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Abstract

We consider a propositional dynamic logic whose programs
are regular expressions over game - strategy pairs. At the
atomic level, these are finite extensive form game trees with
structured strategy specifications, whereby a playerdegy

may depend on properties of the opponent’s strategy. The
advantage of imposing structure not merely on games or on
strategies but on game - strategy pairs, is that we can speak
of a composite game followed by ¢’ whereby if the oppo-
nent played a strategyin g, the player responds witkl in

g’ to ensure a certain outcome. In the presence of iteration, a
player has significant ability to strategise taking intocact

the explicit structure of games. We present a complete ax-
iomatization of the logic and prove its decidability. Thel®
used combine techniques from PDL, CTL and game logics.

Overview

Strategies are the unsung heroes of game theory.
Johan van Benthem.

achieved for two-person zero-sum games, advice functions
for multi-player games with overlapping objectives have
been hard to come by. Aumann and Dreze argue that such
a prescriptive game theory must account for the beliefs and
expectations each player has about strategies followed by
other players. Clearly, in any such study, strategies danno
be viewed as unstructured atomic objects arbitrarily picke
from a suitably large set, but accorded first class citizgnsh
That is, they are seen as composite objects, function deter-
mined by structure. This calls for a grammar of strategy
construction, which in turn depends on the structure of the
game in which the strategy is employed.

Strategies with unbounded memory constigltebal rea-
soning at the level of the game arena, since, in principle,
details about game structure and trajectories of plans ean b
coded up into them. However, bounded memory strategies
can only actiocally, but can exploit game structure effec-
tively. The maxim,Think globally, act locally, is apt for
structure sensitive strategizing.

In one sense, game theory is all about strategic reasoning. There have been many logical studies in this direction.
Games are defined by sets of rules that specify what moves The work on alternating temporal logic (Alur, Henzinger,
are available to each player, and according to her own pref- and Kupferman 1998) considers selective quantification ove
erences over the possible outcomes, every player plans herpaths that are possible outcomes of games in which play-
strategy. If the game is rich enough, the player has accessers and an environment alternate moves. The emphasis is
to a wide range of strategies, and the choice of what strat- 0n the existence of a strategy for a coalition of players to
egy to employ in a game situation depends not only on the force an outcome. In (Harrenstein et al. 2003) and (van der
player’'s understanding of how the game can proceed from Hoek, Jamroga, and Wooldridge 2005), logics are developed
then on, but also based on his expectation of what strategies to describe equilibrium concepts and for strategic reampni
other players are following. (Chatterjee, Henzinger, and Piterman 2007) looks at a logic

While this observation holds true of much of game play- Where quantification over strategy terms is part of the laigic
ing, we find such reasoning hardly typical of analysis in formalism and study its relationship with alternating temp
game theory. In this respect game theory largely consists rallogic and other variants. All of the above mentioned log-
of reasoningabout games rather than reasonimggames. It ics have the common property that the game arena is taken
is assumed that the entire structure of the game is laid out to be fixed and a functional notion of strategy is adopted.
in front of us, and we reason from above, predicting how Strategies are taken to be atomic objects whereby the log-
rational players would play, and such predictions are sum- ical structure present within the strategy is not taken into
marised into assertions on existence of equilibria. Thigty ~ account for analysis.
of study mostly suffices to focus on existence of strategies  The idea of taking into account the structure available
forcing certain outcomes. within strategies and making assertions about a specific

And yet, as Aumann and Dreze (2005) point out, this is strategy leading to a specified outcome is, of course, not
not how game theory started. The seminal work of von Neu- new. Van Benthem (2001; 2002) uses dynamic logic to de-
mann and Morgenstern envisaged game theory as constitut-scribe games as well as strategies. When dealing with fi-
ing advice for players in game situations, so that strategie nite extensive form games, this approach of describing the
may be synthesized accordingly. While this was summarily complete strategy explicitly in a dynamic logic framework



is appropriate, however the technique does not generalise s — s’ for somea € ¥.}. A game positiors is a leaf node

satisfactorily to games on graphs. _ _ (or terminal node) ifs = 0, let S’/ denote the set of all

On the other hand, propositional game logic (Parikh |eaf nodes of7. The turn function\ : S — {1,2} asso-
1985), the seminal work on logical aspects of game theory, cjates each game position with a player.
talks of existence of strategies, but builds compositecstru Technically we need player labelling only at the non-leaf
ture into games. (Goranko 2003) looks at an algebraic char- nodes. However, for the sake of uniform presentation, we do
acterisation of games and presents a complete axiomatiza-not distinguish between leaf nodes and non-leaf nodes as far
tion of identities of the basic game algebra. Pauly (2001) a5 player labelling is concerned.
has built on this to provide interesting relationships kesw Figure 1(a) shows an example game tree. Here nodes are
programs and games, and to describe coalitions to achieve apelled with the players and edges represents the actons.
desired goals. Goranko (2001) relates Pauly’s coalitign lo playin T is a finite pathp : so =% s, --- <% s, wheres
ics with work done in alternating temporal logic. In this is a leaf node o0 ! k F
line of work, the game itself is structurally built from atamn Let7 — 2 wheni — 1 and7 = 1 wheni — 2. A Strategy
objects. However, the reasoning done is about existence for playeri, is a subtree of” where for each playsrnode,

of strategies and not reasonimgth strategies: the ability there is a unique outgoing edge and for playevery move

of a player to strategize in response to the 0ppoNent's ac- ;< ded. Figure 1(b) shows a strategy for player the
tions. (Ghosh .2008) presents a complete axiomatisation (.)f game tree Figure 1(a). Fore {1,2}, let Q) denote the set
a qu'c describing both games and strategies in a dynam.lc of all strategies for player in the game. For a treé’, let
Isczgell(t:efgrl%rgework, but again the assertions are about atomic frontier(T) denote the set of all leaf nodes &t

In this paper, we make a small contribution to the logi- . .
cal study of games and strategies. We look at a framework y \z; y
where both games and strategies are structurally built and
where strategizing by players is explicitly representeithé 1 : v 2 : Y2 x : Y1
formulas of the logic. We suggest that considering game / \ / \ / \
- strategy pairs is useful: suppose that we have a 2-player ° ¢ * ¢ * ¢
2-stage game; followed by g». Consider player 1 strate- @) (b)
gizing at the end of;, wheng, is about to start; her plan-
ning depends not only how, is structured, but also how Figure 1: Game and strategy.
her opponent had played in. Thus her strategizing in the
composite game ; - is best described as follows: consider
g1 in extensive form as a tree, and the subtree obtained by tr
opponent employing; whengs starts from any of the leaf
nodes of this subtree, play accordingsto We encode this

The formulas of the logic refer to extensive form game
ees. One convenientway of representing the tree is te spec
ify it in the following syntax.

as(g1,m); (g2,0), and sedgs, o) as a response t@, 7). Syntax for game trees: Let Nodes be a finite set. The
Thus the “programs” of this logic are game - strategy pairs finite game structure is specified using the syntax:
of this kind. G = (i,) | Za,es((i,2), G, ta,)

We consider a propositional dynamic logic, the programs i
of which are regular expressions over atomic pairs of the WhereJ C X, z € Nodes, i € {1,2} andt,,, € G.
form (g, ) whereg is a finite game tree in extensive form, _ Giveng € G we define the tre€’;, generated by induc-
and o is a strategy specification, structured syntactically. tvely as follows.
The central syntactic device consists of interactive stmac e g= (i,x): Ty = (Sg, =>4, g, Sg,0) WhereS, = {s,},
in strategies and algebraic structure not only on gamesbut o Ag(52) =i andsy o = sg.
game - strategy pairs. While the technical result is a com-
plete axiomatization and the decidability of the satisfigybi
problem, we see this contribution as an advocacy of studying
algebraic structure on strategies, induced by that on games

e g=((i,x),a1,tq,) + -+ ((4,2), ak, tq,): Inductively
we have treed, ... T) where forj : 1 < j < k,T; =
(Sj, =, )\j, Sj70). Define Tg = (Sg, g, )\g, 8g70)

where
Preliminaries = Sg={s2}USn U...U S, andsyo = s,.
Game tree - igESSE) = 4 and for allj, for all s € St,, A\g(s) =
j S).

Let N = {1,2} be the set of players;; for i € {1,2}

be a finite set of action symbols which represent moves of The edge relation is the union of the edge relation on the

players ant = ¥; U X,. individual tree along with the edges %g sj,0 for j :
Let (S,=, so) be a finite tree rooted at, on the set 1<j<k
of verticesS and = (S x ¥) — S. An extensive o
form game tree is given by T = (S, =, 50, \) where S Strategy specification
is the set of game positions arg is the initial game po- e give a syntax to specify strategies in a structured man-

sition. For a game positios € 5, let 5= {s € S| ner. Atomic strategy formulas specify, for a player, what



conditions she tests for before making a move. We consider

the case when these conditions are simply boolean formulas.

Composite strategy specifications are built from atomicsone
using connectives (without negation). We use an implicatio
of the form: “if the opponent’s play conforms to a strategy
then playo”. This connective is crucial to capture the notion
of players strategizing in response to opponents actions.
For a countable set of propositio®¥, let U(P?) be the
boolean formulas oveP’ built using the following syntax:

U(P'):=peP'| =t |1 V.

Fori € {1,2}, let Strat’(P?) be the set of strategy speci-
fications given by the following syntax:

Strat'(P%) == [ —a]' |01+ 02 | 0109 | T =0

wherer € Strat' (P! N P?),+ € ¥(P?) anda € &;.

The idea is to use the above constructs to specify proper-
ties of strategies. For instance the interpretation of pepla
specificationp — a]* will be to choose moved” for every
1 node where holds. Consider the game given in Figure 1
(a). Suppose the propositignholds at the root, then the
strategy depicted in Figure 1 (b) conforms to the specifica-
tion [p +— a]'.

The specificationr = o says, at any node playésticks
to the specification given byif on the history of the play, all
moves made by conform tox. In strategies, this captures

Reasoning about strategies

We present a logic to reason about strategies with respect to
a single extensive form game treeStrategy specifications
are employed in the formulas of the logic to partially spgcif
strategies rather than giving a complete description.

Syntax: Letg € G be an extensive form game tree. The
syntax of the logic is given by:

b:=peP|-alarVazl|((g,0))y

wherei € {1,2}, o € Strat*(P") andy € U(P).

The intuitive meaning of(g, o))~ is: in the gamegy, the
player has a strategy conforming to the specificatiovhich
ensuresy. Since we are considering a fixed gamethis
implies thaty holds at all the leaf node of the appropriate
strategy. The restriction afto boolean formulas over the set
of propositions is due to this reason. Nesting of the moglalit
((g,0)) does not make sense for a fixed game. At a later
stage we will look at composing games at which paign
be taken to be any arbitrary formula.

Semantics: The modelM = (T,,V) where T, =
(S, =, s0, ) is the extensive form game tree associated
with g andV is the valuation functio : S — 2.
The truth of a formulax € ® in a modelM and a position
s (denotedV, s = «) is defined as follows:

the aspect of players actions being responses to the oppo-4 M,s=piff pe V(s).

nent's moves. The opponent’s complete strategy may not be

available, the player makes a choice taking into account the
apparent behaviour of the opponent on the history of play.

LetX; = {a1,...,an}, we use the abbreviatiom/!’
[T+ ai]+ -+ [T — ap]. The intuitive meaning is, any
strategy of playef conforms tonull’.

Semantics: Given a state: and a valuatiorV : v — 2F,
the truth of a formula) € ¥(P?) is defined as follows:

o ul=piff peV(u).
o u = —iff u b~ .
° uj:wl\/wgiﬁuj:¢1oru|:w2.

We consider game trees along with a valuation function
V : S — 2P, Given a strategy: of playeri and a node
s € u, letps @ spagsy - s, = s be the unique path in
i from the root node tas. Forallj : 0 < j < m, let
out,, (s;) = a; andout,_(s) be the unique outgoing edge
in 1 ats. For a strategy specification € Strat*(P?), we
define wheru conformsto o (denoted: |=; o) as follows:

e 1 =; o iff for all player i nodess € pu, we have
Pss S ’:i o

where we defingy, s; |=; o foranys; in p, as,

ps, 8; i [ a]tiff s; = ¢ impliesout,_(s;) = a.

ps,Sj =i o1+ o2 iff pg,sj =i 01 00 pg, 55 =4 02,

ps,Sj =i o1 - 02 iff pg,s; =i o1 andpg, s; =4 0.

ps,S; =i ™ = o iff for all player 7z nodess;, € p, such

thatk < j, if ps, sy =7 mthenp,, s; =; 0.

Above,r € Strat'(P' N P?) andy € U (P?).

o M,s | —aiff M,s = a.
o M,sk=a1Vasiff M,sk=ajorM,skE= as.

e M,s = ((g,0))y iff 3u € Q' such thatu =; o and for
all s’ € frontier(u), M,s" = .

The formula{(g, o))~ says that there exists a strategy for
playeri conforming too such that all the leaf nodes satisfy
~. The dual[(g, o)]y says that for all strategies of player
conforming too, there exists a leaf node which satisfy

Strategy comparison

Consider the formulé(g, null"))~y. The formula asserts that
playeri can ensure the reward no matter what player
does. This makes no referencehtaw playeri may achieve
this objective, and thus is similar to assertions in mostgam
logics. Now consider the formul&(g,o))y. This says
something stronger: that there exists a strate@gatisfying

o for playeri such that irrespective of what playeplays,

~ is guaranteed. Here, the mechanigmsed by playef to
ensurey is specified by the property.

The extensive form game trgenerely defines the rules of
how the game progresses and terminates. However, to com-
pare strategies of players, we need to specify the objective
Fori € {1,2}, let R; be a finite set of rewards for player
i, ='C R; x R;, be a preference ordering a®; and let
R = Ry x R,. Let the payoff functiorpayoff : S — R
associate each leaf node with areward. For a leaf apaled
payoff (s) = (r1,72), let payoff (s)[i] denote the'th com-
ponent ofr, i.e. payoff (s)[1] = r1 andpayoff (s)[2] = r2.

In order to refer to rewards of the players in formulas of
the logic, we use special propositions to code them up. This



is similar to the approach adopted in (Bonanno 2002). With-
out loss of generality assume thgt <! 7 <! ... <! ¢l,
Let®; = {61,...,0}} be a set of special propositions used
to encode the rewards in the logic, i%.corresponds to the
rewardr]. Likewise for player 2, corresponding to the set
R», we have a set of propositiol@,. The valuation func-
tion satisfies the condition:

e For all statess, fori € {1,2}, {6},...,67} C V(s) iff

payoff (s)[i] = r].
The preference ordering on the rewards for each player is
simply inherited from the implication available in the logi

Coming to the notion of strategy comparison, we say that
o is better for playeri thano’ if the following condition
holds: irrespective of what playérplays if there exists a
strategy.’ satisfyingo’ such that; is guaranteed, then there
also exists a strategy satisfyingo which guarantees,.
This can be expressed by the formula,

BT'(0,0') = N ((9.9")0: > {(9,0))0:)

0;€0;

Given a finite set of strategy specificatiolis for player
i, we say that is the best strategy if the following holds:

Best' (o) = /\ BT"(0,0")
o'eYt
Note that in the case of a finite extensive form game tree,
we can code up the game positions uniquely using propo-
sitions. In this case, it is possible to represent a complete
strategy in terms of a strategy specification. At each game

Syntax: Fori € {1,2}, let P’ be a countable set of propo-
sitions andP = P! U P2. The syntax for the logic is given
by:

$i=peP|-alaVas|(a

where¢ € T, the sef” consists of game strategy pairs which
is defined below. As a convention we use= p vV —p. We
will also make use of the following abbreviation:

o Letg' = ((i,2),a,(j,y)) andg’ = ((z,2), a, (7, y)),
- (a)a = turn; > (¢", [T — a]har A
turng O {g*, [T — a]")a
From the semantics it will be clear that this gives the usual
interpretation for(a)a, i.e. (a)a holds at a state iff there

is a statew such that: - w anda holds atw.

In the syntax of the logic represents regular expressions
over game-strategy paifg, o). The intuitive meaning of
(g9, 0)a being that in the game the player has a strategy
conforming to the specificatiomn which ensures.

Game strategy pairs: Syntax for game strategy specifica-
tion pair is given by:

I'=(g,0) | &:& & U&E €

whereg € G, o € Strat'(P?).

The atomic constructg, c) as mentioned in the earlier
section, specifies that in gamgea strategy conforming to
specificationo is employed. Game strategy pairs are then
composed using standard dynamic logic connectigesés
would mean playing; or &;. Sequencing in our setting is
does not mean the usual relational composition of games.

position, it specifies a unique action. Suppose the number of Rather, it is the composition of game strategy pairs of the

playeri game positions arg and the propositiop;, . . . p¥
uniquely identifies all of these positions, then the spemific
tion representing a complete strategy would have the form
o = [p} — ai]---[pF — ax]. In this particular scenario,

form (g1,01); (g2,02). This is where the extensive form
game tree interpretation makes the main difference. Since
the strategy specifications are intended to be partial, & pai
(g9,0) gives rise to a set of possibilities and therefore com-

the notion of strategy comparison and best strategy reducesPosition over these trees need to be performgtlis the

to the classical notions by taking the &tto be the set of
all strategies for player.

Composition of game - strategy pairs

iteration of the ’;’ operator.

Model: The formulas of the logic express properties about
game trees and strategies which are composed using tree
regular expressions. These formulas are to be interpreted o

In the previous section we looked at strategies being defined game positions and they make assertions about the frontier
by their properties. Strategy specifications are strutfjura  of the game trees which results from the pruning performed
built and the reasoning performed was with respect to one as dictated by the strategy specification. Therefore the-mod
fixed extensive form game tree. Instead of working with a els of the logic are game trees, but this can potentially be an
single game, we can look at complex games arising out of infinite set of finite game trees. Alternatively, we can think
composition of these atomic games. In this context, we ar- of these game trees as being obtained from unfoldings of a

gue that reasoning about game - strategy pairs and their com-

Kripke structure. As we will see later, the logic cannot dis-

position is more useful than composing games and analysing tinguish between these two.

strategies separately. Here we present a logic to reasam abo

A model M = (W,—,\,V) whereW is the set of

game - strategy pairs. Both strategy specification and game states (or game positions), the relatier:C W x ¥ x W,

structure is embedded into the syntax of the logic.

The logic
The logic is a simple dynamic logic where we take regu-

lar expressions over game-strategy pairs as programs in the

logic.The formulas of the logic can then be used to spec-
ify the result of a player following a particular strategyan
specified game enabled at a state.

V : W — 2F is the valuation function and : W — {1, 2}
is a player labelling function which satisfies the following

property:
e Forallw € W, if w % w' and\(w') = 4 then for all
w” such thaty %+ w"”, we have\(w”) = i.

The truth of a formulax € ® in a modelM and a position
w (denotedV, w = «) is defined as follows:



M,w = piff pe V(w).
M,w | —aiff M,w [~ a.
M,wEa Vaiff Mw | aq or Myw = as.

M,w = (§aiff I(w, X) € R such thatvw’ € X we
haveM, w' = a.

In the semantics of¢)«, the statev can be thought of as
the starting game position aid, the set of leaf nodes of the

game. We require that the player has a strategy confirming

to the specification to ensure thatholds in all of the leaf
nodes.

For¢ € T, we haveR, C W x 2", To define the relation
formally, let us first assume that is defined for the atomic
case, namely whefi= (g, o). The semantics for composite
game strategy pairs is given as follows:

® Reye, = {(v,X) | Y = {v1,...,uc} such that
(u,Y) € Re, andVo; € Y there existsX; C X such
that(vj, X;) € Re, and{J;_, , X; = X}

® Reug, = Rey U R,
° Rg* = UnZO(Rﬁ)n

In the atomic case wheh= (g, o) we want a paifu, X)
to be in R, if the gamey is enabled at state and there is a
strategy conforming to the specificatiersuch thatX is the
set of leaf nodes of the strategy. In order to make this pre-
cise, we will require the following notations and definition

Restriction on trees: Forw € W, let T,, denote the tree
unfolding of M starting atw. Given a statev andg € G, let
Tw = (S}\lfp M, )\M; Sw) and Tg = (Sg; :>g7 )\gv 59,0)-
The restriction ofT,,, with respect to the game (denoted
Tw | ¢) is the subtree of,, which is generated by the struc-
ture specified byl,. The restriction is defined inductively
as follows: T, [\ g = (S,=>, A\, s0, f) Wheref : S — S,.
Initially S = {sw}, A(sw) = Ay (Sw), S0 = s, and
f(sw) = 59,0+

Foranys € S, let f(s) =t € S,. Let{a1,...,a;} be
the outgoing edges af i.e. forallj: 1 < j <k, t %g t;.
For eachu;, let {s},...,s}"} be the nodes i}, such that

s =y sl foralll: 1 <1 < m. Add nodess!,. ..

J

S and the edges =2 sé» foralll: 1 <1 < m. Also set
A(sh) = Anr(sh) and f(sh) = t;.

We say that a gamg is enabled atw (denoted
enabled(g,w)) if the tree Ty, [\ g = (S, =, ), 50, f) sat-
isfies the following property: for alk € .S,

,s}” to

. 5=10s),
o if s () thenA(s) = \y(f(s)).
For a game tred’, letQ'( T) denote the set of strategies

of playeri on the game tre€" and frontier(T) denote the
set of all leaf nodes of".

Atomic game-strategy pair: For atomic game-strategy
pairé = (g, o) we defineR, as follows:
Let g be the game with a single noge= (i, x),

e Ryo = {(u,{u})} if enabled(g,u) holds, for all
i€ {1,2},forallo € Strat'(P?).

Forg = ((4,2),a1,te, + ...+ (i, ), ak, ta,)

® Riyo) = {(u,X) | enabled(g,u) and3p € Q(T, | g)
such thaf: |=; o andfrontier(u) = X }.

z 1 u 1

(. N
T
2 —2 vy 2
Y1 T2 1
L] o L]
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Yz
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Figure 2: Model

Example 1 Let the extensive form gamgbe the one given
in Figure 1(a) and the Kripke structufd be as shown in
Figure 2(a). For the node of the structure the restriction
T. |' g is shown in Figure 2(b). This is the maximal subtree
of T,, according to the structure dictated pyFor instance
at nodev, there are twa; labelled edges presentivi and
therefore both have to be includedip | g as well.

Now consider the player 1 strategy specification=
null'. At node u, the choice &' can ensure player
1 the states{w;,v2,ws} and the choice?d’ can ensure
the states{ws,ws}. Therefore the relation?, ,) =
{(U, {w17 V2, w3})7 ('U,, {UJ4, w5})a
(vla {wlv V2, wS})v (UQ, {w47 w5})}

Suppose M,u | p and consider the specifica-
tion o [p — a]'. Sincep holds at the root,
player 1 is restricted to make the choice’ 'at wu.
Hence the relation in this case would be, )

{(uv{wlvv%w?r})v(Ulv{wl,v?vw?r})’(va{w4’w5})}'
1 1
pr *2 2/ \2
ASEA AR

(91) (92)

Figure 3:

Example 2 To illustrate the logic, consider the games
andg, given in Fig. 3. Letu be a state of the model where
g1 is enabled. Ley denote the game;; g2, i.e. the game
obtained by pasting, at each of the leaf nodes gf. We
use the following notation:

e w“: denotes the state reached after action

e w*:Y1: the state reached on following actiomsandb, .

e withi: the state reached on the sequence of action
a1bir1y1.



Let winy, winy andp be propositions whose valuations
are given byV (winy) = {w®P wb2} V(winy)
gbr wgzb2} andV (p) = {w™ }. Consider the follow-

ing specifications:

o T = [p — b1]2 . [ﬂp — b2]2_

o 0 =Tz

It is easy to see that{¢g1, 7)) wins holds atu. Player 1
does not have a strategy in the composite garteensure
winy. However, in the composite pajr= (g1, 7); (92, 0),
it is easy to see that) win, holds. Assuming that in the
gameyg; player 2 plays according to then ing, by using a
strategy which conforms te player 1 can ensurein;. In
some sense this says that reasoning in the ggaisidifferent
from reasoning iry; composed withy,. In the latter, the
additional structural information is available which cam b
used for strategizing.

For simple game structures it is quite obvious that such
reasoning can be done with a past modality. It is iteration

(@) {(a)(a1 V az) = (a)a1 V (a)as.
(b) {(a)turn; > [a]turn,.

(A3) Dynamic logic axioms:
(@) (&1U&)a = (G)aV (&)
(b) (&1:&2)a = (&1)(&2)a
(©) (€ a=aV(§)(E)a

(A4) (g,0)a = g¥ A push(g,o, ).

Inference rules

(MP) a, a>pB (NG) «
Jé] ala
(IND) {()a>«
{a>a

Axiom (A2a) does not hold for general game strategy
pairs (i.e£ € T'). In particular(€) (a1 Vasg) 2 (§)ar V() as

which provides the actual expressive power. In the presence is not valid. However (A2a) is sound sin¢€) asserts prop-

of iteration, the analysis asserts the fact that playersalen

into account the structure of the game and the opponent’s

strategy. In particular while strategizing, a player carkena

erties about a single edge.
Since the relation? is synthesised over tree structures,
the interpretation of sequential composition is quiteatiit

use of the fact that the opponent s using a bounded memory from the standard one. Consider the usual relation composi-

strategy and that with the type of strategy that is being used
the opponent can be forced into a particular region of the
game graph.

tion semantics forRe, .¢,, i.e. Re,e, = {(u, X)|3Y such
that (u,Y) € Re, and for allv € Y, (v,X) € Reg,}.
It is easy to see that under this interpretation the formula

The above mentioned reasoning can also be thought of as (¢,) (&) a > (&1;&)a is not valid. A soundness argument

players trying to attain certain local goals. If player 2ysla
to achieve the local goadin, then player 1 can use this in-
formation and respond with a strategygs to achieve the
objectivewin;. Players can then try to achieve their global
objective by performing appropriate composition of the lo-
cal objectives.

Even at the atomic level, the game structure can be quite
complicated. Atthis level, strategy specifications enadde
soning about strategies satisfying certain invariant prop
ties. Here strategizing in response to the opponent’'sractio
is captured by the construgt=- o.

Axiom system

We now present an axiomatization of the valid formulas of
the logic. We will use the following notations:

For a setA = {aj,...,ar} C %, we will use the no-
tation (¢, z, A) to denote the gam@i, x), a1, tq, + - - +
(iv .13), Ak, tak)

For gamegy, we use the formula” to denote that the game
structurey is enabled. This is defined as:

e Forg = (i,x), letgV =T.
e Forg =R(i,z, A), let
= g¥ =turni A (Nj=y, 1 ({ag) T Alaglty)).

The axiom schemes

(A1) Propositional axioms:
(a) Allthe substitutional instances of tautologies of PC.
(b) turn; = —turns.

(A2) Axiom for single edge games:

for axiom (A3b) is given in the appendix.

Definition of push: For all i € {1,2}, g € G,
o € Strat'(P*) anda € ®, we definepush(g, o, a) as fol-
lows. We have various cases depending on the structure of

g.
The case whep is an atomic game, i.¢.= (i, z), for all

i € {1,2} ando € Strat’(P?) we have,
(C1) push(g,o0, ) = .

Supposgy = R(i,z, A) for A = {ay,...,a}. For each
am € A let Jam = ((iax)aGM5 (.]’"ﬂy’m))’ Where(j"“ym)
is the root oft,,, .

Form = [¢ +— a]’,m + mo,m - 7 € Strat’(P7).
(C2) push(g,m,a) = N\, calam]|push(ta,,, ,a).

(C3) push(g,0c = m,«a) =
/\ ({ga,,,0) T 2 [am]push(ta,, 0 = m )
am€EA
A {Ga,, )T D [am|push(ta,,, null’, &)).

(C4) push(g, [ — a]*,a) = ‘
(¥ > (a)push(ta, [ — a]’, a)) ,
AN=Y > Vg, e l@am)push(ta,,, [V — a]’, a))).

(C5) push(g, o1 - 02, @)

\/ (<ga'm ) 0-1>pUSh(ta7n , 0102, Oé)
am€A
/\<ga7n ) 0—2>pu‘9h(ta'm , 0102, a))'



(C6) push(g, o1 + 02, )

\/ (<gam, ) Ul>pu*9h(tam ,01 + 02, 04)
am€A
\/<ga7n ) 0-2>pu‘9h(ta'm y 01 + 02, a))'
(C7) push(g,m = o,a) =
\/(lm,eA(<ga7n ) J>pu‘9h(tam y T =0, a))
The soundness of axiom (A4) is shown in the appendix.

Completeness

To show completeness, we prove that every consistent for-
mula is satisfiable. Lety, be a consistent formula, and
CL(ayp) denote the subformula closure®@fLet AT () be

the set of all maximal consistent subset<#f{ o ), referred

to as atoms. We use, w to range over the set of atoms.
Eachu € AT is a finite set of formulas, we denote the con-
junction of all formulas inu by u. For a nonempty subset
X C AT, we denote byX the disjunction of allu, v € X.
Define a transition relation aA7 () as follows:u —% w

iff w A (a)w is consistent. The valuatioW is defined as
V(w)={pe€ P|pew}and\(w) =iiff turn; € w. The
modelM = (W,— A\, V) whereW = A7 («ap). Once

the Kripke structure is defined, the game theoretic seman-
tics given earlier defines the relatidh,, ) on W x 2"V for

g € T and a strategy specificatien

2. ifun{g,o)X isconsistent thenthereexists X’ C X such
that (u, X') € R(y,0)-

A detailed proof can be found in the appendix. Item 1

follows from the axioms and the fact th&tL(«y) is rich

enough that it has the tree structure built into it as dictate

by the axioms. For item 2, we basically need to show the

following two things:

e The gamg is enabled ati.

e The existence of a strategyon g which conforms to the
specificationr such that the leaf nodes pfis X’ C X.

The strategy construction is similar to the technique used t
build the witness tree in CTL for thed quantifier. The idea

is to start atu and extend in stages, making sure that for a
playeri node the choice conforms @ and for a player
node all the branches are taken into account. Since the anal-
ysis is done over tree structures, it is evident at this gbiat

the techniques used are different from the ones in dynamic
logic.

Lemma?2 Foral { e T, forall X € Wandu € W, if

u A (€)X isconsistent then there exists X’ C X such that
(u,X') € Re.

Proof is given in the appendix.

Lemma 3 For all (§)a € CL(ap), foral u e W, u A (£«
is consistent iff there exists (u, X') € R¢ suchthat Vw € X,

However to show the completeness result, we need to also ¢ ¢ .

specify the relation between a pdir, X) being in R, )
and the consistency requirementoandX . In other words,
we need to define a new relatid#, , in terms of con-

sistency ofu and X and show that the following property
holds:
(P1) (u,X) € REW) iff (u, X) € Rig,0)-

The first attempt would be to say, X) € Rzg’g) iff
u A {g,0)X is consistent. But this definition need not sat-
isfy (=) of (P1). The trouble is, in the game theoretic defi-
nition of R, ), we requireX to be the exact set of leaves
of g for which player has a strategy conformingdo If
the definition of R had instead been “upward closed”, i.e.
(u, X) € Ry, implies foranyY 2 X, (u,Y) € Ry ),
then this approach would work.

The second attempt would be to s@y, X) € REW) iff
forall w € X, we haveu A (g, o)w is consistent. It is quite
easy to see that this definition is also unsatisfactory. The
closure of the formula is quite rich in the sense that the tree
structure as dictated by the axioms are present in the @osur
Therefore for individual atoms andw, unlessy is a single
edge gamey A (g, o)w need not be consistent at all.

What we really need is the minimal s& such that

i A {g,0)X is consistent. For this set, we have that the
pair (u, X) € R, . Lemma 1 given below formalises this
fact.

Lemmal For al ¢ € G, for al ¢ € {1,2} and

o € Strat'(P?), for all X C W and for all u € W the
following holds:

1. if (u, X) € Ry thenti A (g, o) X isconsistent.

Proof: (=) Follows from lemma 2 by considering the set
Xo={weW|aecw}

(<) Supposed(u, X) € Re such thatvw € X, a € w.
We need to show thai A (¢)« is consistent, this is done by
induction on the structure @f

e The case wheg = (g, o) follows easily from lemma 1
andé¢ = & U & follows from the induction hypothesis
and axiom (A3a).

¢ = &;&: Since(u, X) € R, there existsy” =
{v1,...,v;}, there exists set&¥, ..., X} C X such that
Uj:l.....k Xj = X, for a”j 1 <5<k, (’Uj,Xj) € Rgz
and (u,Y) € Re,. By induction hypothesis, for all
J» vj A (§2)ais consistent.  Since; is an atom and
(&2)a € CL(av), we get(éa)a € v;. Again by induction
hypothesis we have A (£;1)(&;)a is consistent. Hence
from (A3b) we havei A (£1; &)« is consistent.

¢ =¢: Ifue X thenk 4> X. We have- X > o and
hence we geti A a is consistent. From axiom (A3c) we
haveu A (£7)« is consistent.

Else we have(u, X) € Re.er. Let Zg X and
Zpnt1 = Zy U{w | (w,2') € Re,Z' C Z,}.
Take the leastn such thatu € Z,,. We have for all
W E L1, w o ()X’ for someX’ C X. We also

have(u, Z),) € Re, forsomeZ,, = {v1,..., v} C Zp,.
Let X1,..., X € X suchthatvj : 1 < j < k, we
have (v;, X;) € Re; and X' = (J,_; , X;. Byan

argument similar to the previous case we can show that
u A (€1)(&5) X is consistent. Hence we get\ (£1; &)«

is consistent. Therefore from axiom (A3c) we have
u A (&) is consistent.



O Discussion

The logical interaction between strategy specificatiorts an
game structure is explicated by the axioms, but this is as
yet unsatisfactory. ldeally, this is best accomplished by
i']rcfh;oereum 4 Forall § € CL{ao), forall u € W, M, u = § an equational theory  so that one rule suffices (in the

' presence of induction): fromtg (g1,01) = (g2,02) in-

The theorem follows from lemma 3 by a routine inductive  fert ((g1,01))a = ((g2, 02))a. We need further work on
argument. strategy structure as we have on Kleene algebras.

As we remarked at the beginning, we see this study
as initial: one among the natural but missing game theo-
retic notions is that of players’ ability to switch strategji
ponential in the size af. From the completeness theorem }g’h;:rﬁizzsdp;?\%e{hﬂ2@,;:2?}:3{; I!t?aﬁ):ét;/c\fvlﬁirlg SJ?CIZ,?
we get that for a formulay, if «q is satisfiable then it has describe such changes at least at the atomic levetathe
a model of exponential size, i.85| = O(2l*!). For all nalefor switching is missing.
game strategy pair$ occurring inao, the relationfe can Shoham (2003) advocates incorporating elements of ra-
be computed in time exponential in the size of the model. jionajity and utility into programming languages. This
Therefore it follows that the logic is decidable in nondeter 51 es eminent sense; we merely add a footnote that strate-
ministic double exponential time. gies provide the environments in which such programs (with

goals and preferences) are to be interpreted.

Decidability:  Since the size of the action sgt| is con-
stant, the size oC'L(«y) is linear in|ag|. Atoms are max-
imal consistent subsets @fL(«ayg), hence| AT (ap)] is ex-

Extensions

Concurrency operator: Concurrency as introduced in Acknowledgements

game logic (van Benthem, Ghosh, and Liu 2007) can be rep- We thank Sujata Ghosh for the various discussions and valu-
resented in our framework with the addition of the operator able comments. We also thank the anonymous referees for
1 x & in the syntax of game strategy pairs. For instance, their valuable comments and suggestions.

(g1,01) %X (g2,02) would mean that the gamg is played

with a strategy conforming te; and concurrently, the game Appendix

g2 is played with a strategy conforming4e. The semantics

can be defined in the usual manner: Soundness

Axiom (A3b):  Supposé&r;&a)a o (&1)(E2)ais notvalid.

¢ Rfl)x(& :R {(u,j() )|( X R: X1 U Xp such that Then there existd/ andu such thatM, u = (£1;&)a and
(u, X1) € R, and(u, X2) € Re, }. M, u = (&1){&)a. SinceM, u = (£&1;&), from semantics

It is easy to see that the completness theorem also follows we have there exist&:, X) € Rg, ¢, such thatvw € X,
with the addition of the following axiom. M,w = a. From definition ofR, 3Y = {v1,..., v} such
— that(u,Y’) € Re, and¥v; € Y there existsX; C X such
¢ (G xGla={E)an G that(v;, X;) € Re, andU;_, _, X; = X. Therefore we

Test operator: _The test operator as in dynamic Iog!c can  getvu, € Y, M,v, = (&)a and hence from semantics,
also be added into the syntax of game strategy pairs. For p7 4, = (¢,)(¢,)a. This gives the required contradiction.

p € @, the interpretation of? € I" would be to test whether Suppose(é; ) (€ )a o (€13 & )ar is not valid. Then there
/3 holds at the particular state and if yes, continue else fail. exists 7/ and v such thatM,u | (&)(&)a and
The semantics can be given as: M, u e (&;6)a. We haveM,u = (&)(&)a iff there
o Rgr = {(u,{u})| M,u k= 3}. exists(u,Y) € Re, such thatvu, € Y, M, v, = (§2)a.

_ B _ M, v, = (&) iff there exists(vg, X) € Re, such that
The test operator gives the ability of checking for cer- v, e X, M, w, E a. Let X = |, Xy, from defini-
tain conditions and then deciding which game to proceed tion of R we get(u, X) € Re e,. Hence from semantics
with. This construct in particularly interesting in our fine- M, u = (€1;6)a.
work, since unlike programs we have players in the game. . )
For instance, letr denote the strategy specification of AXiom (A4): To show the soundness of axiom (A4), we

player2 ando the specification of playet. The formula need to consider the cases (C2) to (C7). Soundness of one
(g1, 7); wina?; (9o, o) says that inyy if player 2 by employ- c_hrectlon (o) iseasy to see. Letus consider the other direc-
ing a strategy conforming to can ensurevin, then proceed 110N (< ). The root ofg is ani node therefore anystrategy
with the gamey, where player 1 plays. Note that if the test should consider ?II moves e;nableql at.the root. (A4) case
fails thengs is not played. This is in contrast to the tests per- (C2) says, for an specification which is not of the form
formed in a strategy specification. In a specification if the ¢ = 7 if at all enabled edges,,,, the subtred,, satis-
test fails then the player is free to choose any action. fies (tq,,, 7)o then(g, m)o holds. Case (C4) has a playier
With the addition of the following axiom, the complete- specification. This says that if at the root node there is some
ness theorem also goes through. choicea; that playeri can make conforming to the specifi-
cation such that for the subtrég,,, [ — a]*)a holds then
e (fla=p>a the number of branches at the root is irrelevant and thezefor



(g, [ — a]*)a holds as well. For (C5) the important point
to note is the fact if an edge —— w satisfies a specification

o then allw’ with « - ' satisfiess. This is because sat-
isfaction ofo depends only om and the actiom, it does not

quite easily.

The interesting case is when the rooyd$ ani node and
when the specification is of the forsn=- «, this is specified
in (C3). For a strategy of playerz to satisfyoc = w ong, it
should make sure of the following:

e for each choice,, € A, if the choice conforms witlr
then the strategy ofy,,, should satisfyr.

e for each choices,, € A, which does not conform with
o playerz is allowed to employ any strategy on the game

ta'm .

From the above observation, the soundness of (A4) case

(C3) follows easily.

Detailed proofs

For a modelM, a statew € W and a formula) € ¥, we

use the notatiod/,u = ¢ to meanu = . The follow-

ing proposition is easy to show using a standard inductive
argument.

Proposition 5 For all i € {1,2}, for all ¢ € ¥(P?), for all

u e W wehave M, u = ¢ iff ¢ € u.

Lemma 1. Forallg € G, foralli € {1,2} and

o € Strat'(P?), for all X € W and for allu € W the
following holds:

1. if (u, X) € R, thena A (g,0) X is consistent.

2. if WA (g,0) X is consistent then there exist§ C X such
that(u, X') € R(g,0)-

Proof: By induction on the structure @f;, o).

For atomic game = (i,x), from axiom (A4) case (C1)
we get((i,z),o)a = turn; A o. The lemma follows from
this quite easily. For the case whens a single edge, i.e.
g=((i,2),a,(j,y)), itis easy to see that the lemma holds.

Letg = R(i,z, A) for A = {aq,...
o = [ih — al’:

Suppose(u, X) € Ry, Since enabled(g,u) holds
we have there exists sefg;,...,Y,. such that for all

j:1<j <k, forallw; €Y; we haveu — w;. Since
w is ani node, any strategy afwill pick a unique edge at.
We have the following two cases:

e M., u = 4: From semantics, the strategy should choose
aw, such thatu - w, and (w,,X) € Ry, . By
induction hypothesis, we haw, A (t,, o) X is consistent.
Henced A (a)(t,, o)X is consistent.

o M,u [~ 1. The strategy can choose any such that
u % w; and(w;, X) € Ry, ). By induction hypothe-

sis,@; A (tj, )X is consistent. Hence A (a;)(t;, o)X
is consistent.

7a'k}-

From axiom (A4) case (C4) we gét\ (g, o) X is consistent.

Supposeu A <g,o)5€ is consistent. From axiom (A4)
it follows that there exists sefs,, ..., Y; such that for all

j:1<j <k, forallw; €Y; we haveu %, w; and hence
depend on the target node. Case (C6) and (C7) also follows ¢pgpled(g, u) holds. LetX = {vy,

..., Um}. We have the
following two cases:

o if M,u [= 1: then from case (C4)u A ({(a)(ta,0)X)
is consistent. Hence we get there exists such that
u — w, and @, A (t,,0)X) is consistent. By in-
duction hypothesis there exist&’ C X such that
(wq,X') € Ry, -y and by definition of R we have
(u, X/) S R(gﬂ).

e if Mu £ ¢ then from case (C4),u A
\/ajeA (a;)(tj,0)X. Therefore there exista; such

that w % w; and @; A (tj,0)X is consis-
tent. By induction hypothesis there exisf§’ C X
such that (w;, X') € R, ) and therefore we have
(u, X') € R(g,0)-

o = [ = alf,m + ma, T - T2 € Strat’(PY):
Supposdu, X) € R, ), Sinceenabled(g, u) holds, we
have there exist¥, ..., Y, such thatforall : 1 < j <k,

for all w; € Y;, we haveu —- w;. Sinceu is ani
node, any strategy of 7 conforming tor will have all the
branches at. (by definition of strategy). Therefore we get

for all w; with u —- w;, there existsX; C X such that
(wj, X;) € R, m andX = U,_, ,X;. Byinduction

hypothesis and the fact that; C X, we havew; A (t;, m) X
is consistent. Hence from axiom (A4) case (C2), we con-
clude thatu A (g, o) X is consistent.

Supposeéi A (g, )X is consistent. From axiom (A4) we
get thatu A gv is consistent. This implies that there exists
setsYy,..., Y, such that forallj : 1 < 5 < k, for all

w; € Y; we haveu —- w; and hencenabled (g, u) holds.
From case (C2), we haven (A, ¢4 [a;](ta,, m)e) is con-

sistent. Therefore for alf such thatu —- w;, we have

wj A (tq,,m) X is consistent. By induction hypothesis there
exists X; C X such that(w;, X}) € R(tayﬂ). Let X' =
Uj=1.. X}, by definition of R we have(u, X') € Ry ).

The cases wheta = o1 - 09,01 + 02,7 = o1 follows
easily from axiom (A4) cases (C5) and (C6). Since the root
of g is ani node the case when = n = o1, also follows
from case (C7) and the induction hypothesis.

The interesting case is when the rooyaé an: node and
when the specification is; = .

Let ¢ = R(i,z,A) where A = {aq,..
oO=0] = T.

Suppos€u, X) € R, sinceenabled(g,u) holds, its easy
to show thati A gV is consistent. For a strategyof player:
to satisfyo; = 7 ong, it should make sure of the following:

.,ar} and

o foreach edge; € A, if u — w; conforms witho, then
the strategy on; should satisfyr.



o foreachedge; € A, if u =, w; does not conform with

o1 then any strategy can be employed on the game

From the above observations and axiom (A4) case (C3),
we getu A (g, 01 = m)X is consistent.

Part 2 of the lemma again follows from (C3) and a similar
argument. a

Lemma 2. Forall¢ € T, forall X C W andu € W, if
i A (€)X is consistent then there exist§ C X such that
(u, X/) S Rg.

Proof: By induction on the structure af

e & = (g,0): Supposeu A <g,o)5€ is consistent. From
lemma 1 item 2, it follows that there exis}§ C X such
that(u, X') € Re.

e £ =& U&: By axiom (A3a) we geti A <51>X' is consis-
tent oru A <§2>)~( is consistent. By induction hypothesis
there existsX; C X such that(u, X1) € Re, or there
existsX, C X such thatu, X») € Re,. Hence we have
(qul) € R51U€2 or (quQ) € R51U52'

o & = &;&: By axiom (A3b), 7 A (&)(€)X is consis-
tent. Hencei A (&) (\/ (@ A (€2) X)) is consistent, where
the join is taken over ally € Y = {w | w A (&)X is
consistent. So A (£,)Y is consistent. By induction
hypothesis, there exisi§’ C Y such that(u,Y’) € Re,.
We also have that for alb € Y, @ A (£)X is consis-
tent. Therefore we get forall; € Y’ = {ws,...,ws},
Wy A (£,)X is consistent. By induction hypothesis, there
exists X; C X such that(w;, X;) € Re,. Let X' =
Uj:l,...,k X C X, weget(u, X') € Re, e,

e & = &) Let Z be the least set containing and closed
under the condition: for allo, if @ A (£1)Z is consistent,
thenw € Z. By definition of Z and induction hypothesis,
we get for allw € Z, there existsX,, C X such that
(w,X) € Re:. Itis also easy to see that X > Z.
Using standard techniques, it is also easy to show that
F(&)Z > Z.

Applying the induction rule (IND), we have (f{)Z > Z.
By assumptiong A (£7)X is consistent. S@ A (£7)Z is
consistent. HencéA Z is consistent and thereforec Z.
Thus we havéu, X') € R for someX’ C X,

O
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