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Abstract. We consider a dynamic logic of game composition, where
atomic games are in normal form. We suggest that it is useful to consider
a modality indexed by game - play pairs. We show how we can reason not
only about notions like strategy comparison, dominated strategies and
equilibrium in such a framework, but also strategic response, whereby
the choice of a player depends on plays observed in the past. This makes
for a significant difference in the presence of unbounded iteration. We
present a complete axiomatization of the logic and prove its decidability.

1 Overview

The central innovation introduced by game theory is its strategic dimension. A
player’s environment is not neutral, and she expects that other players will try
to outguess her plans. Reasoning about such expectations and strategizing one’s
own response accordingly constitutes the main logical challenge of game theory.

Games are defined by sets of rules that specify what moves are available to
each player, and every player plans her strategy according to her own preferences
over the possible outcomes. In an extensive form game, the moves of players are
explicitly presented and therefore strategies are not abstract atomic entities, but
have a certain structure associated with them. The choice of which strategy to
employ depends not only on the game structure but also on her expectation of
what strategy other players choose. Thus at any game position, the past as well
as the possible futures and players’ expectations determine strategies.

In contrast, strategies are presented in an abstract way in a normal form
game and the reasoning in such a game is driven by outcome specifications.
Thus normal form games can be viewed as extensive form games abstracted into
a tree of depth one, where edges are labelled by a tuple of strategies, one for each
player, and thus strategies are atomic. Therefore there is no past and future that
strategies refer to, and we only speak of notions like rational response, dominant
strategies, equilibrium and so on. However, when we consider repeated games,
or games composed of smaller games, the notion of strategic response of a player
to other players’ moves becomes relevant, pretty much in the same way as it is
used in extensive form games. History information, as well as epistemic attitudes
of players become relevant.

There have been several logical studies from this viewpoint. Notable among
these is the work on alternating temporal logic (ATL) [AHK02] which consid-
ers selective quantification over paths that are possible outcomes of games in



which players and an environment alternate moves. An ATL model is a concur-
rent game structure which consists of a single game arena whose edges corre-
spond to concurrent moves of the players. Moves in the arena can therefore be
thought of as a strategy profile of an appropriate normal form game. Thus each
game position of the arena is associated with a single normal form game. The
formulas of ATL make assertions about the tree unfolding of this arena. The
emphasis is on the existence of a strategy for a coalition of players to force an
outcome. Since the game tree encodes the past information, the logic itself can
be extended with past modalities as well as knowledge modalities in order to
reason about the history information and epistemic conditions used in strate-
gizing by players ([JvdH04],[vdHW02]). Extensions of ATL where strategies are
allowed to be named and referred to in the formulas of the logic are proposed in
([vdHJW05],[WvdHW07]). ([Ago06], [Bor07]) extends ATL with the ability to
specify actions of players in the formulas.

The running thread in this line of work is the notion of strategies as being
atomic, lacking structure. In principle, since concurrent actions (strategy pro-
files) can be named, their labels can be used to refer to strategies, and hence
we can speak of b being a response to a in the past, to achieve α. However,
the tree models carry only temporal information, and strategies lack syntactic
structure, and this is reflected in reasoning. Thus ATL-based logics can be seen
as analogous to temporal logics (for games), as opposed to dynamic and process
logics.

When games are themselves structured, strategic response reflects such struc-
ture as well. For games of bounded length, an action labelled modal logic reflects
game and strategy structure well, but when we consider unbounded play as aris-
ing from unbounded repetition of games, the situation is different. This is the
spirit in which game logic [Par85] was proposed and underlying framework of
coalition logic [Pau01]. The strategies used by a player in such a composite game
would depend on not just the outcome specification but also what strategy was
used, especially by opponents, in the past. The history information can then be
analysed by taking into account the underlying structure of the composite game.

We suggest that in reasoning about structured games, it is useful for the
strategies of players to also reflect the structure. Thus rather than reasoning
about the strategies in the composed game, one should look at strategies in the
atomic game and compose such atomic game strategy pairs.

Suppose that we have a 2-player 2-stage game g1 followed by g2. Consider
player 1 strategizing at the end of g1, when g2 is about to start; her planning
depends not only how g2 is structured, but also how her opponent had played in
g1, and the outcomes that resulted in g1 for both of them. Thus her strategizing
in the composite game g1; g2 is best described as follows: consider g1 in extensive
form as a tree, and the subtree obtained by the set of plays η1; when g2 starts
from any of the leaf nodes of this subtree, consider the play η2. We encode this as
(g1, η1); (g2, η2), and see (g2, η2) as a response to (g1, η1). Thus the “programs”
of this logic are game - play pairs of this kind.
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For extensive form games, this was done in [RS08], where we look at strategic
reasoning done in extensive form games by making explicit use of the structure
of the game tree. It defines a propositional dynamic logic where programs are
regular expressions over game strategy pairs. This gives the ability to reason
about the strategic response of players based on what happened in the past. A
complete axiomatization of the dynamic logic is presented and the decidability
of the logic is also shown. This paper proves similar results for composition of
normal form games.

We consider composition of game play pairs in normal form games, cor-
responding to the fact that the reasoning performed in single stage is mostly
outcome based. If we restrict the reasoning to bounded repetition of games or
to multistage games where the number of stages are bounded, then we do not
need to look at composition of game play pairs. It is the presence of unbounded
iteration of games which makes it necessary to introduce a dynamic structure on
game play pairs. We therefore study a dynamic logic where programs consist of
regular expressions over game play pairs in normal form games. While the main
technical result is a complete axiomatization for the logic, the central objective
of the paper is to highlight the logical differences between composition of normal
form games and that of extensive form games, in terms of the reasoning involved.

We wish to emphasize that what we study here is really a dynamic logic of
tree composition. When we consider only bounded games, the logic is subsumed
by the ATL frameworks, but the class of games with unbounded iteration studied
in Section 5 is our main object of study. However, rather than presenting it all
at one go, we discuss strategic response for bounded games before considering
repetition.

In the case of extensive form games, the idea of taking into account the struc-
ture available within strategies and making assertions about a specific strategy
leading to a specified outcome is developed in [vB01,vB02], where van Benthem
uses dynamic logic to describe games as well as strategies. [Gho08] presents a
complete axiomatisation of a logic describing both games and strategies in a dy-
namic logic framework where assertions are made about atomic strategies. The
techniques developed in [Gho08] can be easily transferred to normal form games.
Our point of departure from this line of work is in talking about the strategic
response of players in the logical framework.

2 Preliminaries

Normal form games

Let N = {1, 2} be the set of players, Σi for i ∈ {1, 2} be a finite set of action
symbols which represent moves of players and Σ = Σ1 × Σ2. For each player i,
let Ri be the finite set of rewards, �i⊆ Ri × Ri be a preference ordering on Ri

and let R = R1 × R2.
Normal form (or strategic form) games are one shot games where the strate-

gies of players corresponds to choosing an action from the action set. A strategy
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profile is simply a pair of actions, one for each player. A play of the game corre-
sponds to each player choosing an action simultaneously without knowledge of
the action picked by the other player. Thus a strategy profile constitutes a play
in the game. Each play is associated with a pair of rewards for the players, the
outcome of the play.

Suppose |Σ1| = m and |Σ2| = k, then a strategic form game can be repre-
sented as an m × k matrix A where the actions of player 1 constitute the rows
of the matrix and that of player 2 the columns. The matrix entries specify the
outcome of the play for each player, i.e. elements from R. An example game is
given in Fig. 1. Here Σ1 = {b, c} and Σ2 = {x, y}. The action profile (b, x) where
player 1 chooses to play b and player 2 chooses x, results in the reward r1

1 for
player 1 and r1

2 for player 2.

x y

b (r1
1, r

1
2) (r2

1, r
2
2)

c (r3
1, r

3
2) (r4

1, r
4
2)

Fig. 1. Matrix game

Let ı = 2 when i = 1 and ı = 1 when i = 2. Unless specified, we will use the
convention that i = 1 and ı = 2. We use b, c to denote the actions of player i,
x, y to denote the actions of player ı and a to denote the strategy profile.

Strategy comparison and equilibrium

For player i, the ordering �i on the rewards Ri induces an ordering on the
strategy profiles as: (b, x) �i (c, y) iff A(b, x)[i] �i A(c, y)[i]. Having defined the
preference ordering on strategy profiles, the various game theoretic notions of
interest include:

– Weak domination: We say a strategy b of player i weakly dominates a strat-
egy c if for all x ∈ Σı, (c, x) �i (b, x).

– Best response: Given strategies b and x of player i and ı respectively, we say
that b is the best response for x iff for all c ∈ Σi, (c, x) �i (b, x). A similar
definition can be given for the best response of player ı.

– Equilibrium: A strategy profiles (b, x) constitutes a Nash equilibrium iff b is
the best response for x and x is the best response for b.

3 Reasoning in strategic form games

As opposed to extensive form games where the game structure is explicit, normal
form games are specified by the set of abstract strategies and the outcomes. In
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this scenario a player cannot strategize based on the past moves of the opponent.
Strategizing would rather be based on his expectation of what strategies the
opponent will choose, along with the outcomes which can be ensured by the
player. In this section we look at how to logically reason about such abstract
strategies with respect to the outcomes.

For a logical analysis, it is convenient to view the normal form game as a
tree of depth one, where the edges are labelled by pairs of actions, one for each
player. Formally g = (S,−→, s0, λ) where S is the set of states, s0 is the root
of the tree. The transition function −→: s0 × Σ → S is a partial function also
called the move function. The reward function λ : S → (R1 × R2). For a node

s ∈ S, let
→
s = {a ∈ Σ | ∃s′ ∈ S where s

a
−→ s′} and Σg = {a ∈ Σ | ∃s, s′ ∈

S where s
a

−→ s′}. Thus for a game g, the set Σg constitutes all the strategy
profiles of g.

The game tree corresponding to the strategic form game in Fig. 1 is shown
in Fig. 2(i). A play is simply an edge in the tree, this corresponds to both the
players picking an action. A strategy for player i is the subtree of g where for
player i a unique action is chosen and for player ı all the actions are taken into
account. A strategy for player 1 in the game given in Fig. 2(i) where he picks
action “b”, is shown in Fig. 2(ii). For the rest of the paper, we will use the tree
representation for strategic games. For a pair a = (b, x) and j ∈ {1, 2}, we denote
by a[j] the jth component of a.
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Fig. 2. Normal form game

The logic

Syntax: Let P be a countable set of propositions and g be a strategic form
game (in the tree representation). The syntax of the logic is given by:

Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈g, η〉
∀
α

where η ⊆ Σg.
For the moment we let the semantic tree structure g be part of the syntax

of the formulas. In section 4 we show how game trees can be specified in the
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logic in a syntactic manner. For a game g (specified as a tree of depth one),
η ⊆ Σg represents a set of plays in g. The intuitive meaning of the construct
〈g, η〉

∀
α is to say that the formula α holds at all nodes which results from the

plays of g specified by η. Note that strategies of a particular player can be easily
represented in η. This can be done by fixing a single action for the player and
considering all plays in g where this action is fixed.

Semantics: The model M = (g, V ) where g = (S,−→, s0, λ) is a normal form
game and V : S → 2P is a valuation function. To be able to perform strategic
reasoning in the logic, we need to refer to rewards of the players in the formula.
This is taken care of by using special propositions to code them up, in the
spirit of the approach taken in [Bon02]. The preference ordering is then simply
inherited by the implication available in the logic. Formally, let R1 = {r1

1, . . . , r
l
1}

be the set of rewards for player 1. Without loss of generality we assume that
r1
1 �1 r2

1 �1 · · · �1 rl
1. Let Θ1 = {θ1

1, . . . , θ
l
1} be a set of special propositions

used to encode the rewards in the logic, i.e. θ
j
1 corresponds to the reward r

j
1.

Likewise for player 2, corresponding to the set R2, we have a set of propositions
Θ2. The valuation function satisfies the condition:

– For all states s, for all i ∈ {1, 2}, {θ1
i , . . . , θ

j
i } ⊆ V (s) iff λ(s)[i] = r

j
i .

The truth of a formula α ∈ Φ in the model M at a position s (denoted
M, s |= α) is defined as follows:

– M, s |= p iff p ∈ V (s).
– M, s |= ¬α iff M, s 6|= α.
– M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2.

– M, s |= 〈g, η〉∀α iff s is not a leaf node and ∀s′ ∈ tail (g, η), M, s′ |= α.

where for game g and η ∈ 2Σ , tail (g, η) = {s′ | s0
a

−→ s′ and a ∈ η}.

When 〈g, η〉∀α is asserted at the root node s0 of the game tree g, we get

the following interpretation: 〈g, η〉∀α holds iff α holds at all leaf nodes resulting
from plays specified by η. Since we are working with a single tree of depth one,
interpreting 〈g, η〉

∀
α at the leaf nodes does not make sense. The dual modality

[g, η]∃α, would say that there exists a play of g specified in η such that α holds
at the leaf node of the play.

Strategy comparison in the logic: We show that the various strategizing
notions discussed in the earlier section can be expressed in the logic. For a game
g, let Σg = {a1, . . . , ak} be the strategy profiles occurring in g. For i ∈ {1, 2}, let
Σ

g
i = {a1[i], . . . , ak[i]} and for b ∈ Σ

g
i , let Σg(b) = {a ∈ Σg | a[i] = b and a[ı] ∈

Σ
g
ı }. Σg(b) thus consists of all the strategy profiles where player i’s strategy is

fixed to b. Consider the formula:

ensuresi(g, γ) ≡
∨

b∈Σ
g

i

〈g, Σg(b)〉
∀
γ.
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ensuresi(g, γ) says that given that the opponent chooses an action from the
set Σ

g
ı , there is a strategy for player i to achieve γ no matter what choice player

ı makes. In the case of γ ∈ Ri, this corresponds to the rewards that player i can
ensure. If player i expects that ı will choose only actions from the set Σ′ ⊆ Σ

g
ı ,

then the restriction of ensuresi(g, γ) to Σ′ specifies what player i can ensure in
terms of his expectation. A player during the phase of strategizing might take
into consideration what he can ensure given his expectation about the strategies
of the opponent. The related concept of weakly dominating strategies can be
defined as follows:

DOM i(b, b′) ≡
∧

x∈Σ
g

ı

∧

θi∈Θi

(
〈g, (b′, x)〉

∀
θi ⊃ 〈g, (b, x)〉

∀
θi

)
.

This says that whatever reward that can be ensured using the strategy b′ can
also be ensured with the strategy b. In other words, this says that for player i,
the strategy b weakly dominates b′.

Given a strategy x of player ı we can express the fact that the strategy b is
better than b′ for player i using the formula

Better i
x(b, b′) ≡

∧
θi∈Θi

(〈g, (b′, x)〉
∀
θi ⊃ 〈g, (b, x)〉

∀
θi)

We can express b is the best response of player i for x as BRi
x(b) ≡

∧
b′∈Σ

g

i
Better i

x(b, b′).

Having defined best response, the fact that a strategy profile (b, x) constitutes
an equilibrium can be expressed as: EQ(b, x) ≡ BRi

x(b) ∧ BRı
b(x).

d2 c2

d1 (P 1, P 2) (T 1, S2)

c1 (S1, T 2) (R1, R2)

Fig. 3. Prisoner’s Dilemma

Example: Consider the prisoner’s dilemma game given in Fig. 3. Let the actions
c and d correspond to cooperate and defect respectively. The preference ordering
over the rewards for i ∈ {1, 2} is given by Si �i P i �i Ri �i T i. Let the
propositions representing the rewards be {θS

i , θP
i , θR

i , θT
i }. Consider the formulas:

– α1 ≡ 〈g, (c1, d2)〉
∀
θS
1 ⊃ 〈g, (d1, d2)〉

∀
θS
1 .

– α2 ≡ 〈g, (c1, c2)〉
∀
θR
1 ⊃ 〈g, (d1, c2)〉

∀
θR
1 .

The formula α1 holds since we have S1 �1 P 1 and α2 holds since R1 �1 T 1.
The formula α1 ∧ α2 states that irrespective of the move made by player 2, it is
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better for player 1 to choose d1. In other words, “defect” is a dominant strategy
for player 1 in this game.

α1 says that the strategy d1 is better than c1 for player 1 against the strategy
d2 of player 2. Since there are only two strategies available for player 1, we get
that d1 is the best response for d2. A similar reasoning with respect to player 2
shows that d2 is the best response for d1. From which we get that the strategy
profile (d1, d2) constitutes an equilibrium profile.

It can be seen, that quite a lot of reasoning that is done in the case of
normal form games can be captured by considering game play pairs. The game
play pairs in effect, provides us the power of reasoning about restrictions of
the full game tree and the ability to compare various such restrictions in terms
of the outcomes they guarantee. A player can thus make use of notions like
dominant strategy, guaranteed outcome, best response and so on to come up
with an appropriate plan of action for the game. The important strategizing
notion which is missing in this approach is that of strategic response of a player
to the opponent’s action. To capture this aspect we need to move over to a model
where instead of working with a fixed normal form game, we have a finite set of
games and where composition of these games can be performed.

4 Strategic response

For the sake of clarity, in subsequent sections, we concentrate on the structure
of the game g with respect to the moves of the players and disregard the rewards
associated in the game structure. In section 7, after the logic is presented in full
generality, we mention the changes required to take care of the rewards present
in the game.

Since formulas of the logic refer to the normal form game trees, we first
present a syntax for representing such trees.

Syntax for strategic form games: Let Nodes denote a finite set of nodes,
the strategic form game tree is specified using the syntax:

G := Σam∈J(x, am, ym).

where x, ym ∈ Nodes , J = J1 × J2 for J2 ⊆ Σ1 and J2 ⊆ Σ2.
The game tree Tg generated by the game g ∈ G is defined as follows. Let

g = (x, a1, y1) + . . . + (x, ak, yk), Tg = (Sg, =⇒g, sg,0) where

– Sg = {sx, sy1
, . . . , syk

} and sg,0 = sx.

– For 1 ≤ j ≤ k we have sx

aj

=⇒g syj
.

Syntax: In addition to the set of propositions, let G ⊆ G be a finite set of
games. The syntax of the logic is very similar to what was presented earlier:

Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈g, η〉
∀
α

where g ∈ G and η ⊆ Σg.
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Models: Formulas of the logic express properties about normal form game trees
and plays in the game. Since the modality 〈g, η〉

∀
can be nested, we are in effect

talking about finite trees which are generated by composing individual game
trees. However there can be an infinite set of finite game trees. One way of
giving a finite presentation is to think of the tree being obtained by unfolding
of a Kripke structure. As we will see later, the logic cannot distinguish between
these two. A model M = (W,−→, V ) where W is the set of states (or game
positions), the relation −→⊆ W × Σ × W and V : W → 2P is a valuation
function.

Semantics: The truth of a formula α ∈ Φ in a model M and a state u is defined
as in the earlier case. The only difference is in the interpretation of 〈g, η〉

∀
α which

is given as:

– M, u |= 〈g, η〉
∀
α iff enabled(g, u) and for all w ∈ tail(Tu |\ g, η), M, w |= α.

Intuitively enabled(g, u) says that the g structure can be embedded at state u

of the model, with respect to compatibility with the action labels. tail(Tu |\ g, η)
is the set of nodes of the resulting embedded tree when restricted to plays in η.
M, w |= 〈g, η〉

∀
α says that firstly g can be embedded at u and if X is the set of

all states resulting from the plays specified in η, then the formula α holds in all
w ∈ X . The dual [g, η]∃α says: if g can be embedded at the state u then there
exists a state w resulting from the plays specified in η such that α holds at w.
Formally the tree embedding and the restriction operation is defined below.

Restriction on trees: For w ∈ W , let Tw denote the tree unfolding of M

starting at w. Given a state w and g ∈ G, let Tw = (Sw
M , =⇒M , sw) and Tg =

(Sg, =⇒g, sg,0). The restriction of Tw with respect to the game g (denoted Tw |\g)
is the subtree of Tw which is generated by the structure specified by Tg. The
restriction is defined as follows: Tw |\ g = (S, =⇒, s0, f) where f : S → Sg.
Initially S = {sw}, s0 = sw and f(sw) = sg,0.

Let {a1, . . . , ak} be the outgoing edges of sg,0, i.e. for all j : 1 ≤ j ≤ k,

sg,0
aj

=⇒g tj . For each aj , let {s1
j , . . . , s

m
j } be the nodes in Sw

M such that sw

aj

=⇒M

sl
j for all l : 1 ≤ l ≤ m. Add nodes s1

j , . . . , s
m
j to S and the edges s0

aj

=⇒ sl
j for

all l : 1 ≤ l ≤ m. Also set f(sl
j) = tj .

We say that a game g is enabled at w (denoted enabled(g, w)) if the tree
Tw |\ g = (S, =⇒, s0, f) has the following property:

–
→
s0=

→

f(s0).

As an illustration of the restriction operation, consider the game g shown
in Fig. 2(i) (disregarding the payoff labels). Let the Kripke structure M be as
given in Fig. 4(i). For the node u of the Kripke structure, the restriction Tu |\ g

is shown in Fig. 4(ii)
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Fig. 4. Restriction

Example: Strategic response of players can easily be expressed in the logic. For
instance, in the prisoner’s dilemma game, the “tit-for-tat” strategy for player
1 would be to copy the action of player 2 in the earlier stage. This can be

represented as: 〈g, (c1, d2)〉
∀
〈g, (d1, d2)〉

∀
α ∧ 〈g, (c1, c2)〉

∀
〈g, (c1, c2)〉

∀
α.

The above formalism enables reasoning of bounded levels of strategic response
by players. The next step would be to look at unbounded iteration or composition
of games. This cannot be achieved by the nesting of modalities and therefore the
dynamic structure needs to be brought in at the level of the game play pairs.

5 Unbounded game composition

The syntax of the game play pair is enriched as follows:

Γ := (g, η) | ξ1; ξ2 | ξ1 ∪ ξ2 | ξ∗ | β?

where g ∈ G, η ⊆ Σg and β ∈ Φ.

Here we allow g to be any normal form game tree in G (syntax for trees given
in section 4). The atomic game play pair (g, η) would have the same interpreta-
tion as before. ξ1 ∪ ξ2 would mean playing ξ1 or ξ2. Sequencing in our setting
does not mean the usual relational composition of games. Rather, it is the com-
position of game play pairs of the form (g1, η1); (g2, η2). A pair (g, η) gives rise
to a tree and therefore composition over these trees need to be performed. ξ∗ is
the iteration of the ’;’ operator and β? tests whether the formula β holds at the
current state.

The syntax of the formulas of the logic is given by:

Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈ξ〉
∀
α

where ξ ∈ Γ .
Models for the logic are Kripke structures as in the earlier case and the

semantics remains the same except for the construct 〈ξ〉∀α which is interpreted
as:

– M, u |= 〈ξ〉∀α iff ∃(u, X) ∈ Rξ such that ∀w ∈ X we have M, w |= α.
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For ξ ∈ Γ , we have Rξ ⊆ W × 2W . The definition of R in the atomic case is
same as the interpretation of game play pair used earlier. i.e.:

– R(g,σ) = {(u, X) | enabled(g, u) and X = tail(Tu |\ g, η)}.

The semantics for composite game strategy pairs is given as follows:

– Rξ1;ξ2
= {(u, X) | ∃Y = {v1, . . . , vk} such that (u, Y ) ∈ Rξ1

and ∀vj ∈ Y

there exists Xj ⊆ X such that (vj , Xj) ∈ Rξ2
and

⋃
j=1,...,k Xj = X}.

– Rξ1∪ξ2
= Rξ1

∪ Rξ2
.

– Rξ∗ =
⋃

n≥0(Rξ)
n.

– Rβ? = {(u, {u}) | M, u |= β}.

The formulas of the logic can not only make assertions about strategies of
players but also about the game structure itself. Thus states of the Kripke struc-
ture can be viewed as being associated with a set of atomic normal form games.
The restriction operation identifies the specific game under consideration, which
in turn is determined by the assertions made by formulas of the logic. Consider
the following formula:

– 〈(g, η2); (g
′, η1)〉

∀
win1 where η2 is a strategy for player 2 in game g and η1 a

strategy of player 1 in g′.

This says that assuming in game g, player 2 plays according to strategy η2

then in g′, player 1 can follow η1 and ensure win1. Note that this is not same
as saying player 1 can ensure win1 in the composed game g = g; g′. The fact
that player 2 employed strategy η2 in game g is used in strategizing by player 1.
However, this specification involves only bounded level of strategic response and
can thus be expressed in an ATL like framework extended with the appropriate
action modalities and past operators. Consider a construct of the form:

– ((g1, η1); ((g2, η2) ∪ (g3, η3)))
∗;win2?; (g, η)

where η1, η2 and η3 are player 2 strategies in games g1, g2 and g3 respectively
and η is a player 1 strategy in game g.

This says that if player 2 can ensure win2 by iterating the structure g1 fol-
lowed by g2 or g3 and employing strategies η1 followed by η2 or η3 then player 1
plays according to η in game g. Here not only does player 1 assert that player 2
can ensure win2 but also makes assertions about the specific game structure that
is enabled and the atomic strategies that player 2 employs. Iteration performed
here does not correspond to the assertion that a property holds through out the
history. To express such properties, one needs to shift from the ATL setting to
a dynamic logic framework.

6 Axiom system

We now present an axiomatization of the valid formulas of the logic. We will
find the following notations and abbreviations useful.

For a ∈ Σ, let ga denote the normal form game with a unique strategy profile
a, we define 〈a〉α as:

11



– 〈a〉α ≡ 〈ga, {a}〉∀⊤ ∧ [ga, {a}]∃α.

From the semantics it is easy to see that for a ∈ Σ, this gives the usual
semantics for 〈a〉α, i.e. 〈a〉α holds at a state u iff there is a state w such that

u
a

−→ w and α holds at w.
For a game g = (x, a1, y1)+ . . .+ (x, ak, yk), the formula g

√
denotes that the

game structure g is enabled. This is defined as:

– g
√
≡

∧
j=1,...,k 〈aj〉⊤.

The axiom schemes

(A1) Propositional axioms:
(a) All the substitutional instances of tautologies of PC.

(A2) Axiom for single edge games:
(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.

(A3) Dynamic logic axioms:

(a) 〈ξ1 ∪ ξ2〉
∀
α ≡ 〈ξ1〉

∀
α ∨ 〈ξ2〉

∀
α.

(b) 〈ξ1; ξ2〉
∀
α ≡ 〈ξ1〉

∀
〈ξ2〉

∀
α.

(c) 〈ξ∗〉
∀
α ≡ α ∨ 〈ξ〉

∀
〈ξ∗〉

∀
α.

(d) 〈β?〉
∀
α ≡ β ⊃ α.

For g = (x, a1, y1) + . . . + (x, an, yn) and η ⊆ Σg,

(A4) 〈g, η〉
∀
α ≡ g

√
∧ (

∧
a∈η[a]α).

Inference rules

(MP) α, α ⊃ β (NG) α

β [a]α

(IND) 〈ξ〉∀α ⊃ α

〈ξ∗〉∀α ⊃ α

Since the relation R is synthesised over tree structures, the interpretation
of sequential composition is quite different from the standard one. Consider the
usual relation composition semantics for Rξ1;ξ2

, i.e. Rξ1;ξ2
= {(u, X)|∃Y such

that (u, Y ) ∈ Rξ1
and for all v ∈ Y , (v, X) ∈ Rξ2

}. It is easy to see that under

this interpretation the formula 〈ξ1〉
∀
〈ξ2〉

∀
α ⊃ 〈ξ1; ξ2〉

∀
α is not valid.

7 Completeness

Here we present an overview of the completeness proof for the logic. Details and
the full proof can be found in [RS08].

To show completeness, we prove that every consistent formula is satisfiable.
Let α0 be a consistent formula, and CL(α0) denote the subformula closure of α.
Let AT (α0) be the set of all maximal consistent subsets of CL(α0), referred to
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as atoms. We use u, w to range over the set of atoms. Each u ∈ AT is a finite set
of formulas, we denote the conjunction of all formulas in u by û. For a nonempty
subset X ⊆ AT , we denote by X̃ the disjunction of all û, u ∈ X . Define a
transition relation on AT (α0) as follows: u

a
−→ w iff û∧ 〈a〉ŵ is consistent. The

valuation V is defined as V (w) = {p ∈ P | p ∈ w}. The model M = (W,−→, V )
where W = AT (α0). Once the Kripke structure is defined, the semantics given
earlier defines the relation R(g,η) on W × 2W for g ∈ G.

However for the completeness theorem, we need to also specify the relation
between a pair (u, X) being in R(g,η) and the consistency requirement on u and
X . This is done in the following lemma:

Lemma 7.1. For all g ∈ G, for all i ∈ {1, 2} and for all η ⊆ Σg, for all X ⊆ W

and for all u ∈ W the following holds:

1. if (u, X) ∈ R(g,η) then û ∧ 〈g, η〉
∀
X̃ is consistent.

2. if û ∧ 〈g, η〉
∀
X̃ is consistent then there exists X ′ ⊆ X such that (u, X ′) ∈

R(g,η).

Using techniques developed in propositional dynamic logic, the following two
lemmas can be shown.

Lemma 7.2. For all ξ ∈ Γ , for all X ⊆ W and u ∈ W , if û∧〈ξ〉
∀
X̃ is consistent

then there exists X ′ ⊆ X such that (u, X ′) ∈ Rξ.

Lemma 7.3. For all 〈ξ〉∀α ∈ CL(α0), for all u ∈ W , û ∧ 〈ξ〉∀α is consistent iff

there exists (u, X) ∈ Rξ such that ∀w ∈ X, α ∈ w.

Theorem 7.1. For all β ∈ CL(α0), for all u ∈ W , M, u |= β iff β ∈ u.

The theorem follows from lemma 7.3 by a routine inductive argument.

Decidability: Since |Σ| is constant, the size of CL(α0) is linear in |α0|. Atoms
are maximal consistent subsets of CL(α0), hence |AT (α0)| is exponential in the
size of α0. It follows from the completeness theorem that given a formula α0, if
α0 is satisfiable then it has a model of exponential size. For all ξ ∈ Γ occurring
in α0, the relation Rξ can be computed in time exponential in the size of the
model. Therefore we get that the logic is decidable in nondeterministic double
exponential time.

Adding rewards to the game structure: The syntax of game trees presented
in section 4 can be easily modified to include the payoff (reward) information
for the game. Each node “yj” needs to be replaced with a tuple of the form

rj = (rj
1, r

j
2) where rj ∈ R. Models are Kripke structures M = (W,−→, V, λ)

where λ : W → R. For a game g the generated tree Tg = (Sg, =⇒g, λg, sg,0).
The tree restriction Tw |\ g (presented in section 4) is therefore a structure of
the form (S, =⇒, λ, s0, f) where λ : S → R. The condition for a game g being
enabled at a state w needs to capture the rewards of the game as well and
therefore needs to be modified as follows:
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– ∀s ∈ S \ {s0}, λ(s) = λg(f(s)).

–
→
s0=

→

f(s0).

As mentioned in section 3, let Θi be the finite set of special propositions cod-
ing up the rewards of players Ri for i ∈ {1, 2}. For a game g = (x, a1, (r

1
1 , r

1
2)) +

. . . + (x, ak, (rk
1 , rk

2 )), the enabling of g can be represented in the logic as:

– g
√
≡

∧
j=1,...,k(〈aj〉⊤ ∧ [aj ](θ

j
1 ∧ θ

j
2)).

In the axiom scheme (section 6), the following two axioms are added along
with the propositional axioms to capture the ordering of the rewards.

– (
∨

θi∈Θi
θi) for i ∈ {1, 2}.

–
∧

θ
j

i
∈Θi

(θj
i

⊃
∧

k=1,...,j θk
i ) for i ∈ {1, 2}.

It is easy to check that with the above mentioned modification, the completeness
theorem follows.

8 Discussion

By considering game play pairs, we are able to reason about restrictions of
the game tree and thereby express game theoretic notions like a player’s best
response for an opponents strategy and equilibrium. In contrast, the approach
taken in [RS08] is closer to the style of game logics: the reasoning is about
what a player can ensure by following a certain strategy specification where
all possible strategies of the opponent is taken into account. However, at the
compositional level, the axiom system remains the same. This shows that the
framework being considered is quite general, and is not dependent on the exact
game representation. For a specific representation under consideration, once the
axioms for the atomic case are presented appropriately, the theory lifts quite
neatly.

This paper deals with games of perfect information, since at the end of each
stage, all the players know the strategy profile along with the outcomes. It also
operates within the framework of foundations for game theory in modal logics. In
this sense, it does not try to offer new models for game theory but explicate the
reasoning involved. It is worth noting that almost all the analysis performed in
reasoning about games, including the related works mentioned earlier, are based
on games of perfect information. Coming up with logical formalisms and extend-
ing the techniques to reason in games of imperfect information is a challenging
task.

To come up with prescriptive mechanisms which provides advice to players
on how to play, it is essential to be able to represent a player’s expectations
about the behaviour of the opponent. The expectations need not necessarily
be represented in a probabilistic manner. Introducing expectations of players
is particularly interesting in the framework of unbounded game composition as
it allows players to learn from the past information, revise their expectations
and accordingly make use of it to generate sophisticated plans. Enriching the
framework to be able to represent expectations of players is left as future work.
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