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Abstract

We consider a propositional dynamic logic whose programs
are regular expressions over game - strategy pairs. At the
atomic level, these are finite extensive form game trees with
structured strategy specifications, whereby a player’s strategy
may depend on properties of the opponent’s strategy. The
advantage of imposing structure not merely on games or on
strategies but on game - strategy pairs, is that we can speak
of a composite gameg followed byg

′ whereby if the oppo-
nent played a strategys in g, the player responds withs′ in
g
′ to ensure a certain outcome. In the presence of iteration, a

player has significant ability to strategise taking into account
the explicit structure of games. We present a complete ax-
iomatization of the logic and prove its decidability. The tools
used combine techniques from PDL, CTL and game logics.

Overview
Strategies are the unsung heroes of game theory.
Johan van Benthem.

In one sense, game theory is all about strategic reasoning.
Games are defined by sets of rules that specify what moves
are available to each player, and according to her own pref-
erences over the possible outcomes, every player plans her
strategy. If the game is rich enough, the player has access
to a wide range of strategies, and the choice of what strat-
egy to employ in a game situation depends not only on the
player’s understanding of how the game can proceed from
then on, but also based on his expectation of what strategies
other players are following.

While this observation holds true of much of game play-
ing, we find such reasoning hardly typical of analysis in
game theory. In this respect game theory largely consists
of reasoningabout games rather than reasoningin games. It
is assumed that the entire structure of the game is laid out
in front of us, and we reason from above, predicting how
rational players would play, and such predictions are sum-
marised into assertions on existence of equilibria. This type
of study mostly suffices to focus on existence of strategies
forcing certain outcomes.

And yet, as Aumann and Dreze (2005) point out, this is
not how game theory started. The seminal work of von Neu-
mann and Morgenstern envisaged game theory as constitut-
ing advice for players in game situations, so that strategies
may be synthesized accordingly. While this was summarily

achieved for two-person zero-sum games, advice functions
for multi-player games with overlapping objectives have
been hard to come by. Aumann and Dreze argue that such
a prescriptive game theory must account for the beliefs and
expectations each player has about strategies followed by
other players. Clearly, in any such study, strategies cannot
be viewed as unstructured atomic objects arbitrarily picked
from a suitably large set, but accorded first class citizenship.
That is, they are seen as composite objects, function deter-
mined by structure. This calls for a grammar of strategy
construction, which in turn depends on the structure of the
game in which the strategy is employed.

Strategies with unbounded memory constituteglobal rea-
soning at the level of the game arena, since, in principle,
details about game structure and trajectories of plans can be
coded up into them. However, bounded memory strategies
can only actlocally, but can exploit game structure effec-
tively. The maxim,Think globally, act locally, is apt for
structure sensitive strategizing.

There have been many logical studies in this direction.
The work on alternating temporal logic (Alur, Henzinger,
and Kupferman 1998) considers selective quantification over
paths that are possible outcomes of games in which play-
ers and an environment alternate moves. The emphasis is
on the existence of a strategy for a coalition of players to
force an outcome. In (Harrenstein et al. 2003) and (van der
Hoek, Jamroga, and Wooldridge 2005), logics are developed
to describe equilibrium concepts and for strategic reasoning.
(Chatterjee, Henzinger, and Piterman 2007) looks at a logic
where quantification over strategy terms is part of the logical
formalism and study its relationship with alternating tempo-
ral logic and other variants. All of the above mentioned log-
ics have the common property that the game arena is taken
to be fixed and a functional notion of strategy is adopted.
Strategies are taken to be atomic objects whereby the log-
ical structure present within the strategy is not taken into
account for analysis.

The idea of taking into account the structure available
within strategies and making assertions about a specific
strategy leading to a specified outcome is, of course, not
new. Van Benthem (2001; 2002) uses dynamic logic to de-
scribe games as well as strategies. When dealing with fi-
nite extensive form games, this approach of describing the
complete strategy explicitly in a dynamic logic framework



is appropriate, however the technique does not generalise
satisfactorily to games on graphs.

On the other hand, propositional game logic (Parikh
1985), the seminal work on logical aspects of game theory,
talks of existence of strategies, but builds composite struc-
ture into games. (Goranko 2003) looks at an algebraic char-
acterisation of games and presents a complete axiomatiza-
tion of identities of the basic game algebra. Pauly (2001)
has built on this to provide interesting relationships between
programs and games, and to describe coalitions to achieve
desired goals. Goranko (2001) relates Pauly’s coalition log-
ics with work done in alternating temporal logic. In this
line of work, the game itself is structurally built from atomic
objects. However, the reasoning done is about existence
of strategies and not reasoningwith strategies: the ability
of a player to strategize in response to the opponent’s ac-
tions. (Ghosh 2008) presents a complete axiomatisation of
a logic describing both games and strategies in a dynamic
logic framework, but again the assertions are about atomic
strategies.

In this paper, we make a small contribution to the logi-
cal study of games and strategies. We look at a framework
where both games and strategies are structurally built and
where strategizing by players is explicitly represented inthe
formulas of the logic. We suggest that considering game
- strategy pairs is useful: suppose that we have a 2-player
2-stage gameg1 followed by g2. Consider player 1 strate-
gizing at the end ofg1, wheng2 is about to start; her plan-
ning depends not only howg2 is structured, but also how
her opponent had played ing1. Thus her strategizing in the
composite gameg1; g2 is best described as follows: consider
g1 in extensive form as a tree, and the subtree obtained by
opponent employingπ; wheng2 starts from any of the leaf
nodes of this subtree, play according toσ. We encode this
as(g1, π); (g2, σ), and see(g2, σ) as a response to(g1, π).
Thus the “programs” of this logic are game - strategy pairs
of this kind.

We consider a propositional dynamic logic, the programs
of which are regular expressions over atomic pairs of the
form (g, σ) whereg is a finite game tree in extensive form,
and σ is a strategy specification, structured syntactically.
The central syntactic device consists of interactive structure
in strategies and algebraic structure not only on games but on
game - strategy pairs. While the technical result is a com-
plete axiomatization and the decidability of the satisfiability
problem, we see this contribution as an advocacy of studying
algebraic structure on strategies, induced by that on games.

Preliminaries
Game tree
Let N = {1, 2} be the set of players,Σi for i ∈ {1, 2}
be a finite set of action symbols which represent moves of
players andΣ = Σ1 ∪ Σ2.

Let (S,=⇒, s0) be a finite tree rooted ats0 on the set
of verticesS and =⇒: (S × Σ) → S. An extensive
form game tree is given byT = (S,=⇒, s0, λ) whereS
is the set of game positions ands0 is the initial game po-
sition. For a game positions ∈ S, let

→
s= {s′ ∈ S |

s
a

−→ s′ for somea ∈ Σ}. A game positions is a leaf node
(or terminal node) if

→
s= ∅, let Sleaf denote the set of all

leaf nodes ofT . The turn functionλ : S → {1, 2} asso-
ciates each game position with a player.

Technically we need player labelling only at the non-leaf
nodes. However, for the sake of uniform presentation, we do
not distinguish between leaf nodes and non-leaf nodes as far
as player labelling is concerned.

Figure 1(a) shows an example game tree. Here nodes are
labelled with the players and edges represents the actions.A
play in T is a finite pathρ : s0

a0=⇒ s1 · · ·
ak=⇒ sk wheresk

is a leaf node.
Let ı = 2 wheni = 1 andı = 1 wheni = 2. A strategy

for playeri, is a subtree ofT where for each playeri node,
there is a unique outgoing edge and for playerı, every move
is included. Figure 1(b) shows a strategy for playeri in the
game tree Figure 1(a). Fori ∈ {1, 2}, let Ωi denote the set
of all strategies for playeri in the game. For a treeT , let
frontier(T ) denote the set of all leaf nodes ofT .
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Figure 1: Game and strategy.

The formulas of the logic refer to extensive form game
trees. One convenient way of representing the tree is to spec-
ify it in the following syntax.

Syntax for game trees: Let Nodes be a finite set. The
finite game structure is specified using the syntax:

G := (i, x) | Σam∈J((i, x), am, tam
)

whereJ ⊆ Σi, x ∈ Nodes , i ∈ {1, 2} andtam
∈ G.

Giveng ∈ G we define the treeTg generated byg induc-
tively as follows.

• g ≡ (i, x): Tg = (Sg,=⇒g, λg, sg,0) whereSg = {sx},
λg(sx) = i andsg,0 = sx.

• g ≡ ((i, x), a1, ta1
) + · · · + ((i, x), ak, tak

): Inductively
we have treesT1, . . .Tk where forj : 1 ≤ j ≤ k, Tj =
(Sj ,=⇒j , λj , sj,0). Define Tg = (Sg,=⇒g, λg, sg,0)
where

– Sg = {sx} ∪ ST1
∪ . . . ∪ STk

andsg,0 = sx.
– λg(sx) = i and for all j, for all s ∈ STj

, λg(s) =
λj(s).

The edge relation is the union of the edge relation on the

individual tree along with the edgessx

aj

=⇒g sj,0 for j :
1 ≤ j ≤ k.

Strategy specification
We give a syntax to specify strategies in a structured man-
ner. Atomic strategy formulas specify, for a player, what



conditions she tests for before making a move. We consider
the case when these conditions are simply boolean formulas.
Composite strategy specifications are built from atomic ones
using connectives (without negation). We use an implication
of the form: “if the opponent’s play conforms to a strategyπ
then playσ”. This connective is crucial to capture the notion
of players strategizing in response to opponents actions.

For a countable set of propositionsP i, let Ψ(P i) be the
boolean formulas overP i built using the following syntax:

Ψ(P i) := p ∈ P i | ¬ψ | ψ1 ∨ ψ2.

For i ∈ {1, 2}, let Strati(P i) be the set of strategy speci-
fications given by the following syntax:

Strat i(P i) := [ψ 7→ a]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ

whereπ ∈ Strat ı(P 1 ∩ P 2), ψ ∈ Ψ(P i) anda ∈ Σi.
The idea is to use the above constructs to specify proper-

ties of strategies. For instance the interpretation of a playeri
specification[p 7→ a]i will be to choose move “a” for every
i node wherep holds. Consider the game given in Figure 1
(a). Suppose the propositionp holds at the root, then the
strategy depicted in Figure 1 (b) conforms to the specifica-
tion [p 7→ a]1.

The specificationπ ⇒ σ says, at any node playeri sticks
to the specification given byσ if on the history of the play, all
moves made byı conform toπ. In strategies, this captures
the aspect of players actions being responses to the oppo-
nent’s moves. The opponent’s complete strategy may not be
available, the player makes a choice taking into account the
apparent behaviour of the opponent on the history of play.

Let Σi = {a1, . . . , am}, we use the abbreviationnull i ≡
[⊤ 7→ a1] + · · · + [⊤ 7→ am]. The intuitive meaning is, any
strategy of playeri conforms tonull i.

Semantics: Given a stateu and a valuationV : u → 2P ,
the truth of a formulaψ ∈ Ψ(P i) is defined as follows:

• u |= p iff p ∈ V (u).

• u |= ¬ψ iff u 6|= ψ.

• u |= ψ1 ∨ ψ2 iff u |= ψ1 or u |= ψ2.

We consider game trees along with a valuation function
V : S → 2P . Given a strategyµ of player i and a node
s ∈ µ, let ρs : s0a0s1 · · · sm = s be the unique path in
µ from the root node tos. For all j : 0 ≤ j < m, let
outρs

(sj) = aj andoutρs
(s) be the unique outgoing edge

in µ at s. For a strategy specificationσ ∈ Strat i(P i), we
define whenµ conforms to σ (denotedµ |=i σ) as follows:

• µ |=i σ iff for all player i nodess ∈ µ, we have
ρs, s |=i σ

where we defineρs, sj |=i σ for anysj in ρs as,

• ρs, sj |=i [ψ 7→ a]i iff sj |= ψ impliesoutρs
(sj) = a.

• ρs, sj |=i σ1 + σ2 iff ρs, sj |=i σ1 or ρs, sj |=i σ2.

• ρs, sj |=i σ1 · σ2 iff ρs, sj |=i σ1 andρs, sj |=i σ2.

• ρs, sj |=i π ⇒ σ iff for all player ı nodessk ∈ ρs such
thatk ≤ j, if ρs, sk |=ı π thenρs, sj |=i σ.

Above,π ∈ Strat ı(P 1 ∩ P 2) andψ ∈ Ψ(P i).

Reasoning about strategies
We present a logic to reason about strategies with respect to
a single extensive form game treeg. Strategy specifications
are employed in the formulas of the logic to partially specify
strategies rather than giving a complete description.

Syntax: Let g ∈ G be an extensive form game tree. The
syntax of the logic is given by:

Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈(g, σ)〉γ

wherei ∈ {1, 2}, σ ∈ Strat i(P i) andγ ∈ Ψ(P ).
The intuitive meaning of〈(g, σ)〉γ is: in the gameg, the

player has a strategy conforming to the specificationσ which
ensuresγ. Since we are considering a fixed gameg, this
implies thatγ holds at all the leaf node of the appropriate
strategy. The restriction ofγ to boolean formulas over the set
of propositions is due to this reason. Nesting of the modality
〈(g, σ)〉 does not make sense for a fixed game. At a later
stage we will look at composing games at which pointγ can
be taken to be any arbitrary formula.

Semantics: The modelM = (Tg, V ) where Tg =
(S,=⇒, s0, λ) is the extensive form game tree associated
with g andV is the valuation functionV : S → 2P .

The truth of a formulaα ∈ Φ in a modelM and a position
s (denotedM, s |= α) is defined as follows:

• M, s |= p iff p ∈ V (s).

• M, s |= ¬α iff M, s 6|= α.

• M, s |= α1 ∨ α2 iff M, s |= α1 orM, s |= α2.

• M, s |= 〈(g, σ)〉γ iff ∃µ ∈ Ωi such thatµ |=i σ and for
all s′ ∈ frontier(µ), M, s′ |= γ.

The formula〈(g, σ)〉γ says that there exists a strategy for
playeri conforming toσ such that all the leaf nodes satisfy
γ. The dual[(g, σ)]γ says that for all strategies of playeri
conforming toσ, there exists a leaf node which satisfyγ.

Strategy comparison
Consider the formula〈(g,null i)〉γ. The formula asserts that
player i can ensure the rewardγ no matter what playerı
does. This makes no reference tohow playeri may achieve
this objective, and thus is similar to assertions in most game
logics. Now consider the formula〈(g, σ)〉γ. This says
something stronger: that there exists a strategyµ satisfying
σ for playeri such that irrespective of what playerı plays,
γ is guaranteed. Here, the mechanismµ used by playeri to
ensureγ is specified by the propertyσ.

The extensive form game treeg merely defines the rules of
how the game progresses and terminates. However, to com-
pare strategies of players, we need to specify the objectives.
For i ∈ {1, 2}, let Ri be a finite set of rewards for player
i, �i⊆ Ri × Ri, be a preference ordering onRi and let
R = R1 × R2. Let the payoff functionpayoff : Sleaf → R
associate each leaf node with a reward. For a leaf nodes, and
payoff (s) = (r1, r2), let payoff (s)[i] denote thei’th com-
ponent ofr, i.e.payoff (s)[1] = r1 andpayoff (s)[2] = r2.

In order to refer to rewards of the players in formulas of
the logic, we use special propositions to code them up. This



is similar to the approach adopted in (Bonanno 2002). With-
out loss of generality assume thatr11 �1 r21 �1 · · · �1 rl

1.
Let Θ1 = {θ11, . . . , θ

l
1} be a set of special propositions used

to encode the rewards in the logic, i.e.θ
j
1 corresponds to the

rewardrj
1. Likewise for player 2, corresponding to the set

R2, we have a set of propositionsΘ2. The valuation func-
tion satisfies the condition:

• For all statess, for i ∈ {1, 2}, {θ1i , . . . , θ
j
i } ⊆ V (s) iff

payoff (s)[i] = r
j
i .

The preference ordering on the rewards for each player is
simply inherited from the implication available in the logic.

Coming to the notion of strategy comparison, we say that
σ is better for playeri thanσ′ if the following condition
holds: irrespective of what playerı plays if there exists a
strategyµ′ satisfyingσ′ such thatθi is guaranteed, then there
also exists a strategyµ satisfyingσ which guaranteesθi.
This can be expressed by the formula,

BT i(σ, σ′) ≡
∧

θi∈Θi

(〈(g, σ′)〉θi ⊃ 〈(g, σ)〉θi)

Given a finite set of strategy specificationsΥi for player
i, we say thatσ is the best strategy if the following holds:

Best i(σ) ≡
∧

σ′∈Υi

BT i(σ, σ′)

Note that in the case of a finite extensive form game tree,
we can code up the game positions uniquely using propo-
sitions. In this case, it is possible to represent a complete
strategy in terms of a strategy specification. At each game
position, it specifies a unique action. Suppose the number of
playeri game positions arek and the propositionp1

i , . . . p
k
i

uniquely identifies all of these positions, then the specifica-
tion representing a complete strategy would have the form
σ ≡ [p1

i 7→ a1] · · · [pk
i 7→ ak]. In this particular scenario,

the notion of strategy comparison and best strategy reduces
to the classical notions by taking the setΥi to be the set of
all strategies for playeri.

Composition of game - strategy pairs
In the previous section we looked at strategies being defined
by their properties. Strategy specifications are structurally
built and the reasoning performed was with respect to one
fixed extensive form game tree. Instead of working with a
single game, we can look at complex games arising out of
composition of these atomic games. In this context, we ar-
gue that reasoning about game - strategy pairs and their com-
position is more useful than composing games and analysing
strategies separately. Here we present a logic to reason about
game - strategy pairs. Both strategy specification and game
structure is embedded into the syntax of the logic.

The logic
The logic is a simple dynamic logic where we take regu-
lar expressions over game-strategy pairs as programs in the
logic.The formulas of the logic can then be used to spec-
ify the result of a player following a particular strategy ina
specified game enabled at a state.

Syntax: Fori ∈ {1, 2}, letP i be a countable set of propo-
sitions andP = P 1 ∪ P 2. The syntax for the logic is given
by:

Φ := p ∈ P | ¬α | α1 ∨ α2 | 〈ξ〉α

whereξ ∈ Γ, the setΓ consists of game strategy pairs which
is defined below. As a convention we use⊤ ≡ p ∨ ¬p. We
will also make use of the following abbreviation:

• Let gi = ((i, x), a, (j, y)) andgı = ((ı, x), a, (j, y)),

– 〈a〉α ≡ turni ⊃ 〈gi, [⊤ 7→ a]i〉α ∧
turnı ⊃ 〈gı, [⊤ 7→ a]ı〉α

From the semantics it will be clear that this gives the usual
interpretation for〈a〉α, i.e. 〈a〉α holds at a stateu iff there
is a statew such thatu

a
−→ w andα holds atw.

In the syntax of the logic,ξ represents regular expressions
over game-strategy pairs(g, σ). The intuitive meaning of
〈g, σ〉α being that in the gameg the player has a strategy
conforming to the specificationσ which ensuresα.

Game strategy pairs: Syntax for game strategy specifica-
tion pair is given by:

Γ := (g, σ) | ξ1; ξ2 | ξ1 ∪ ξ2 | ξ∗

whereg ∈ G, σ ∈ Strat i(P i).
The atomic construct(g, σ) as mentioned in the earlier

section, specifies that in gameg a strategy conforming to
specificationσ is employed. Game strategy pairs are then
composed using standard dynamic logic connectives.ξ1+ξ2
would mean playingξ1 or ξ2. Sequencing in our setting is
does not mean the usual relational composition of games.
Rather, it is the composition of game strategy pairs of the
form (g1, σ1); (g2, σ2). This is where the extensive form
game tree interpretation makes the main difference. Since
the strategy specifications are intended to be partial, a pair
(g, σ) gives rise to a set of possibilities and therefore com-
position over these trees need to be performed.ξ∗ is the
iteration of the ’;’ operator.

Model: The formulas of the logic express properties about
game trees and strategies which are composed using tree
regular expressions. These formulas are to be interpreted on
game positions and they make assertions about the frontier
of the game trees which results from the pruning performed
as dictated by the strategy specification. Therefore the mod-
els of the logic are game trees, but this can potentially be an
infinite set of finite game trees. Alternatively, we can think
of these game trees as being obtained from unfoldings of a
Kripke structure. As we will see later, the logic cannot dis-
tinguish between these two.

A modelM = (W,−→, λ, V ) whereW is the set of
states (or game positions), the relation−→⊆ W × Σ ×W ,
V : W → 2P is the valuation function andλ : W → {1, 2}
is a player labelling function which satisfies the following
property:

• For allw ∈ W , if w
a

−→ w′ andλ(w′) = i then for all
w′′ such thatw

a
−→ w′′, we haveλ(w′′) = i.

The truth of a formulaα ∈ Φ in a modelM and a position
w (denotedM,w |= α) is defined as follows:



• M,w |= p iff p ∈ V (w).

• M,w |= ¬α iff M,w 6|= α.

• M,w |= α1 ∨ α2 iff M,w |= α1 orM,w |= α2.

• M,w |= 〈ξ〉α iff ∃(w,X) ∈ Rξ such that∀w′ ∈ X we
haveM,w′ |= α.

In the semantics of〈ξ〉α, the statew can be thought of as
the starting game position andX , the set of leaf nodes of the
game. We require that the player has a strategy confirming
to the specification to ensure thatα holds in all of the leaf
nodes.

Forξ ∈ Γ, we haveRξ ⊆W ×2W . To define the relation
formally, let us first assume thatR is defined for the atomic
case, namely whenξ = (g, σ). The semantics for composite
game strategy pairs is given as follows:

• Rξ1;ξ2
= {(u,X) | ∃Y = {v1, . . . , vk} such that

(u, Y ) ∈ Rξ1
and∀vj ∈ Y there existsXj ⊆ X such

that(vj , Xj) ∈ Rξ2
and

⋃
j=1,...,k Xj = X}.

• Rξ1∪ξ2
= Rξ1

∪Rξ2
.

• Rξ∗ =
⋃

n≥0(Rξ)
n.

In the atomic case whenξ = (g, σ) we want a pair(u,X)
to be inRξ if the gameg is enabled at stateu and there is a
strategy conforming to the specificationσ such thatX is the
set of leaf nodes of the strategy. In order to make this pre-
cise, we will require the following notations and definitions.

Restriction on trees: Forw ∈ W , let Tw denote the tree
unfolding ofM starting atw. Given a statew andg ∈ G, let
Tw = (Sw

M ,=⇒M , λM , sw) andTg = (Sg,=⇒g, λg, sg,0).
The restriction ofTw with respect to the gameg (denoted
Tw |\g) is the subtree ofTw which is generated by the struc-
ture specified byTg. The restriction is defined inductively
as follows:Tw |\ g = (S,=⇒, λ, s0, f) wheref : S → Sg.
Initially S = {sw}, λ(sw) = λM (sw), s0 = sw and
f(sw) = sg,0.

For anys ∈ S, let f(s) = t ∈ Sg. Let {a1, . . . , ak} be

the outgoing edges oft, i.e. for allj : 1 ≤ j ≤ k, t
aj

=⇒g tj .
For eachaj , let {s1j , . . . , s

m
j } be the nodes inSw

M such that

s
aj

=⇒M sl
j for all l : 1 ≤ l ≤ m. Add nodess1j , . . . , s

m
j to

S and the edgess
aj

=⇒ sl
j for all l : 1 ≤ l ≤ m. Also set

λ(sl
j) = λM (sl

j) andf(sl
j) = tj .

We say that a gameg is enabled atw (denoted
enabled(g, w)) if the treeTw |\ g = (S,=⇒, λ, s0, f) sat-
isfies the following property: for alls ∈ S,

•
→
s=

−→

f(s),

• if
→
s 6= ∅ thenλ(s) = λg(f(s)).

For a game treeT , let Ωi(T ) denote the set of strategies
of playeri on the game treeT andfrontier(T ) denote the
set of all leaf nodes ofT .

Atomic game-strategy pair: For atomic game-strategy
pair ξ = (g, σ) we defineRξ as follows:
Let g be the game with a single nodeg = (i, x),

• R(g,σ) = {(u, {u})} if enabled(g, u) holds, for all
i ∈ {1, 2}, for all σ ∈ Strat i(P i).

Forg = ((i, x), a1, ta1
+ . . .+ (i, x), ak, tak

)

• R(g,σ) = {(u,X) | enabled(g, u) and∃µ ∈ Ωi(Tu |\ g)
such thatµ |=i σ andfrontier (µ) = X}.
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Figure 2: Model

Example 1 Let the extensive form gameg be the one given
in Figure 1(a) and the Kripke structureM be as shown in
Figure 2(a). For the nodeu of the structure the restriction
Tu |\ g is shown in Figure 2(b). This is the maximal subtree
of Tu according to the structure dictated byg. For instance
at nodev1 there are twox1 labelled edges present inM and
therefore both have to be included inTu |\ g as well.

Now consider the player 1 strategy specificationσ ≡
null1. At node u, the choice ’a’ can ensure player
1 the states{w1, v2, w3} and the choice ’b’ can ensure
the states{w4, w5}. Therefore the relationR(g,σ) =
{(u, {w1, v2, w3}), (u, {w4, w5}),
(v1, {w1, v2, w3}), (v2, {w4, w5})}.

SupposeM,u |= p and consider the specifica-
tion σ ≡ [p 7→ a]1. Since p holds at the root,
player 1 is restricted to make the choice ’a’ at u.
Hence the relation in this case would beR(g,σ) =
{(u, {w1, v2, w3}), (v1, {w1, v2, w3}), (v2, {w4, w5})}.
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Figure 3:

Example 2 To illustrate the logic, consider the gamesg1
andg2 given in Fig. 3. Letu be a state of the model where
g1 is enabled. Letg denote the gameg1; g2, i.e. the game
obtained by pastingg2 at each of the leaf nodes ofg1. We
use the following notation:

• wa1 : denotes the state reached after actiona1.
• wa1,b1 : the state reached on following actionsa1 andb1.
• wa1,b1

x1,y1
: the state reached on the sequence of action

a1b1x1y1.



Let win1, win2 andp be propositions whose valuations
are given byV (win2) = {wa1,b1 , wa2,b2}, V (win1) =
{wa1,b1

x1,y1
, wa2,b2

x1,y2
} andV (p) = {wa1}. Consider the follow-

ing specifications:

• π ≡ [p 7→ b1]
2 · [¬p 7→ b2]

2.
• σ ≡ [⊤ 7→ x1]

1.

It is easy to see that〈(g1, π)〉win2 holds atu. Player 1
does not have a strategy in the composite gameg to ensure
win1. However, in the composite pairξ = (g1, π); (g2, σ),
it is easy to see that〈ξ〉win1 holds. Assuming that in the
gameg1 player 2 plays according toπ then ing2 by using a
strategy which conforms toσ player 1 can ensurewin1. In
some sense this says that reasoning in the gameg is different
from reasoning ing1 composed withg2. In the latter, the
additional structural information is available which can be
used for strategizing.

For simple game structures it is quite obvious that such
reasoning can be done with a past modality. It is iteration
which provides the actual expressive power. In the presence
of iteration, the analysis asserts the fact that players cantake
into account the structure of the game and the opponent’s
strategy. In particular while strategizing, a player can make
use of the fact that the opponent is using a bounded memory
strategy and that with the type of strategy that is being used
the opponent can be forced into a particular region of the
game graph.

The above mentioned reasoning can also be thought of as
players trying to attain certain local goals. If player 2 plays
to achieve the local goalwin2 then player 1 can use this in-
formation and respond with a strategy ing2 to achieve the
objectivewin1. Players can then try to achieve their global
objective by performing appropriate composition of the lo-
cal objectives.

Even at the atomic level, the game structure can be quite
complicated. At this level, strategy specifications enablerea-
soning about strategies satisfying certain invariant proper-
ties. Here strategizing in response to the opponent’s action
is captured by the constructπ ⇒ σ.

Axiom system
We now present an axiomatization of the valid formulas of
the logic. We will use the following notations:

For a setA = {a1, . . . , ak} ⊆ Σ, we will use the no-
tationℜ(i, x, A) to denote the game((i, x), a1, ta1

+ · · · +
(i, x), ak, tak

).
For gameg, we use the formulag

√
to denote that the game

structureg is enabled. This is defined as:

• Forg = (i, x), let g
√
≡ ⊤.

• Forg = ℜ(i, x, A), let

– g
√
≡ turni ∧ (

∧
j=1,...,k(〈aj〉⊤ ∧ [aj ]t

√

aj
)).

The axiom schemes
(A1) Propositional axioms:

(a) All the substitutional instances of tautologies of PC.
(b) turni ≡ ¬turnı.

(A2) Axiom for single edge games:

(a) 〈a〉(α1 ∨ α2) ≡ 〈a〉α1 ∨ 〈a〉α2.
(b) 〈a〉turni ⊃ [a]turni.

(A3) Dynamic logic axioms:

(a) 〈ξ1 ∪ ξ2〉α ≡ 〈ξ1〉α ∨ 〈ξ2〉α.
(b) 〈ξ1; ξ2〉α ≡ 〈ξ1〉〈ξ2〉α.
(c) 〈ξ∗〉α ≡ α ∨ 〈ξ〉〈ξ∗〉α.

(A4) 〈g, σ〉α ≡ g
√
∧ push(g, σ, α).

Inference rules

(MP) α, α ⊃ β (NG) α
β [a]α

(IND) 〈ξ〉α ⊃ α
〈ξ∗〉α ⊃ α

Axiom (A2a) does not hold for general game strategy
pairs (i.e.ξ ∈ Γ). In particular〈ξ〉(α1∨α2) ⊃ 〈ξ〉α1∨〈ξ〉α2

is not valid. However (A2a) is sound since〈a〉 asserts prop-
erties about a single edge.

Since the relationR is synthesised over tree structures,
the interpretation of sequential composition is quite different
from the standard one. Consider the usual relation composi-
tion semantics forRξ1;ξ2

, i.e.Rξ1;ξ2
= {(u,X)|∃Y such

that (u, Y ) ∈ Rξ1
and for all v ∈ Y , (v,X) ∈ Rξ2

}.
It is easy to see that under this interpretation the formula
〈ξ1〉〈ξ2〉α ⊃ 〈ξ1; ξ2〉α is not valid. A soundness argument
for axiom (A3b) is given in the appendix.

Definition of push: For all i ∈ {1, 2}, g ∈ G,
σ ∈ Strat i(P i) andα ∈ Φ, we definepush(g, σ, α) as fol-
lows. We have various cases depending on the structure of
g.

The case wheng is an atomic game, i.e.g = (i, x), for all
i ∈ {1, 2} andσ ∈ Strat i(P i) we have,

(C1) push(g, σ, α) ≡ α.

Supposeg = ℜ(i, x, A) for A = {a1, . . . , ak}. For each
am ∈ A let gam

= ((i, x), am, (jm, ym)), where(jm, ym)
is the root oftam

.
Forπ ≡ [ψ 7→ a]ı, π1 + π2, π1 · π2 ∈ Strat ı(P ı).

(C2) push(g, π, α) ≡
∧

am∈A [am]push(tam
, π, α).

(C3) push(g, σ ⇒ π, α) ≡∧

am∈A

(〈gam
, σ〉⊤ ⊃ [am]push(tam

, σ ⇒ π, α)

∧¬〈gam
, σ〉⊤ ⊃ [am]push(tam

,null ı, α)).

(C4) push(g, [ψ 7→ a]i, α) ≡
(ψ ⊃ 〈a〉push(ta, [ψ 7→ a]i, α))
∧(¬ψ ⊃ (

∨
am∈A 〈am〉push(tam

, [ψ 7→ a]i, α))).

(C5) push(g, σ1 · σ2, α) ≡∨

am∈A

(〈gam
, σ1〉push(tam

, σ1 · σ2, α)

∧〈gam
, σ2〉push(tam

, σ1 · σ2, α)).



(C6) push(g, σ1 + σ2, α) ≡∨

am∈A

(〈gam
, σ1〉push(tam

, σ1 + σ2, α)

∨〈gam
, σ2〉push(tam

, σ1 + σ2, α)).

(C7) push(g, π ⇒ σ, α) ≡∨
am∈A(〈gam

, σ〉push(tam
, π ⇒ σ, α)).

The soundness of axiom (A4) is shown in the appendix.

Completeness
To show completeness, we prove that every consistent for-
mula is satisfiable. Letα0 be a consistent formula, and
CL(α0) denote the subformula closure ofα. LetAT (α0) be
the set of all maximal consistent subsets ofCL(α0), referred
to as atoms. We useu,w to range over the set of atoms.
Eachu ∈ AT is a finite set of formulas, we denote the con-
junction of all formulas inu by û. For a nonempty subset
X ⊆ AT , we denote byX̃ the disjunction of all̂u, u ∈ X .
Define a transition relation onAT (α0) as follows:u

a
−→ w

iff û ∧ 〈a〉ŵ is consistent. The valuationV is defined as
V (w) = {p ∈ P | p ∈ w} andλ(w) = i iff turni ∈ w. The
modelM = (W,−→, λ, V ) whereW = AT (α0). Once
the Kripke structure is defined, the game theoretic seman-
tics given earlier defines the relationR(g,σ) onW × 2W for
g ∈ T and a strategy specificationσ.

However to show the completeness result, we need to also
specify the relation between a pair(u,X) being inR(g,σ)

and the consistency requirement onu andX . In other words,
we need to define a new relationR′

(g,σ) in terms of con-
sistency ofu andX and show that the following property
holds:

(P1) (u,X) ∈ R′
(g,σ) iff (u,X) ∈ R(g,σ).

The first attempt would be to say(u,X) ∈ R′
(g,σ) iff

û ∧ 〈g, σ〉X̃ is consistent. But this definition need not sat-
isfy (⇒) of (P1). The trouble is, in the game theoretic defi-
nition of R(g,σ), we requireX to be the exact set of leaves
of g for which player has a strategy conforming toσ. If
the definition ofR had instead been “upward closed”, i.e.
(u,X) ∈ R(g,σ) implies for anyY ⊇ X , (u, Y ) ∈ R(g,σ),
then this approach would work.

The second attempt would be to say(u,X) ∈ R′
(g,σ) iff

for all w ∈ X , we havêu ∧ 〈g, σ〉ŵ is consistent. It is quite
easy to see that this definition is also unsatisfactory. The
closure of the formula is quite rich in the sense that the tree
structure as dictated by the axioms are present in the closure.
Therefore for individual atomsu andw, unlessg is a single
edge game,̂u ∧ 〈g, σ〉ŵ need not be consistent at all.

What we really need is the minimal setX such that
û ∧ 〈g, σ〉X̃ is consistent. For this setX , we have that the
pair (u,X) ∈ R(g,σ). Lemma 1 given below formalises this
fact.

Lemma 1 For all g ∈ G, for all i ∈ {1, 2} and
σ ∈ Strat i(P i), for all X ⊆ W and for all u ∈ W the
following holds:

1. if (u,X) ∈ R(g,σ) then û ∧ 〈g, σ〉X̃ is consistent.

2. if û∧〈g, σ〉X̃ is consistent then there exists X ′ ⊆ X such
that (u,X ′) ∈ R(g,σ).

A detailed proof can be found in the appendix. Item 1
follows from the axioms and the fact thatCL(α0) is rich
enough that it has the tree structure built into it as dictated
by the axioms. For item 2, we basically need to show the
following two things:
• The gameg is enabled atu.

• The existence of a strategyµ on g which conforms to the
specificationσ such that the leaf nodes ofµ isX ′ ⊆ X .

The strategy construction is similar to the technique used to
build the witness tree in CTL for the∀∃ quantifier. The idea
is to start atu and extend in stages, making sure that for a
player i node the choice conforms toσ and for a playerı
node all the branches are taken into account. Since the anal-
ysis is done over tree structures, it is evident at this pointthat
the techniques used are different from the ones in dynamic
logic.

Lemma 2 For all ξ ∈ Γ, for all X ⊆ W and u ∈ W , if
û ∧ 〈ξ〉X̃ is consistent then there exists X ′ ⊆ X such that
(u,X ′) ∈ Rξ.

Proof is given in the appendix.

Lemma 3 For all 〈ξ〉α ∈ CL(α0), for all u ∈W , û ∧ 〈ξ〉α
is consistent iff there exists (u,X) ∈ Rξ such that ∀w ∈ X ,
α ∈ w.

Proof: (⇒) Follows from lemma 2 by considering the set
Xα = {w ∈W | α ∈ w}.
(⇐) Suppose∃(u,X) ∈ Rξ such that∀w ∈ X , α ∈ w.
We need to show that̂u ∧ 〈ξ〉α is consistent, this is done by
induction on the structure ofξ.

• The case whenξ ≡ (g, σ) follows easily from lemma 1
andξ ≡ ξ1 ∪ ξ2 follows from the induction hypothesis
and axiom (A3a).

• ξ ≡ ξ1; ξ2: Since(u,X) ∈ Rξ1;ξ2
, there existsY =

{v1, . . . , vk}, there exists setsX1, . . . , Xk ⊆ X such that⋃
j=1,...,k Xj = X , for all j : 1 ≤ j ≤ k, (vj , Xj) ∈ Rξ2

and (u, Y ) ∈ Rξ1
. By induction hypothesis, for all

j, v̂j ∧ 〈ξ2〉α is consistent. Sincevj is an atom and
〈ξ2〉α ∈ CL(α0), we get〈ξ2〉α ∈ vj . Again by induction
hypothesis we havêu ∧ 〈ξ1〉〈ξ2〉α is consistent. Hence
from (A3b) we havêu ∧ 〈ξ1; ξ2〉α is consistent.

• ξ ≡ ξ∗1 : If u ∈ X then⊢ û ⊃ X̃. We have⊢ X̃ ⊃ α and
hence we get̂u ∧ α is consistent. From axiom (A3c) we
haveû ∧ 〈ξ∗1〉α is consistent.
Else we have(u,X) ∈ Rξ1;ξ∗

1
. Let Z0 = X and

Zn+1 = Zn ∪ {w | (w,Z ′) ∈ Rξ1
, Z ′ ⊆ Zn}.

Take the leastm such thatu ∈ Zm. We have for all
w ∈ Zm−1, ⊢ ŵ ⊃ 〈ξ∗1〉X̃

′ for someX ′ ⊆ X . We also
have(u, Z ′

m) ∈ Rξ1
for someZ ′

m = {v1, . . . , vk} ⊆ Zm.
Let X1, . . . , Xk ⊆ X such that∀j : 1 ≤ j ≤ k, we
have(vj , Xj) ∈ Rξ∗

1
andX ′ =

⋃
j=1,...,k Xj . By an

argument similar to the previous case we can show that
û∧ 〈ξ1〉〈ξ∗1 〉X̃

′ is consistent. Hence we getû∧ 〈ξ1; ξ∗1〉α
is consistent. Therefore from axiom (A3c) we have
û ∧ 〈ξ∗1 〉α is consistent.
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Theorem 4 For all β ∈ CL(α0), for all u ∈ W , M,u |= β
iff β ∈ u.

The theorem follows from lemma 3 by a routine inductive
argument.

Decidability: Since the size of the action set|Σ| is con-
stant, the size ofCL(α0) is linear in|α0|. Atoms are max-
imal consistent subsets ofCL(α0), hence|AT (α0)| is ex-
ponential in the size ofα0. From the completeness theorem
we get that for a formulaα0, if α0 is satisfiable then it has
a model of exponential size, i.e.|W | = O(2|α0|). For all
game strategy pairsξ occurring inα0, the relationRξ can
be computed in time exponential in the size of the model.
Therefore it follows that the logic is decidable in nondeter-
ministic double exponential time.

Extensions
Concurrency operator: Concurrency as introduced in
game logic (van Benthem, Ghosh, and Liu 2007) can be rep-
resented in our framework with the addition of the operator
ξ1 × ξ2 in the syntax of game strategy pairs. For instance,
(g1, σ1) × (g2, σ2) would mean that the gameg1 is played
with a strategy conforming toσ1 and concurrently, the game
g2 is played with a strategy conforming toσ2. The semantics
can be defined in the usual manner:

• Rξ1×ξ2
= {(u,X) | X = X1 ∪ X2 such that

(u,X1) ∈ Rξ1
and(u,X2) ∈ Rξ2

}.

It is easy to see that the completness theorem also follows
with the addition of the following axiom.

• 〈ξ1 × ξ2〉α ≡ 〈ξ1〉α ∧ 〈ξ2〉α.

Test operator: The test operator as in dynamic logic can
also be added into the syntax of game strategy pairs. For
β ∈ Φ, the interpretation ofβ? ∈ Γ would be to test whether
β holds at the particular state and if yes, continue else fail.
The semantics can be given as:

• Rβ? = {(u, {u}) |M,u |= β}.

The test operator gives the ability of checking for cer-
tain conditions and then deciding which game to proceed
with. This construct in particularly interesting in our frame-
work, since unlike programs we have players in the game.
For instance, letπ denote the strategy specification of
player2 andσ the specification of player1. The formula
(g1, π);win2?; (g2, σ) says that ing1 if player 2 by employ-
ing a strategy conforming toπ can ensurewin2 then proceed
with the gameg2 where player 1 playsσ. Note that if the test
fails theng2 is not played. This is in contrast to the tests per-
formed in a strategy specification. In a specification if the
test fails then the player is free to choose any action.

With the addition of the following axiom, the complete-
ness theorem also goes through.

• 〈β?〉α ≡ β ⊃ α

Discussion
The logical interaction between strategy specifications and
game structure is explicated by the axioms, but this is as
yet unsatisfactory. Ideally, this is best accomplished by
an equational theory⊢E so that one rule suffices (in the
presence of induction): from⊢E (g1, σ1) = (g2, σ2) in-
fer ⊢ 〈(g1, σ1)〉α ≡ 〈(g2, σ2)〉α. We need further work on
strategy structure as we have on Kleene algebras.

As we remarked at the beginning, we see this study
as initial: one among the natural but missing game theo-
retic notions is that of players’ ability to switch strategies:
whereby a player plays strategyµ1 till a particular objective
is achieved and then switches to strategyµ2. While we can
describe such changes at least at the atomic level, theratio-
nale for switching is missing.

Shoham (2003) advocates incorporating elements of ra-
tionality and utility into programming languages. This
makes eminent sense; we merely add a footnote that strate-
gies provide the environments in which such programs (with
goals and preferences) are to be interpreted.
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Appendix
Soundness
Axiom (A3b): Suppose〈ξ1; ξ2〉α ⊃ 〈ξ1〉〈ξ2〉α is not valid.
Then there existsM andu such thatM,u |= 〈ξ1; ξ2〉α and
M,u 6|= 〈ξ1〉〈ξ2〉α. SinceM,u |= 〈ξ1; ξ2〉, from semantics
we have there exists(u,X) ∈ Rξ1;ξ2

such that∀w ∈ X ,
M,w |= α. From definition ofR, ∃Y = {v1, . . . , vk} such
that(u, Y ) ∈ Rξ1

and∀vj ∈ Y there existsXj ⊆ X such
that(vj , Xj) ∈ Rξ2

and
⋃

j=1,...,k Xj = X . Therefore we
get ∀vk ∈ Y , M, vk |= 〈ξ2〉α and hence from semantics,
M,u |= 〈ξ1〉〈ξ2〉α. This gives the required contradiction.

Suppose〈ξ1〉〈ξ2〉α ⊃ 〈ξ1; ξ2〉α is not valid. Then there
exists M and u such thatM,u |= 〈ξ1〉〈ξ2〉α and
M,u 6|= 〈ξ1; ξ2〉α. We haveM,u |= 〈ξ1〉〈ξ2〉α iff there
exists(u, Y ) ∈ Rξ1

such that∀vk ∈ Y , M, vk |= 〈ξ2〉α.
M, vk |= 〈ξ2〉α iff there exists(vk, Xk) ∈ Rξ2

such that
∀wk ∈ Xk, M,wk |= α. Let X =

⋃
k Xk, from defini-

tion of R we get(u,X) ∈ Rξ1;ξ2
. Hence from semantics

M,u |= 〈ξ1; ξ2〉α.

Axiom (A4): To show the soundness of axiom (A4), we
need to consider the cases (C2) to (C7). Soundness of one
direction (⊃ ) is easy to see. Let us consider the other direc-
tion ( ⊂ ). The root ofg is ani node therefore anyı strategy
should consider all moves enabled at the root. (A4) case
(C2) says, for anı specification which is not of the form
σ ⇒ π, if at all enabled edgesam, the subtreetam

satis-
fies 〈tam

, π〉α then〈g, π〉α holds. Case (C4) has a playeri
specification. This says that if at the root node there is some
choiceaj that playeri can make conforming to the specifi-
cation such that for the subtree〈taj

, [ψ 7→ a]i〉α holds then
the number of branches at the root is irrelevant and therefore



〈g, [ψ 7→ a]i〉α holds as well. For (C5) the important point
to note is the fact if an edgeu

a
−→ w satisfies a specification

σ then allw′ with u
a

−→ w′ satisfiesσ. This is because sat-
isfaction ofσ depends only onu and the actiona, it does not
depend on the target node. Case (C6) and (C7) also follows
quite easily.

The interesting case is when the root ofg is ani node and
when the specification is of the formσ ⇒ π, this is specified
in (C3). For a strategyτ of playerı to satisfyσ ⇒ π ong, it
should make sure of the following:

• for each choiceam ∈ A, if the choice conforms withσ
then the strategy ontam

should satisfyπ.

• for each choiceam ∈ A, which does not conform with
σ playerı is allowed to employ any strategy on the game
tam

.

From the above observation, the soundness of (A4) case
(C3) follows easily.

Detailed proofs
For a modelM , a stateu ∈ W and a formulaψ ∈ Ψ, we
use the notationM,u |= ψ to meanu |= ψ. The follow-
ing proposition is easy to show using a standard inductive
argument.

Proposition 5 For all i ∈ {1, 2}, for all ψ ∈ Ψ(P i), for all
u ∈W we have M,u |= ψ iff ψ ∈ u.

Lemma 1. For all g ∈ G, for all i ∈ {1, 2} and
σ ∈ Strat i(P i), for all X ⊆ W and for allu ∈ W the
following holds:

1. if (u,X) ∈ R(g,σ) thenû ∧ 〈g, σ〉X̃ is consistent.

2. if û∧〈g, σ〉X̃ is consistent then there existsX ′ ⊆ X such
that(u,X ′) ∈ R(g,σ).

Proof: By induction on the structure of(g, σ).
For atomic gameg = (i, x), from axiom (A4) case (C1)

we get〈(i, x), σ〉α ≡ turni ∧ α. The lemma follows from
this quite easily. For the case wheng is a single edge, i.e.
g = ((i, x), a, (j, y)), it is easy to see that the lemma holds.

Let g = ℜ(i, x, A) for A = {a1, . . . , ak}.
σ ≡ [ψ 7→ a]i:

Suppose(u,X) ∈ R(g,σ), since enabled(g, u) holds
we have there exists setsY1, . . . , Yk such that for all
j : 1 ≤ j ≤ k, for all wj ∈ Yj we haveu

aj

−→ wj . Since
u is ani node, any strategy ofi will pick a unique edge atu.
We have the following two cases:

• M,u |= ψ: From semantics, the strategy should choose
a wa such thatu

a
−→ wa and (wa, X) ∈ R(ta,σ). By

induction hypothesis, we havêwa∧〈ta, σ〉X̃ is consistent.
Henceû ∧ 〈a〉〈ta, σ〉X̃ is consistent.

• M,u 6|= ψ: The strategy can choose anywj such that

u
aj

−→ wj and(wj , X) ∈ R(tj ,σ). By induction hypothe-

sis,ŵj ∧ 〈tj , σ〉X̃ is consistent. Hencêu ∧ 〈aj〉〈tj , σ〉X̃
is consistent.

From axiom (A4) case (C4) we getû∧〈g, σ〉X̃ is consistent.

Supposêu ∧ 〈g, σ〉X̃ is consistent. From axiom (A4)
it follows that there exists setsY1, . . . , Yk such that for all
j : 1 ≤ j ≤ k, for all wj ∈ Yj we haveu

aj

−→ wj and hence
enabled(g, u) holds. LetX = {v1, . . . , vm}. We have the
following two cases:

• if M,u |= ψ: then from case (C4),̂u ∧ (〈a〉〈ta, σ〉X̃)
is consistent. Hence we get there existswa such that
u

a
−→ wa and ŵa ∧ 〈ta, σ〉X̃) is consistent. By in-

duction hypothesis there existsX ′ ⊆ X such that
(wa, X

′) ∈ R(ta,σ) and by definition ofR we have
(u,X ′) ∈ R(g,σ).

• if M,u 6|= ψ: then from case (C4), û ∧∨
aj∈A 〈aj〉〈tj , σ〉X̃. Therefore there existswj such

that u
aj

−→ wj and ŵj ∧ 〈tj , σ〉X̃ is consis-
tent. By induction hypothesis there existsX ′ ⊆ X
such that (wj , X

′) ∈ R(tj ,σ) and therefore we have
(u,X ′) ∈ R(g,σ).

σ ≡ [ψ 7→ a]ı, π1 + π2, π1 · π2 ∈ Strat ı(P ı):
Suppose(u,X) ∈ R(g,π), sinceenabled(g, u) holds, we

have there existsY1, . . . , Yk such that for allj : 1 ≤ j ≤ k,
for all wj ∈ Yj , we haveu

aj

−→ wj . Sinceu is an i
node, any strategyτ of ı conforming toπ will have all the
branches atu (by definition of strategy). Therefore we get
for all wj with u

aj

−→ wj , there existsXj ⊆ X such that
(wj , Xj) ∈ R(tj ,π) andX =

⋃
j=1,...,k Xj . By induction

hypothesis and the fact thatXj ⊆ X , we haveŵj ∧〈tj , π〉X̃
is consistent. Hence from axiom (A4) case (C2), we con-
clude that̂u ∧ 〈g, σ〉X̃ is consistent.

Supposêu ∧ 〈g, π〉X̃ is consistent. From axiom (A4) we
get thatû ∧ g

√
is consistent. This implies that there exists

setsY1, . . . , Yk such that for allj : 1 ≤ j ≤ k, for all
wj ∈ Yj we haveu

aj

−→ wj and henceenabled(g, u) holds.
From case (C2), we havêu ∧ (

∧
aj∈A [aj ]〈taj

, π〉α) is con-

sistent. Therefore for allj such thatu
aj

−→ wj , we have
wj ∧ 〈taj

, π〉X̃ is consistent. By induction hypothesis there
existsX ′

j ⊆ X such that(wj , X
′
j) ∈ R(taj

,π). Let X ′ =⋃
j=1,...,k X

′
j , by definition ofR we have(u,X ′) ∈ R(g,π).

The cases whenσ ≡ σ1 · σ2, σ1 + σ2, π ⇒ σ1 follows
easily from axiom (A4) cases (C5) and (C6). Since the root
of g is ani node the case whenσ ≡ π ⇒ σ1, also follows
from case (C7) and the induction hypothesis.

The interesting case is when the root ofg is ani node and
when the specification isσ1 ⇒ π.

Let g = ℜ(i, x, A) where A = {a1, . . . , ak} and
σ ≡ σ1 ⇒ π.
Suppose(u,X) ∈ Rg,σ sinceenabled(g, u) holds, its easy
to show that̂u∧g

√
is consistent. For a strategyτ of playerı

to satisfyσ1 ⇒ π ong, it should make sure of the following:

• for each edgeaj ∈ A, if u
aj

−→ wj conforms withσ1 then
the strategy ontj should satisfyπ.



• for each edgeaj ∈ A, if u
aj

−→ wj does not conform with
σ1 then any strategy can be employed on the gametj .

From the above observations and axiom (A4) case (C3),
we getû ∧ 〈g, σ1 ⇒ π〉X̃ is consistent.

Part 2 of the lemma again follows from (C3) and a similar
argument. 2

Lemma 2. For all ξ ∈ Γ, for all X ⊆ W andu ∈ W , if
û ∧ 〈ξ〉X̃ is consistent then there existsX ′ ⊆ X such that
(u,X ′) ∈ Rξ.
Proof: By induction on the structure ofξ.

• ξ ≡ (g, σ): Supposêu ∧ 〈g, σ〉X̃ is consistent. From
lemma 1 item 2, it follows that there existsX ′ ⊆ X such
that(u,X ′) ∈ Rξ.

• ξ ≡ ξ1 ∪ ξ2: By axiom (A3a) we get̂u∧ 〈ξ1〉X̃ is consis-
tent orû ∧ 〈ξ2〉X̃ is consistent. By induction hypothesis
there existsX1 ⊆ X such that(u,X1) ∈ Rξ1

or there
existsX2 ⊆ X such that(u,X2) ∈ Rξ2

. Hence we have
(u,X1) ∈ Rξ1∪ξ2

or (u,X2) ∈ Rξ1∪ξ2
.

• ξ ≡ ξ1; ξ2: By axiom (A3b), û ∧ 〈ξ1〉〈ξ2〉X̃ is consis-
tent. Hencêu∧ 〈ξ1〉(

∨
(ŵ ∧ 〈ξ2〉X̃)) is consistent, where

the join is taken over allw ∈ Y = {w | w ∧ 〈ξ2〉X̃ is
consistent}. So û ∧ 〈ξ1〉Ỹ is consistent. By induction
hypothesis, there existsY ′ ⊆ Y such that(u, Y ′) ∈ Rξ1

.
We also have that for allw ∈ Y , ŵ ∧ 〈ξ2〉X̃ is consis-
tent. Therefore we get for allwj ∈ Y ′ = {w1, . . . , wk},
ŵj ∧ 〈ξ2〉X̃ is consistent. By induction hypothesis, there
existsXj ⊆ X such that(wj , Xj) ∈ Rξ2

. Let X ′ =⋃
j=1,...,k Xk ⊆ X , we get(u,X ′) ∈ Rξ1;ξ2

.

• ξ ≡ ξ∗1 : Let Z be the least set containingX and closed
under the condition: for allw, if ŵ ∧ 〈ξ1〉Z̃ is consistent,
thenw ∈ Z. By definition ofZ and induction hypothesis,
we get for allw ∈ Z, there existsXw ⊆ X such that
(w,Xw) ∈ Rξ∗

1
. It is also easy to see that⊢ X̃ ⊃ Z̃.

Using standard techniques, it is also easy to show that
⊢ 〈ξ1〉Z̃ ⊃ Z̃.

Applying the induction rule (IND), we have⊢ 〈ξ∗1 〉Z̃ ⊃ Z̃.
By assumption,̂u ∧ 〈ξ∗1 〉X̃ is consistent. Sôu ∧ 〈ξ∗1〉Z̃ is
consistent. Hencêu∧Z̃ is consistent and thereforeu ∈ Z.
Thus we have(u,X ′) ∈ Rξ∗

1
for someX ′ ⊆ X .

2
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