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Abstract. We present a quick summary of formal reasoning about games in logics, pointing
out that strategies (which are the core of game playing) are mostly treated as being atomic
(unstructured). While this is adequate for reasoning “from above”, where one is interested
in the logical structure of the game itself, or that of removing dominated strategies, or
existence of equilibria, it offers little help for how to play. When it comes to reasoning within
the game, a player’s choice of strategy depends not only on her knowledge of the game
position but also her expectation of the strategies employed by other players of which she
can only have partial knowledge. Moreover, strategies are completely known to players only
in small games where a strategy amounts to picking a small number of moves; in games with
rich structure, intricate reasoning about strategies can be called for. This article is intended
as an (expository) account of only the main issues, with detailed proofs to be found in the
referenced literature.

1 Introduction

A game can be thought of as any situation where there are multiple players, each having a number
of strategies available which he can choose to follow, with a preference ordering on the possible
outcomes, which in turn are determined by the strategies chosen by the players. Conflicts arise
among players (who can be individuals or abstract entities) when they attach different values to
an outcome. Players might be in direct conflict with each other or a group of players might try
and cooperate to achieve a common goal.

This abstract definition turns out to be very robust and enables social interactions from a wide
range of fields to be theoretically modelled as a game. A few examples include companies adopting
marketing strategies to win over customers, candidates adopting campaigning plans in an election,
biological species trying to pass their respective genes to future generations. A comprehensive
collection of problems from various fields being modelled as games can be found in [Str93].

Game theory tries to analyse situations where there are elements of conflict and cooperation
among rational agents. The ultimate aim of the theory is to predict the behaviour of rational
agents and prescribe a plan of action that needs to be adopted when faced with a strategic decision
making situation. The theory therefore consists of the modelling part as well as the various solution
concepts which try to predict the behaviour of such agents and prescribe what rational players
should do. The effectiveness of a particular solution concept depends on how precise and effective
the prescription turns out to be.

There are some fundamental problems in coming up with such a theory. Most real world inter-
actions are extremely complex and modelling the complete process as a game may not be feasible.
The usual approach to overcome this trouble is to consider an abstraction of the situation and to
model this abstract setting as a game. Even though all the constituent elements of the situation
cannot be preserved, the abstraction tries to retain the most relevant ones. The other challenge is
due to the fact that game theory assumes that all players are rational whereas in many real world
interactions, people often tend to act irrationally.



Games can be represented in various ways depending on the amount of strategic details that
need to be preserved during the abstraction process. The two popular methods of representation
are the strategic form (or normal form) which results in “small” games and the extensive form
used to represent “large” games where the game structure is presented explicitly.1

This article, which is mainly an expository account, is organised as follows. We begin with
strategic form games and then outline two approaches to reason about large, complex games. One
works with algebraic structure in a large game, and the other with graphical structure. We then
try and motivate the necessity to reason about strategies rather than be content with reasoning
about games. We present a syntax for strategy specifications (similar to the alegebraic structure
for games) to describe partially known strategies on graphical games, and show how notions like
equilibria may be studied in such a setting.

Strategic form games

Consider the classic situation of two children wanting to divide a piece of cake among themselves.
The solution is to let one child divide the cake and let the other choose which piece he wants. Each
child wants to maximise the size of his piece, and therefore this process ensures fair division. The
first child cannot complain that the cake was divided unevenly and the second child cannot object
since he has the piece of his choice. This is a very simple example of a game where two players
have conflicting interests and each player is trying to maximize his payoff. The final outcome of
the division depends on how well each child can anticipate the reaction of the other and this makes
the situation game theoretic.

A game can be presented by specifying the players, the strategies available to each player and
the payoff for each player. In the case of a two person game, this can be presented efficiently in
a matrix form. For instance the cake cutting game can be represented using the matrix shown in
Figure 1. We will refer to the players as cutter and chooser. Here both players have two strategies,
each can choose to cut the cake evenly or to make one piece bigger than the other, which corresponds
to picking one of the rows of the matrix. Chooser can choose the bigger piece or the smaller piece,
which corresponds to picking one of the columns of the matrix. The outcome for the cutter, after
both the players choose their strategies, is the corresponding entry in the matrix. For instance,
if the cutter chooses to make one piece bigger and the chooser picks the bigger piece, then the
outcome will be that the smaller piece goes to the cutter (bottom left cell). The chooser’s outcome
is the complement of the cutter’s. An equivalent representation of the game can be obtained by
replacing the outcomes with numbers representing payoffs as shown in Figure 2.

Choose bigger Choose smaller
piece piece

Cut the cake Half of the Half of the
evenly cake cake

Make one Small piece Big piece
piece bigger

Fig. 1.

1 Note that “small” and “large” are informal notions relating to the typical number of moves in such
games.
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Choose bigger Choose smaller
piece piece

Cut the cake 0 0
evenly

Make one -1 1
piece bigger

Fig. 2.

The cake cutting game captures the situation of pure conflict, where cutter’s gain is chooser’s
loss and vice-versa. Such games are called zero-sum or win-loss games. If the cutter had the option
of choosing any of the four available outcomes, he would prefer to have the big piece. However, he
realizes that expecting this outcome is highly unrealistic. He knows that if he were to make one
piece bigger, then the chooser will pick the bigger piece leaving him with the remaining smaller
one. If he divides evenly, then he will end up with half of the cake. The cutter’s choice is really
between the smaller piece and half of the cake. Therefore he will choose to take half of the cake
(top left cell) by making an even split of the cake. This amount is the maximum row minimum
and is referred to as the maximin.

Now consider a variation of this game where the chooser is required to announce his choice
(big or small piece) before the cake is cut. This does not change the situation, the chooser would
still choose a bigger piece irrespective of how the cutter divides the cake. i.e. the chooser looks for
the minimum column maximum (minimax ) value, which happens to be the top left cell. In this
example, the maximin value and the minimax value both happen to be the top left cell. For a
game when the maximin value and the minimax value is identical, the outcome is called the saddle
point. When a game has a saddle point it is the expected rational play since either player cannot
unilaterally improve his payoff. A win-loss game is said to be determined if a saddle point exists.

Formally a two player zero sum game where player 1 has m strategies and player 2 has n
strategies can be represented by an m × n array A, where the (i, j)th entry ai,j represents the
payoff of player 1 when he chooses the strategy i and player 2 picks strategy j. The payoff for
player 2 for the corresponding entry is −1 × ai,j . Note that non zero sum payoffs can easily be
represented by replacing each matrix entry by a tuple of payoffs for each player.

Heads Tails

Heads 1 -1

Tails -1 1

Fig. 3. Matching pennies

Unfortunately not all games have saddle points. One of the simplest examples is the game of
“Matching pennies” depicted in Figure 3. In this game two players simultaneously place a penny
(heads or tails up). When both the pennies match, player 1 gets to keep both. If the pennies do
not match, then player 2 gets to keep both. Its easy to see from the payoff matrix that maximin is
-1 whereas minimax is 1. It is well known that the best way of playing matching pennies is to play
heads with probability half and tails with probability half. This amounts to a mixed strategy rather
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than a pure strategy of picking an action with absolute certainty. The minimax theorem [vNM47]
asserts that for all two player zero sum games, there is a rational outcome in mixed strategies.

The theory can be extended from zero sum objectives to non zero sum objectives with more
than just two players. In this case the outcome of the game will specify a payoff for each of the
players. The commonly used solution concept in this context is that of Nash equilibrium which
corresponds to a profile of strategies, one for each player which satisfies the property that no player
gains by unilaterally deviating from his equilibrium strategy. John Nash [Nas50] formulated this
notion of equilibrium for multiplayer non zero sum games and proved the analogue of the min-max
theorem for such games. The result states that for all finite multiplayer games, there exists a mixed
strategy (Nash) equilibrium profile.

Much of the mathematical theory developed for games talks about existence of equilibrium and
does not shed light on how the players should go about playing the game. For two person zero
sum games, one can show that the maximin theorem is equivalent to the LP (linear programming)
duality problem. Therefore construction of optimal strategies is possible using linear programming
techniques [vS02]. For two person non zero-sum games, optimal strategies can be constructed using
techniques for solving the linear complementarity problem as shown in [LJ64]. For a multi-player
game, Nash’s theorem talks of existence of equilibrium but it is not known how to actually construct
the equilibrium strategy.

2 Reasoning about games

Strategic form games give a highly abstracted presentation of a game. The representation typically
assumes “small” games where the structure of the strategy (individual moves which build up
to form the strategy) is absent (or abstracted away). In the context of pure strategies, the above
mentioned existence theorems dictate which strategy a player should employ in the game. However,
we also need to analyse larger games where the players’ actions are part of the representation. We
now address reasoning in such a context.

2.1 Game logics

One natural way is to consider a large game as being built up structurally from small atomic games
by means of composition. This suggests an algebraic structure in games, and one line of work in
game logics proceeds by imposing a program-like compositional structure on games.

Program logics like the propositional dynamic logic (PDL) [HKT00] have been developed to
reason about programs. The idea here is to model programs as being constructed using operations
like sequential composition, iteration, etc. on simple atomic programs. This compositional approach
in program reasoning has been successful in the analysis and verification of programs, especially
in giving us insights into the expressive power of various programming constructs. The natural
extension to this methodology is to come up with a dynamic logic to reason about multi-agent
programs and protocols. Game logic introduced by Parikh in [Par85] addresses this issue. Game
logic (GL) is a generalisation of PDL for reasoning about determined two person games.

Syntax: Let the two players be denoted as player 1 and player 2. Like PDL, the language of
GL consists of two sorts, games and propositions. Let Γ0 be a set of atomic games and P a set
of atomic propositions. The set of GL-games Γ and the set of GL-formulas Φ is built from the
following syntax:

Γ := g | γ1; γ2 | γ1 ∪ γ2 | γ∗ | γd

Φ := p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈γ〉ϕ
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where p ∈ P and g ∈ Γ0. Let [γ]ϕ := ¬〈γ〉¬ϕ and γ1 ∩ γ2 := (γd
1 ∪ γd

2 )d.
The formula 〈γ〉ϕ asserts that player 1 has a strategy in game γ to ensure ϕ and [γ]ϕ expresses

that player 1 does not have a strategy to ensure ¬ϕ, which by determinacy is equivalent to the fact
that player 2 has a strategy to ensure ϕ. The intuitive definition of composite games are as follows:
γ1; γ2 is the game where γ1 is played first followed by γ2, γ1 ∪ γ2 is the game where player 1 moves
first and decides whether to play γ1 or γ2 and then the chosen game is played. In the iterated game
γ∗, player 1 can choose how often to play γ (possibly zero times). He need not declare in advance
how many times γ needs to be played, but is required to eventually stop. The dual game γd is
same as playing the game γ with the roles interchanged. The formal semantics is given below.

Semantics: A game model M = ((S, {Eg | g ∈ Γ0}), V ) where S is a set of states, V : P → 2S is

the valuation function and Eg : S → 22S

is a collection of effectivity functions which are monotonic,
i.e. X ∈ Eg(s) and X ⊆ X ′ imply X ′ ∈ Eg(s). The idea is that X ∈ Eg(s) holds whenever player
1 has a strategy in game g to achieve X .

The truth of a formula ϕ in a model M at a state s (denoted M, s |= ϕ) is defined as follows:

M, s |= p iff s ∈ V (p)
M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 or M, s |= ϕ2

M, s |= 〈γ〉ϕ iff ϕM ∈ Eγ(s)

where ϕM = {s ∈ S | M, s |= ϕ}. The effectivity function Eγ is defined inductively for non-atomic
games as follows. Let Eγ(Y ) = {s ∈ S | Y ∈ Eγ(s)}. Then

Eγ1;γ2
(Y ) = Eγ1

(Eγ2
(Y ))

Eγ1∪γ2
(Y ) = Eγ1

(Y ) ∪ Eγ2
(Y )

Eγd(Y ) = Eγ(Y )

Eγ∗(Y ) = µX.Y ∪ Eγ(X)

where µ denotes the least fixpoint operator. It can be shown that the monotonicity of Eg is
preserved under the game operations and therefore the least fixpoint µX.Y ∪Eγ(X) always exists.

Since game logic was designed to reason about multi-agent programs, the modelling approach
is quite different from traditional game theoretic notions. Pauly in [Pau00] presents a semantics
for Game logic which is closer to the standard game-theoretic approach.

Satisfiability and model checking are fundamental decision problems associated with any logic.
For Game logic, the following theorems show that both are decidable.

Theorem 2.1. ([Par85]) The satisfiability problem for Game Logic is in EXPTIME.

Theorem 2.2. Given a Game Logic formula ϕ and a finite game model M , model checking can
be done in time O(|M |ad(ϕ)+1 · |ϕ|) where ad(ϕ) is the alternation depth of ϕ.

A proof of this theorem can be found in [Pau01], Theorem 6.21 (page 122).

As shown in [Par85], it is possible to interpret Game logic over Kripke structures. Over Kripke
structures, Game logic can be embedded into µ-calculus [Koz83]. Whether Game logic is a proper
fragment of the µ-calculus is not known. It is quite conceivable that model checking for Game logic
is easier than model checking for the full µ-calculus. However, Berwanger in [Ber03] shows that
this is not the case.

One of the main open problems in Game logic is to give a complete axiomatization of valid
formulas of the logic. Parikh in [Par85] proposed an axiom system and conjectured that it is
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complete, unfortunately no proof of this has been given so far. For the dual free fragment of Game
logic, a complete axiomatization is presented in [Par85].

In Game logic, starting with simple atomic games, one can construct large complex games
using operators like composition and union. Due to the presence of the Box-Diamond duality
〈γ〉ϕ ≡ ¬[γ]¬ϕ, it is easy to see that the games constructed remain determined. The compositional
syntax of Game logic presents an algebra for game construction. Rather than look at arbitrarily
large games, this approach gives us a way of systematically studying complex games in a structured
manner and to also look at their algebraic properties. One should however note that the emphasis in
this approach is to reason about games, to study the structure of games with interesting properties
and definability conditions.

2.2 Graphical games

Graphs are another convenient way of representing large games in such a way that the structure
of the game is preserved. The nodes of the graph are game positions and edges represent player
moves that are enabled. In this article we consider only turn based games : these are games where
at any position a single player moves. This can be modelled by having every game position (except
for leaf nodes) being assigned to a particular player. A play is then just a path (a sequence of
vertex and edge labels) in the graph. Traditional games like chess, bridge, backgammon etc. have
a set of rules associated with them which specifies the legal moves of each player. Such games can
be easily transformed into graph games where the game positions and actions are derived from the
rules specified. A graphical game therefore consists of a game arena (the game graph) along with
a winning condition. Formally we can define it as follows:

Game Arena: Let Λ = {1, 2, . . . , n} be a finite set of players and Σ = {a1, a2, . . . , am} be a
finite set of action symbols, which represent moves of players. For a graph G = (W,−→) with
vertex set W and edge relation −→: W × Σ → W , let the set of successors of s ∈ W be defined

as
→

s= {s′ ∈ W | s
a

−→ s′ for some a ∈ Σ}. A node s ∈ W is a terminal node if
→

s= ∅. A game

arena is a graph G = (W,−→, s0) with W =
⋃

i∈ΛW
i ∪ {W leaf }. For i ∈ Λ, W i is the set of game

positions for player i and W leaf is the set of terminal game positions. s0 is the initial node of the
game and the transition function −→: (W × Σ) → W is a partial function also called the move
function. In an arena, the play of a game can be viewed as placing a token on s0. If player i owns
the game position s0 (i.e s0 ∈ W i), then she picks an action ’a’ which is enabled for her at s0 and

moves the token to s′ where s0
a

−→ s′. The game then continues from s′. Formally, a play in G is

a (possibly infinite) path ρ : s0a0s1a1 · · · where ∀j : sj

aj

−→ sj+1. Let Plays denote the set of all
plays in the arena.

The arena G as defined above merely describes the rules by which the game progresses. More
interesting are the objectives of the players, which specify the game outcomes. We assume that
each player has a preference relation over the set of plays. Let �i⊆ (Plays ×Plays) be a complete,
reflexive, transitive binary relation denoting the preference relation of player i for i ∈ Λ. Then the
game G is given as, G = (G, {�i}i∈Λ).

Determinacy for reachability games: We first consider the case of games (on possibly infinite
graphs) where there are two players (i.e. Λ = {1, 2}) with strictly conflicting objectives. Win-loss
objectives can be presented in a very simple way by just specifying the set of winning plays for
a player (say player 1) instead of giving the explicit preference relation for both the players. The
simplest winning condition is the reachability condition which specifies a play to be winning for
player 1 if a game position in a specific set of good game positions is reached at least once.
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The first step in analysing such a game is to check if determinacy holds. Unlike in Game
Logic, where determinacy can be presented as a formula, showing determinacy directly using game-
theoretic techniques is quite non-trivial. Determinacy for reachability games however can be shown
quite easily using a technique similar to backward induction [Kuh53] on extensive form game trees.
The idea is to inductively build the set of game positions U from which player 1 has a winning
strategy. Initially we take U to be the set of all good game positions specified by the reachability
condition and at any stage expand this set by its attractor set [Zie98] which is basically the set
of all game positions from where player 1 can force a visit into some vertex of U in finitely many
steps.

Determinacy for regular objectives: When we consider infinite plays, more interesting gen-
eral winning conditions (than reachability) can be considered. For instance, a infinite play is said
to be winning for player 1 if a specific set of game positions is visited during the play infinitely
often. This is referred to as a Büchi condition. Alternatively, several such sets may be given and
we may insist that the set of all infinitely often visited positions in a winning play should figure
among the given ones. This is called the Muller condition. Such conditions broadly come under
the category of ω-regular objectives ([GTW02]). Parity objectives, whereby we associate a finite
set of numbers to label game positions and determine winning by considering the parity of (say)
the highest visited number, neatly generalize the abstractions studied in this manner.

For games with ω-regular objectives, determinacy follows from a very general result due to
Martin [Mar75] which states that all Borel games (a class containing regular objectives) are deter-
mined. Adopting this technique however results in winning strategies which in general need to keep
track of the entire history of the play and therefore not implementable by finite state machines.
Of particular interest are the following two types of strategies:

– Positional (memoryless) strategies: These are strategies for which the next move depends only
on the current game position and not on the entire history of play.

– Finite memory strategies: These are strategies where the dependence of the next move to the
history of the play can be kept track of by a finite set of states.

Both positional and finite memory strategies can be implemented using finite state automata where
the state space of the automaton corresponds to the memory required by the strategy. In particular
a positional strategy can be implemented by an automaton with a single state.

For a game with regular winning condition given by the Muller condition, Gurevich and Har-
rington [GH82] show that finite memory strategies suffice for winning. In the case of parity games,
the existence of memoryless winning strategy was shown by Emerson and Jutla [EJ91].

Applications to automata theory: Establishing positional or finite memory determinacy for a
class of games is only a first step in the analysis of those games. For the determinacy theorem to
be useful, it is also crucial that we are able to construct the winning strategy. For games played
on a finite game arena, we can strengthen the determinacy result from an existence result to one
where the winning strategy can be effectively constructed. The Büchi-Landweber theorem [BL69]
states that for games played on finite graphs the set of “winning” game positions for each of
the players, along with the respective winning strategy can be effectively computed. McNaughton
[McN93] presents a simpler constructive proof for Muller games played on finite game arena where
he gives an exponential time algorithm to compute the finite memory winning strategy. Since finite
memory strategies can be implemented using finite state automata, the above mentioned theorems
imply that for two player zero sum games played on a finite game arena with an ω-regular winning
condition, the game is determined and the winning strategy can be synthesized as a finite state
automaton.
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The techniques developed in the analysis of infinite two player zero sum graphical games have
been used extensively in areas outside game theory especially in automata theory and to show
the decidability of various modal logics and monadic second order logics. For instance, it has been
shown that the model checking problem for µ-calculus is equivalent to deciding the winner in a
parity game via a linear time reduction [EJS93,Wil01]. Along with the result in [Ber03] (mentioned
in section 2.1) this also implies that model checking Game logic is not easier than solving parity
games. The closure under complementation of automata on infinite trees is another consequence
of the determinacy theorem for parity games as shown in [GH82]. This gives an elegant proof of
the difficult part of Rabin’s theorem [Rab69] which shows the decidability of monadic second-order
theory of the infinite binary tree.

A detailed exposition on the applications of techniques developed for infinite games in automata
theory and logic can be found in [GTW02].

Overlapping objectives: Infinite games on graphs have been extensively studied in the two
player zero sum setting. It makes sense to also look at multi-player non zero-sum games on graphs.
Since objectives need not be strictly conflicting, each player can have a preference relation inducing
an ordering over the set of valid plays. The game is specified by presenting the game arena along
with the preference relation for each player. The notion of equilibrium remains the same as seen
in section 1. However, it is no longer clear how to construct an equilibrium strategy profile for a
game in general. For games where the objectives of each player is specified by an omega regular
condition, the existence of Nash equilibrium is shown in [CJM04]. Ummels in [Umm06] shows the
existence of sub game perfect equilibrium for such games.

There is also the question of rational behaviour when we consider games which are not strictly
competitive. In the case of finite games, the assumption of rational behaviour has led to the classical
concept of iterated admissibility, which is based on the well studied notion of weak dominance of
strategies. A strategy µ1 of a player is said to dominate strategy µ2 if against any choice of strategies
of the other players, µ1 performs at least as well as µ2 and there are cases when µ1 performs strictly
better than µ2. As a consequence of rationality, when a player takes into account all strategies of
the other players, she will avoid playing dominated strategies. Each player eliminates from her
set of strategies those which are dominated. Since rationality is common knowledge each player
knows which strategies his opponents eliminated, and as a result he might discover that some of
his remaining strategies are dominated when taking into account the new set of possible strategies
by the opponents. This leads to further elimination. For games with finite strategy spaces it is easy
to see that this process stabilises after a finite number of iterations. A solution concept like the
Nash equilibrium predicting the outcome of the game should only involve strategies that survive
iterated elimination since those are the only strategies a rational player will need to reason about.

For infinite non zero-sum multi-player games, since it is not clear how to come up with an
equilibrium strategy profile, we need some methods to prune down the strategy space that needs
to be considered for equilibrium outcomes. This can be achieved by generalising the concept of
iterated admissibility to infinite games, since any equilibrium strategy is required to be iteratively
admissible. However, the generalisation is not very obvious as the elimination process might not
even terminate. Berwanger in [Ber07] studies the question of rational behaviour in this context,
and shows that in the case of ω-regular games, the iteration always terminates after a finite number
of steps and that the set of iteratively admissible strategies is itself regular.

3 Reasoning in games

The pattern of reasoning about games presented in the previous section consists of trying to find
when games are determined and characterising the type of winning strategy that needs to be
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employed. Throughout the discussion so far, strategies are assumed to be complete plans which
prescribe a unique action for every possible scenario. Therefore coming up with a winning strategy
requires the entire game graph to be explored and analysed. But this may be a tall order: even
when the game is finite, the state space could be so large that exploring all possibilities might be
computationally infeasible.

A classic example of such a game is the game of chess. Zermelo showed in [Zer13] that chess
is determined, i.e. either there exists a pure strategy for one of the two players (white or black)
guaranteeing that she will always win or each one of the two players has a strategy guaranteeing at
least a draw. However, neither do we know which of the three alternatives is the correct one, nor a
winning strategy. For games like Hex, it is known that the first player can force a win [Gal79] but
nonetheless a winning strategy is not known. Connect four is yet another game which has been
shown to be determined [All98]. Theoretically a finite game like chess or hex is not very interesting
since in principle, the winning strategy can be found out in a finite amount of time. The winning
strategy is positional and therefore can be presented as a finite state automaton as well.

Unfortunately these results are of no help in advising a player on how to play in an actual game.
The situation gets worse in the case of games with overlapping objectives. In general, such games
can have multiple Nash equilibria and even if we forget about the computational issues, it still leaves
the problem of which equilibrium the players should try to attain. Harsanyi and Selten in [HS87]
develop an equilibrium selection theory where a unique Nash equilibrium is selected. However, due
to the complexity associated with the theory, it is not clear if players would actually employ this
in order get advice on how to play. In such situations rather than be content with reasoning about
games using the functional notion of strategies, one needs to reason about strategies. Strategies
need to be compared with each other to check which ensures better outcome, and their structure
needs to be explicitly analysed. Moreover the strategy employed by a player may well depend on
her knowledge of or belief regarding the strategies followed by other players.

This is a departure from the classical solution concepts in game theory where the emphasis is on
figuring out what happens if a player deviates from the equilibrium strategy. Since specifying the
complete strategy may not be possible, one needs to look at partial specifications of strategies and
try to compose such specifications in some manner. Heuristics for instance, are extensively used in
many of the chess playing programs [CR,GC]. Listed below are some of them [Lev90,RN02]:

– Alpha-beta pruning: This is employed to reduce the number of possibilities evaluated in a
search tree by the min-max procedure. It stops evaluating a move completely when it finds
the existence of at least one witness which shows that the move is inferior to earlier examined
ones.

– The killer move heuristic: Alpha-beta pruning is most efficient when the best moves are consid-
ered first. The killer move heuristics tries to guess the best move. The idea being that a move
which is good from a different but similar position might also be a good move in the current
position.

– Quiescence search: Due to the computational restrictions there is a limit to the number of moves
that a machine can search ahead. Humans on the other hand are good at pattern matching
and might be able to identify board positions which are interesting and search deeper only on
a particular path. Quiescence search tries to emulate this behaviour by making the computer
search “interesting” positions to a greater depth than the other positions.

It is quite evident that these heuristics are basically partially specified strategies. A library of
such specifications is developed and during the course of play, the actual strategy is built up by
composing various partial strategies. Checkers is another game where strong heuristics based game
playing programs are available. By performing extensive strategy analysis using computers it was
recently shown that perfect play in checkers will result in a draw [SBB+07].
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Aumann and Dreze [AD05] make a strong case for the focus of game theory to shift from
equilibrium computation to questions of how rational players should play. For zero sum games, the
value of the game is unique and rational players will play to achieve this value. However, in the
case of non zero sum games as mentioned above, multiple Nash equilibria can exist. This implies
that players cannot extract an advice as to which strategy to employ from the equilibrium values.
According to Aumann and Dreze, for a game to be well defined, it is also necessary that players
have an expectation on what the other players will do. In estimating how the others will play, a
rational player should take into account that others are estimating how he will play. The interactive
element is crucial and a rational player should then play so as to maximize his utility, given how he
thinks the others will play. The strategy specifications we introduce below are in the same spirit,
since such a specification will be interactive in the sense of [AD05].

We look at multi-player non-zero sum graphical games played on finite game arena. Our ap-
proach is to combine the techniques presented above to do reasoning in games rather than reason
about games. We propose a syntax for building strategies, thereby using the techniques developed
for graphical games and the ideas in Game logics for reasoning about the strategies in games rather
than reasoning about the games themselves. In this work, the emphasis is on coming up with tech-
niques which can advise the players on how to go about playing the game and not on showing
existence results that game theory is well known for. Since this requires that we explicitly analyse
the structure of the game, graphical games are natural models for our purpose.

In [vB01] van Benthem uses dynamic logic to describe games as well as strategies and in
[HvdHMW03] and [vdHJW05], van der Hoek and co-authors develop logics for strategic reasoning
and equilibrium concepts. This work is close to ours in spirit; however our point of departure is in
bringing logical structure into strategies rather than treating strategies as atomic.

We use the graphical game models as defined in section 2.2. For ease of presentation, the
technical machinery is developed only for two player games, but the analysis carries over to n-
player games where n > 2. For convenience we also restrict our attention to finite plays. For this
purpose we assume that Σ has a special exit action and that the game arena has a unique terminal
node denoted by leaf . For an arena G = (W,−→, s0), we assume that the transition function
satisfies the following property:

– For all s, s′ ∈ W such that s′
x

−→ s′, s′ = leaf iff x = exit .

Let ı = 2 when i = 1 and ı = 1 when i = 2.

Strategies and equilibrium

Let GT denote the tree unfolding of the arena G. A strategy for player 1, µ = (Wµ,−→µ, s0) is a
maximal connected subtree of GT where for each player 1 node, there is a unique outgoing edge
and for the other player every move is included. That is, for s ∈Wµ the edge relation satisfies the
following property:

– if s ∈ W 1
µ then there exists a unique a ∈ Σ such that s

a
−→µ s

′, where we have s
a

−→T s′.

– if s ∈ W 2
µ , then for each s′ such that s

a
−→T s′, we have s

a
−→µ s

′.

Let Ωi denote the set of all strategies of Player i in G, for i = 1, 2. A strategy profile 〈µ, τ〉
defines a unique path ρτ

µ in the game G. This path constitutes a valid play if it is of the form
s0a0 · · · an−1sn where sn = leaf . The notion of best response and equilibrium can be defined as
follows.

– µ is the best response for τ iff ρτ
µ constitutes a valid play and ∀µ′ ∈ Ω1 such that ρτ

µ′ is a play

we have ρτ
µ′ �1 ρτ

µ.
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– Symmetric definition for τ .
– 〈µ, τ〉 is a Nash equilibrium iff µ is the best response for τ and τ is the best response for µ.

The natural algorithmic questions that are of interest include:

– Given a strategy τ of player 2, what is the best response for player 1?
– Given a strategy profile 〈µ, τ〉, is it a Nash equilibrium?
– Does the game possess a Nash equilibrium?

Clearly, if we can answer the first question, we can answer the second as well. In any case, to
study these questions algorithmically, we need to be able to present the preferences of players’ and
their strategies in a finite fashion. We do this by presenting the strategies and preference relations
of players using finite state automata as shown below.

Advice Automata: In this article, we restrict our attention to bounded memory strategies, which
can be represented using finite state automata. We think of these as advice automata, in the sense
that they constitute an advice for the player to consult at a node. Since our objective is to work
with strategies specified by their properties, it makes sense to see them as automata which “accept”
a set of strategies.

For a game graph G, a nondeterministic advice automaton for player i is a tuple A = (Q, δ, o, I)
where Q is the set of states, I ⊆ Q is the set of initial states, δ : Q×W ×Σ → 2Q is the transition
relation, and o : Q×W i → Σ, is the output or advice function.

The language accepted by the automaton is a set of strategies of player i. Given a strategy
µ = (Wµ,−→µ, s0) of player i, a run of A on µ is a Q labelled tree T = (Wµ,−→µ, λ), where λ

maps each tree node to a state in Q as follows: λ(s0) ∈ I, and for any sk where sk
a

−→µ s′k, we
have λ(s′k) ∈ δ(λ(sk), sk, ak).

A Q labelled tree T is accepted by A if for every tree node s ∈W i
µ, if s

a
−→T s′ then o(λ(s)) = a.

A strategy µ is accepted by A if there exists an accepting run of A on µ. It is easy to see that any
bounded memory strategy can be represented using a deterministic advice automaton.

Evaluation Automata: The preferences of players can also be presented as a finite state au-
tomaton which runs over plays. Let B be a finite state automaton with final states being F . We fix
a set of colours C with a preference relation �

i for each player over this set along with a function
which maps a final state to each colour in C. The preference relation induces a natural preference
ordering over plays by considering the final state reached at the end of the play (note that all plays
are finite by definition). The purpose of the evaluation automaton running on a game arena G can
be thought of as checking for certain properties of paths in the arena and providing an appropriate
classification. We will use E to denote an evaluation automaton. Given E with the set of colours C,
for each player i we can always build a set of classical win-loss evaluation automata, one for each
colour c ∈ C where the new automaton wins on all colours at least as preffered as c. We will use
E i

c to denote such win-loss automata.

4 Strategy specification

We now give a syntax to specify strategies in a structured manner. The atomic case specifies,
for a player, what conditions she tests for before making a move. We can associate with the game
graph a set of observables for each player. One elegant method then, is to state the conditions to be
checked as a past time formula of a simple tense logic over the observables. The structured strategy
specifications are then built from atomic ones using connectives. We crucially use an implication
of the form: “if the opponent is apparently playing a strategy π then play σ”.

Below, for any countable set X , let Past(X) be sets of formulas given by the following syntax:
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ψ ∈ Past(X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 3-ψ.

Syntax

Let P i = {pi
0, p

i
1, . . .} be a countable set of observables for i ∈ {1, 2} and let P = P 1 ∪ P 2.

The syntax is given by:

Strat i(P i) := null | [ψ 7→ a]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ

where π ∈ Strat ı(P 1 ∩ P 2) and ψ ∈ Past(P i).

Semantics

Given any sequence ξ = t0t1 · · · tm, V : {t0, · · · , tm} → 2X , and k such that 0 ≤ k ≤ m, the truth
of a past formula ψ ∈ Past(X) at k, denoted ξ, k |= ψ can be defined as follows:

– ξ, k |= p iff p ∈ V (sk).
– ξ, k |= ¬ψ iff ξ, k 6|= ψ.
– ξ, k |= ψ1 ∨ ψ2 iff ξ, k |= ψ1 or ξ, k |= ψ2.
– ξ, k |= 3-ψ iff there exists a j : 0 ≤ j ≤ k such that ξ, j |= ψ.

We consider the game arena G along with a valuation function for the observables V : W → 2P .
Given a strategy µ of player i and a node s ∈ µ, let ρs : s0a0s1 · · · sm = s be the unique path in µ
from the root node to s. For a strategy specification σ ∈ Strat i(P i), we define when µ conforms to
σ (denoted µ |=i σ) as follows:

– µ |=i σ iff for all player i nodes s ∈ µ, we have ρs, s |=i σ.

where we define ρs, sj |=i σ for any sj in ρs as,

– ρs, sj |=i null for all ρs, sj .
– ρs, sj |=i [ψ 7→ a]i iff ρs, sj |= ψ implies outρs

(sj) = a.
– ρs, sj |=i σ1 + σ2 iff ρs, sj |=i σ1 or ρs, sj |=i σ2.
– ρs, sj |=i σ1 · σ2 iff ρs, sj |=i σ1 and ρs, sj |=i σ2.
– ρs, sj |=i π ⇒ σ iff for all player ı nodes sk ∈ ρs such that k ≤ j, if ρs, sk |=ı π then ρs, sj |=i σ.

Above, π ∈ Stratı(P 1 ∩ P 2), ψ ∈ Past(P i), and for all i : 0 ≤ i < m, outρs
(si) = ai and outρs

(s)
is the unique outgoing edge in µ at s.

The following lemma relates structured strategy specifications to advice automata.

Lemma 4.1. Given a player i ∈ {1, 2} and a strategy specification σ, we can construct an advice
automaton Aσ such that µ ∈ Lang(Aσ) iff µ |=i σ.

Proof. We proceed by induction on the structure of σ. We construct automata for atomic strategies
and compose them for complex strategies. The states of the automaton consists of sets of subfor-
mulas of the past time formulas appearing in σ. Note that the strategy is implemented principally
by the output function of the advice automaton.
(σ ≡ [ψ 7→ a]): The automaton works as follows. The automaton keeps track of past formulas
satisfied along a play as game positions are traversed and that the valuation respects the constraints
generated for satisfying ψ. The automaton also guesses a move at every step and checks that this
is indeed a when ψ holds; in such a case this is the output of the automaton.
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(σ ≡ σ1·σ2): By induction hypothesis there exists Aσ1
= (Qσ1

, δσ1
, oσ1

, Iσ1
) and Aσ2

= (Qσ2
, δσ2

, oσ2
, Iσ2

)
which accept all strategies satisfying σ1 and σ2 respectively. To obtain an automaton which accepts
all strategies which satisfy σ1 · σ2 we just need to take the product of Aσ1

and Aσ2
.

(σ ≡ σ1 + σ2): We take Aσ to be the disjoint union of Aσ1
and Aσ2

. Since the automaton is
nondeterministic with multiple initial states, we retain the intial states of both Aσ1

and Aσ2
. If a

run starts in an initial state of Aσ1
then it will never cross over into the state space of Aσ2

and
vice versa.
(σ ≡ π ⇒ σ′): By induction hypothesis there exists Aπ = (Qπ, δπ, oπ , Iπ) which accepts all player 2
strategies satisfying π and Aσ′ = (Qσ′ , δσ′ , oσ′ , Iσ′) which accepts all player 1 strategies satisfying
σ′. The automaton Aσ has the product states of Aπ and Aσ′ as its states along with a special state
qfree . The automaton keeps simulating both Aπ, Aσ′ and keeps checking if the path violates the
advice given by Aπ, if so it moves into state qfree from which point onwards it is “free” to produce
any advice. Till π is violated, it is forced to follow the transitions of Aσ′ .

For a strategy specification σ, the size of the advice automaton Aσ constructed using the above
procedure will be exponential in the size of σ.

5 Comparing strategy specifications

A strategy specification denotes a set of strategies satisfying certain propeties rather than a single
strategy and therefore the notion of strategy comparison needs to be re-examined in the new setting.
Let C be the set of colours used to classify the runs appropriately by the evaluation automaton
and �

i the preference ordering of player i. For a player ı strategy specification π and player i
specifications σ and σ′, we have various possible definitions as to when σ is better than σ′. Given
below are just a few of the possible definitions:

– σ is better than σ′ if as long as player ı conforms to π, if there is a c′ ∈ C and a strategy for
player i which conforms to σ′ ensuring condition c′, then there also exists a c ∈ C where c′ �i c

and a strategy for player i which conforms to σ ensuring condition c.
– σ is better than σ′ if as long as player ı conforms to π, if for all strategies of player i, which

conforms to σ′ there is a c′ ∈ C such that the strategy ensures c′ then for all strategies which
conform to σ, there exists c ∈ C such that the strategy ensures c where c′ �

i c.

Having chosen an appropriate notion for comparison, we say that σ is the best response to π
if for all σ′, we have σ is better (according to that notion) than σ′. A strategy specification pair
(σ, π) constitutes an equilibrium if σ is the best response to π and π is the best response to σ.

To algorithmically compare strategies, we first need to be able to decide the following questions.
Let σ and π be strategy specifications for player i and player ı and E i

c a win-loss evaluation
automaton for player i.

– Does player i have a strategy conforming to σ which ensures a valid play that is winning for
i with respect to E i

c, as long as player ı is playing a strategy conforming to π (abbreviated as
∃σ, ∀π : E i

c)?
– Is it the case that for all strategies of player i conforming to σ, as long as player ı is playing a

strategy conforming to π, the result will be a valid play which is winning for i with respect to
E i

c (abbreviated as ∀σ, ∀π : E i
c)?

We call this the verification question. The synthesis question is given π and E i
c to construct a strat-

egy as a deterministic advice automaton Ai such that Ai, ∀π : E i
c holds (since Ai is deterministic,

we can avoid the quantification).
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Theorem 5.1. ([RS07]) Over finite game graphs with Muller objectives,

– The verification problem is decidable.
– The synthesis question is solvable.

These results also enable us to check for a specification σ if it is the best response to the
opponent’s specification π and to synthesise an advice automaton which is the best response to
the opponent’s specification π.

A simple logic to reason about structured strategies is presented in [RS06]. The two main
constructs of the logic are:

– (σ)i : a which says that the action a is enabled by the specification σ for player i at a game
position.

– σ ;i β which asserts that player i can play according to σ and “ensure” β. In other words,
for an i node, there exists a choice of action enabled by σ which achieves β. For an ı node, all
actions result in β.

The construct σ ;i β formalises in a logical framework the backward induction technique. In
[RS06] a complete axiomatization of this logic is presented as well. The truth checking problem for
this logic can also be shown to be decidable [RS07].

6 Example

Probably the best way to illustrate the notion of strategy specification is to look at heuristics used
in large games like chess, go, checkers, etc. A heuristic strategy is basically a partial specification,
since it involves checking local properties like patterns on the board and specifying actions when
certain conditions hold. Heuristics are usually employed when the game graph being analysed is
too large for a functional strategy to be specified. Below, we look at a few heuristics applied in
chess. Instead of writing explicit formulas we employ a verbal description for convenience. However,
it will be clear that the corresponding strategy specifications can be formally presented.

Chess

Fork: Fork or double attack are moves that attack two enemy targets simultaneously. Double
attacks can be brought about mostly by knight, queen, bishop and pawn. The joy of attacking by
pawn is that any two pieces (even if they are defended) are fine since pawn is the least valuable.
Checking if a double attack by a pawn is possible is a local check, one just needs to look at the
current game position. We can consider this to be an atomic proposition. Therefore we can have a
specification as follows.

– If a pawn double attack is possible then play the action resulting in the fork.

Notice that we did not specify a condition of the form “if a pawn is on f2 and the opponent rook
and knight are on e5 and g5 respectively then move f2-f4”. This would constitute a specific advice
which will be part of a functional strategy and not a generic one reflecting the abstract properties of
states. In particular this functional strategy would conform to our generic specification mentioned
above.

A very common forking piece is the knight because of its unique pattern of movement. The
knight is roughly comparable in value to a bishop and is less valuable than a rook or a queen. We
can effectively implement a double attack by knight if the attacked pieces are undefended or more
valuable (even if it is defended). Therefore the specification will now have an extra conjunct to
check these conditions.
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– If a knight double attack is available and (the target pieces are not guarded or more valuable)
then play the action resulting in the fork.

A queen can also bring about a double attack due to its almost unrestricted movement ability.
A queen may sometimes be sacrificed for a checkmate, however it is not usually worthwhile to
attack any defended piece with a queen. Therefore a queen double attack is usually implemented
only if both target pieces are unguarded or if one target piece is unguarded and the other is the
king. We can modify the specification as follows.

– If a queen double attack is available and both target pieces are not guarded then play the
action resulting in the fork.

– If a queen double attack is available and (one target piece is not guarded and the other is the
king) then play the action resulting in the fork.

The forking strategy itself can be expressed as a specification. For instance a property required
to successfully fork with a knight is that the knight and all its targets are placed on squares of the
same colour before the move (this is because any time a knight moves, it ends up in a different
coloured square). One defence against double attack is to defend the “forking square” (the square
used by opponent for double attack). Since in the specification syntax, we can also model responses
to opponent’s strategy we can make assertions of the form:

– If the opponent is trying to double attack using a knight then defend the forking square.

Pin: A pin occurs when one of the pieces is attacking the enemy king with some other enemy
piece blocking its way. In this situation the blocking piece cannot move since its movement will
expose the king. The most important consequence of this is that the pinned piece can be attacked.
One way to protect the pinned piece is to move other pieces in to defend it. The existence of a pin
is again a local property which can be checked by examining the board. A strategy which tries to
save a pinned piece can be specified as follows.

– If a piece has been pinned by the opponent then defend the pinned piece.

Admittedly, the heuristics considered here are quite simplified. This is just to give a brief
overview of the kind of reasoning that is possible. Usually the tactics used involve multiple moves;
however it is not difficult to see that this merely increases the technical details involved in the
specification.

7 Discussion

An important aspect which has not been touched upon in this account is the notion of coalitions, and
looking at strategic properties by which a coalition can bring about a certain outcome. Reasoning
about coalitions in game logic has been studied extensively by Marc Pauly [Pau01].

The work we have presented here on structured strategies can (in a broad sense) be compared
to the notion of imperfect information. In classical game theory, since players are assumed to be
rational, imperfect information arises due lack of knowledge regarding opponents’ moves. Here we
are dealing with a situation where the lack of knowledge is with respect to strategies rather than
the moves made in the history of the play. This line of work is particularly applicable when we
do not make the assumption of common knowledge of rationality (CKR). CKR assumes that a
player knows all strategies that are available to him as well as his opponents. As mentioned in the
previous sections, it could very well be the case that the the game is too large to explicitly analyse
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all strategies. In this situation, players will tend to act irrationally. However, if we know that the
opponents are of a certain “type” and the kind of strategies they employ, then this information
can be explicitly used in the strategic response of the player.

Another interesting line of work would be to bring in the notion of expectation into formal
strategic reasoning as, for instance, advocated by [AD05]. This is lacking in Game logic as well. In
the current approach the only information that a player has about his opponent is what he has seen
in the past history of play, which is unsatisfactory. Players typically begin with some expectation
of the kind of strategy that the opponent plays and revise this expectation depending on what
they see in the history of the play. Such problems are extensively studied in classical game theory
literature where Bayesian revision of priors is a standard technique. Logical analysis of a similar
kind, but using more abstract notions like “likelihood” ([HR87]), need to be explored in depth.
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