s1
a1=⇒ s2 . . .

ak−1

=⇒ sk in
M which conforms to σ where either β 6∈ sk or sk is a non-leaf node and
moves(sk) ∩ σ(sk) = ∅. q.e.d.

7 Extensions for strategy specification

Until operator:

One of the natural extensions to strategy specification is to come up with a
construct which asserts that a player strategy conforms to some specification
σ until a certain condition holds. Once the condition is fulfilled, he is free
to choose any action.

We can add the future modality 3α in the logic defined in section 3 with
the following interpretation.



19

• M, s |= 3γ iff there exists an s′ such that s =⇒∗ s′ and M, s′ |= γ.

Let Past(Π) and Future(Π) denote the past and future fragment of Π
respectively. i.e.

Past(ΠP i

) := p ∈ P i | ¬α | α1 ∨ α2 | 3-α

Future(ΠP i

) := p ∈ P i | ¬α | α1 ∨ α2 | 3α

Let 2α = ¬3¬α and 2-α = ¬3-¬α. We can enrich Strat i(P i) with the until

operator σUϕ, where ϕ ∈ Past(ΠP i

) ∪ Future(ΠP i

), with the following
interpretation:

• (σUϕ)(s) =

{
Σ if ∃j : 0 ≤ j ≤ m such that ρ

sj
s0
, j |= ϕ

σ(s) otherwise

Note that until does not guarantee that ϕ will eventually hold. We can
extend the axiomatization quite easily to handle the new construct. Firstly
we need to add the following axiom and the derivation rule for the future
modality.

(Ax -box) 2α ≡ (α ∧ [N ]2α)

(Ind) α ⊃ [N ]α
α ⊃ 2α

Using the above axiom and inference rule one can easily show the ana-
logue of lemma 6.2 and lemma 6.3 for the future modality. For the until
operator we have the following axiom.

(Ax -Until) (σUϕ)i : c ≡ ¬3-ϕ ⊃ (σ)i : c
We can show that lemma 6.4 holds once again, for the extended syntax.

Lemma 7.1. For all i, for all σ ∈ Strat i(P i), for all c ∈ Σ, for all s ∈ S,
(σ)i : c ∈ s iff c ∈ σ(s).

Proof. The proof is by induction on the structure of σ as seen before. The
interesting case is when σ ≡ σ′Uϕ:
(⇒) Suppose (σ′Uϕ)i : c ∈ s. It suffices to show that ∀j : 0 ≤ j ≤ k,
ρ

sj

s0
, j 6|= ϕ implies c ∈ σ′(s). From axiom (Ax -Until), we have ¬3-ϕ ⊃ (σ′)i :

c ∈ s. Rewriting this, we get 3-ϕ ∈ s or (σ′)i : c ∈ s.

• if 3-ϕ ∈ s, then by lemma 6.2, ∃j : 0 ≤ j ≤ k such that ϕ ∈ sj .
Therefore we have ρ

sj
s0

|= ϕ.

• if (σ)i : c ∈ s, then by induction hypothesis we have c ∈ σ(s).

(⇐) To show (σ′Uϕ)i : c /∈ s implies c /∈ (σ′Uϕ)(s). It suffices to show that
∀j : 0 ≤ j ≤ m, ρ

sj

s0
, j 6|= ϕ and c /∈ σ′(s). From axiom (Ax -Until), we have

¬3-ϕ ∧ ¬((σ′)i : c) ∈ s. Rewriting this we get 2-¬ϕ ∈ s and ¬((σ)i : c) ∈ s.



20

• 2-¬ϕ ∈ s implies ∀j : 0 ≤ j ≤ m, ¬ϕ ∈ sj(by lemma 6.2). Since sj is
an MCS, α /∈ sj . Therefore we have ∀j : 0 ≤ j ≤ m, ρ

sj
s0
, j 6|= ϕ.

• ¬((σ)i : c) ∈ s implies (σ)i : c /∈ s(Since s is an MCS). By induction
hypothesis we have c /∈ σ(s).

q.e.d.

Nested strategy specification:

Instead of considering simple past time formulas as conditions to be verified
before deciding on a move, we can enrich the structure to assert the oppo-
nents conformance to some strategy specification in the history of the play.
This can be achieved by allowing nesting of strategy specification. We can
extend the strategy specification syntax to include nesting as follows.

Γi := ψ | σ | γ1 ∧ γ2

Strat i
rec(P

i) := [γ 7→ a]i | σ1 + σ2 | σ1 · σ2

where ψ ∈ Past(P i), σ ∈ Strat i
rec(P

i) and γ ∈ Γi. Below we give the
semantics for the part that requires change. For the game tree T and a
node s in it, let ρs

s0
: s0

a1=⇒ s1 · · ·
am=⇒ sm = s denote the unique path from

s0 to s

• [γ 7→ a]i(s) =

{
a if s ∈W i and ρs

s0
,m |= γ

Σ otherwise

• ρs
s0
,m |= σ iff ∀j : 0 ≤ j < m, ai ∈ σ(si).

• ρs
s0
,m |= γ1 ∧ γ2 iff ρs

s0
,m |= γ1 and ρs

s0
,m |= γ2.

For a past formula ψ, the notion of ρs
s0
,m |= ψ is already defined in

section 3. Let L denote the logic introduced in section 3 and Lrec be same
as L except that σ ∈ Stratirec(P

i). We will show that L and Lrec have
equivalent expressive power. Therefore one can stick to the relatively sim-
ple strategy specification syntax given in section 3 rather than taking into
account explicit nesting.

It is easy to see that any formula γ ∈ Γi, can be rewritten in the form
σ′∧ψ where σ′ ∈ Strat i

rec(P
i) and ψ ∈ Past(P i). This is due to the fact that

if ψ1, ψ2 ∈ Past(P i) then ψ1 ∧ψ2 ∈ Past(P i) and σ1 ∧σ2 ≡ σ1 ·σ2(formally
∀s, ρs

s0
,m |= σ1 ∧ σ2 iff ρs

s0
,m |= σ1 · σ2).

Given σrec ∈ Strat i
rec(P

i) the equivalent formula σ ∈ Strati(P i) is con-
structed inductively as follows.

[[[ψ 7→ a]]] = [ψ 7→ a]
[[σ1 + σ2]] = [[σ1]] + [[σ2]]
[[σ1 · σ2]] = [[σ1]] · [[σ2]]

[[[σ 7→ a]]] = [[σ]] ⇒ [True 7→ a]
[[[σ ∧ ψ 7→ a]]] = [[σ]] ⇒ [ψ 7→ a]



21

Lemma 7.2. For all i, for all s ∈ S, for all σ ∈ Strati(P i), σ(s) = [[σ]](s).

Proof. The proof is by induction on the structure of σ. Let s ∈ S and
ρs

s0
: s0

a1=⇒ s1 · · ·
am=⇒ sm = s be the unique path from root to s.

σ ≡ [ψ 7→ a]: Follows from the definition.
σ ≡ σ1 ·σ2 and σ ≡ σ1 +σ2 follows easily by applying induction hypothesis.
σ ≡ [π 7→ a]: We need to show that for all s, [π 7→ a](s) = ([[π]] ⇒ [True 7→
a])(s). We have the following two cases:

• ρs
s0
,m |= π: In this case, we have [π 7→ a](s) = a. ρs

s0
,m |= π implies

∀j : 0 ≤ j < m, aj ∈ π(sj). From induction hypothesis, aj ∈ [[π]](sj),
which implies ρs

s0
conforms to [[π]]. From the semantics, we get ([[π]] ⇒

[True 7→ a])(s) = ([True 7→ a])(s) = a.

• ρs
s0
,m 6|= π: In this case, we have [π 7→ a](s) = Σ and ∃j : 0 ≤ j < m

such that aj /∈ π(sj). By induction hypothesis, we have aj /∈ [[π]](sj)
which implies that ρs

s0
does not conform to [[π]]. From semantics we

get that ([[π]] ⇒ [True 7→ a])(s) = Σ.

σ ≡ [π ∧ ψ 7→ a]: The following two cases arise:

• ρs
s0
,m |= π ∧ ψ: We have [π ∧ ψ 7→ a](s) = a. ρs

s0
,m |= π ∧ ψ implies

ρs
s0
,m |= π and ρs

s0
,m |= ψ. ρs

s0
,m |= π implies ∀j : 0 ≤ j < m,

aj ∈ π(sj). By induction hypothesis, aj ∈ [[π]](sj) and as before we
get ([[π]] ⇒ [ψ 7→ a])(s) = ([ψ 7→ a])(s) = a.

• ρs
s0
,m 6|= π ∧ ψ: We have the following two cases

– ρs
s0
,m 6|= ψ: It is easy to see that [π ∧ ψ 7→ a](s) = ([[π]] ⇒ [ψ 7→ a])

(s) = Σ.

– ρs
s0
,m 6|= π: In this case, ∃j : 0 ≤ j < m such that aj /∈ π(sj).

By induction hypothesis, we have aj /∈ [[π]](sj). By an argument
similar to the one above we get [[π]] ⇒ [ψ 7→ a])(s) = Σ.

q.e.d.

For the converse, given a σ ∈ Strat i(P i), we can construct an equiva-
lent formula σrec ∈ Strat i

rec(P
i). The crucial observation is the following

equivalences in Strat i(P i).

• π ⇒ σ1 + σ2 ≡ (π ⇒ σ1) + (π ⇒ σ2)

• π ⇒ σ1 · σ2 ≡ (π ⇒ σ1) · (π ⇒ σ2)

• π1 ⇒ (π2 ⇒ σ) ≡ (π1 · π2) ⇒ σ



22

Using the above equivalences, we can write the strategy specification σ
in a normal form where all the implications are of the form π ⇒ [ψ 7→ a].
Then σrec is constructed inductively as follows:

[[[ψ 7→ a]]] = [ψ 7→ a]
[[σ1 + σ2]] = [[σ1]] + [[σ2]]
[[σ1 · σ2]] = [[σ1]] · [[σ2]]

[[π ⇒ [ψ 7→ a]]] = [[[π]] ∧ ψ 7→ a]

Lemma 7.3. For all i, for all s ∈ S, for all σ ∈ Strati(P i), σ(s) = [[σ]](s).

Proof. The proof is by induction on the structure of formula. Let ρs
s0

:

s0
a1=⇒ s1 · · ·

am=⇒ sm = s. The interesting case is when σ ≡ π ⇒ [ψ 7→ a].
We need to show that for all s, π ⇒ [ψ 7→ a](s) = [π ∧ ψ 7→ a](s). We have
the following two cases:

• ρs
s0

conform to π: We have π ⇒ [ψ 7→ a](s) = [ψ 7→ a](s) and ∀j :
0 ≤ j < m, aj ∈ π(si). By induction hypothesis, aj ∈ [[π]](si) which
implies that ρs

s0
,m |= π. Therefore [[[π]] ∧ ψ 7→ a](s) = [ψ 7→ a](s).

• ρs
s0

does not conform to π: By an argument similar to the above, we
can show that π ⇒ [ψ 7→ a](s) = [π ∧ ψ 7→ a](s) = Σ.

q.e.d.

Theorem 7.4. Logics L and Lrec have equivalent expressive power. i.e.

• For every α ∈ Π, there exists αrec ∈ Πrec such that M, s |= α iff
M, s |= αrec.

• For every αrec ∈ Πrec there exists α ∈ Π such that M, s |= αrec iff
M, s |= α.

Proof. The theorem follows from lemma 7.2 and lemma 7.3 by a routine
inductive argument. q.e.d.

8 Discussion

We have defined a logic for reasoning about composite strategies in games.
We have presented an axiomatization for the logic and shown its complete-
ness.

We again remark that the presentation has been given for two-player
games only for easy readability. It can be checked that all the definitions
and arguments given here can be appropriately generalized for n-player
games.

While our emphasis in the paper has been on advocating syntactically
constructed strategies, we make no claims to having the “right” set of con-
nectives for building them. This will have to be decided by experience,



23

gained by specifying several kinds of strategies which turn out to be of use
in reasoning about games.

We believe that a framework of this sort will prove useful in reasoning
about multi-stage and repeated games, where strategy revision based on
learning other players’ strategies (perhaps partially) plays an important
role.

Appendix

Lemma 8.1. For atoms t1 and t2, the following statements are equivalent.

1. t̂1 ∧ 〈a〉t̂2 is consistent.

2. 〈a〉t̂1 ∧ t̂2 is consistent.

Proof. Suppose 〈a〉t̂1∧ t̂2 is consistent, from (A3b) we have 〈a〉t̂1∧[a]〈a〉t̂2 is
consistent. Therefore, 〈a〉(t̂1∧〈a〉t̂2) is consistent, which implies 6⊢ [a]¬(t̂1∧
〈a〉t̂2). From (NG-), 6⊢ ¬(t̂1∧〈a〉t̂2), thus we have that t̂1∧〈a〉t̂2 is consistent.

Suppose t̂1∧〈a〉t̂2 is consistent, from (A3a) we have [a]〈a〉t̂1∧〈a〉t̂2 is con-
sistent. Therefore, 〈a〉(〈a〉t̂1 ∧ t̂2) is consistent, which implies 6⊢ [a]¬(〈a〉t̂1 ∧
t̂2). From (NG-), 6⊢ ¬(〈a〉t̂1 ∧ t̂2), thus we get that 〈a〉t̂1 ∧ t̂2 is consis-
tent. q.e.d.

Lemma 8.2. Consider the path tk
ak−→ tk−1 . . .

a1−→ t0 where tk is a root
atom,

1. For all j ∈ {0, . . . , k − 1}, if [a]α ∈ tj and tj+1
a

−→ tj then α ∈ tj+1.

2. For all j ∈ {0, . . . , k − 1}, if 〈a〉α ∈ tj and tj+1
b

−→ tj then b = a and
α ∈ tj+1.

3. For all j ∈ {0, . . . , k − 1}, if 3-α ∈ tj then there exists i : j ≤ i ≤ k
such that α ∈ ti.

Proof. (1) Since tj+1
a

−→ tj , we have t̂j+1 ∧ 〈a〉t̂j is consistent, By lemma

8.1, t̂j ∧ 〈a〉t̂j+1 is consistent, which implies [a]α ∧ 〈a〉t̂j+1 is consistent (by

omitting some conjuncts). Therefore 〈a〉(α∧ t̂j+1) is consistent. Using (NG-

) we get α ∧ t̂j+1 is consistent and since tj+1 is an atom, we have α ∈ tj+1.

(2) Suppose tj+1
b

−→ tj , we first show that b = a. Suppose this is not

true, since tj+1
b

−→ tj , we have t̂j ∧ 〈b〉t̂j+1 is consistent. And therefore
t̂j ∧ 〈b〉True is consistent. From axiom (A2c) t̂j ∧ [a]False is consistent. If
〈a〉α ∈ tj , then we get 〈a〉α∧ [a]False is consistent. Therefore 〈a〉(α∧False)
is consistent. From (NG-) we have α ∧ False is consistent, which is a
contradiction.



24

To show α ∈ tj+1 observe that 〈a〉α ∈ tj implies [a]α ∈ tj (by axiom
(A2b) and closure condition). By previous argument we get α ∈ tj+1.

(3) Suppose 3-α ∈ tj and tj+1
a

−→ tj . If α ∈ tj then we are done. Else by
axiom (A4b) and the previous argument, we have 〈a〉3-α ∈ tj . From (2) we
have 3-α ∈ tj+1. Continuing in this manner, we either get an i where α ∈ ti
or we get 3-α ∈ tk. Since tk is the root, this will give us α ∈ tk.

q.e.d.

Lemma 6.6: For all t ∈ AT , σ ;i β 6∈ t implies there exists a path

ρtk

t : t = t1
a1−→AT t2 . . .

ak−1

−→AT tk which conforms to σ such that one of
the following conditions hold.

• β 6∈ tk.

• tk is a non-leaf node and moves(tk) ∩ σ(tk) = ∅.

Proof. Consider the least set R containing t and closed under the following
condition:

• if t1 ∈ R then for every transition t1
a

−→ t2 such that a ∈ σ(t1) we
have t2 ∈ R.

If there exists an atom t′ ∈ R such that β 6∈ t′ or if t′ is a non-leaf node
and moves(t′) ∩ σ(t′) = ∅, then we are done. Suppose not, then we have

⊢ R̃ ⊃ β and ⊢ (R̃ ∧ ¬leaf ) ⊃

∨

a∈Σ

(〈a〉True ∧ (σ)i : a).

Claim 8.3. The following are derivable.

1. ⊢ (R̃ ∧ τi ∧ (σ)i : a) ⊃ [a]R̃.

2. ⊢ (τi ∧ R̃) ⊃ [N ]R̃.

Assume claim 8.3 holds, then applying (IND) rule we get ⊢ R̃ ⊃ σ ;i β.
But t ∈ R and therefore ⊢ t̂ ⊃ σ ;i β, contradicting the assumption that
σ ;i β 6∈ t. q.e.d.

Proof of claim 8.3: To prove 1, suppose the claim does not hold. We have
that (R̃ ∧ τi ∧ (σ)i : a) ∧ 〈a〉¬R̃ is consistent. Let R′ = AT −R. If R′ = ∅

then R = AT in which case its easy to see that the claim holds. If R′ 6= ∅,
then we have (R̃∧ τi ∧ (σ)i : a)∧ 〈a〉R̃′ is consistent. Hence for some t1 ∈ R
and t2 ∈ R′, we have (t̂1 ∧ τi ∧ (σ)i : a))∧〈a〉t̂2 is consistent. Which implies

t1
a

−→AT t2 and this transition conforms to σ. By closure condition on R,
t2 ∈ R which gives us the required contradiction.

Proof of 2 is similar.



25

References

[AHK02] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-
time temporal logic. Journal of the ACM, 49:672–713, 2002.

[Ben02] Johan Van Benthem. An essay on sabotage and obstruc-
tion. In D.Hutter and S.Werner, editors, Festschrift in hon-
our of Prof. Joerg Siekmann, Lecture Notes in Artificial In-
telligence. Springer-Verlag, 2002.

[Bon91] G. Bonanno. The logic of rational play in games of perfect
information. Economics and Philosophy, 7:37–65, 1991.

[Ehr61] Andrzej Ehrenfeucht. An application of games to the com-
pleteness problem for formalized theories. Fundamenta
Mathematicae, 49:129–141, 1961.

[Gor01] V. Goranko. Coalition games and alternating temporal log-
ics. Proceedings of 8th conference on Theoretical Aspects
of Rationality and Knowledge (TARK VIII), pages 259–272,
2001.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic
Logic. The MIT Press, October 2000.

[HvdHMW03] Paul Harrenstein, Wiebe van der Hoek, John-Jules Meyer,
and Cees Witteven. A modal characterization of Nash equi-
librium. Fundamenta Informaticae, 57:2–4:281–321, 2003.

[Lan02] Martin Lange. Games for modal and temporal logics. PhD
thesis, University of Edinburgh, 2002.

[Par85] Rohit Parikh. The logic of games and its applications. Annals
of Discrete Mathematics, 24:111–140, 1985.

[Pau01] Marc Pauly. Logic for Social Software. PhD thesis, Univer-
sity of Amsterdam, October 2001.

[vB01] Johan van Benthem. Games in dynamic epistemic logic. Bul-
letin of Economic Research, 53(4):219–248, 2001.

[vB03] Johan van Benthem. Logic games are complete for game
logics. Studia Logica, 75:183–203, 2003.

[vD00] Hans P. van Ditmarsch. University of Amsterdam. PhD
thesis, University of Amsterdam, November 2000.



26

[vdHJW05] Wiebe van der Hoek, Wojtek Jamroga, and Michael
Wooldridge. A logic for strategic reasoning. Proceedings of
the Fourth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 05), pages 157–
164, 2005.


