
Stability under Strategy Switching

Soumya Paul, R. Ramanujam and Sunil Simon

The Institute of Mathematical Sciences
C.I.T. Campus, Chennai 600 113, India.

e-mail: {soumya,jam,sunils}@imsc.res.in

Abstract. We suggest that a process-like notion of strategy is relevant
in the context of interactions in systems of self-interested agents. In this
view, strategies are not plans formulated by rational agents consider-
ing all possible futures and (mutually recursively) taking into account
strategies employed by other players. Instead, they are partial; players
start with a set of potential strategies and dynamically switch between
them. This necessitates some means in the model for players to access
each others’ strategies, and we suggest a syntax by which players’ ra-
tionale for such switching may be specified and structurally composed.
In such a model one can ask a stability question: given a game arena
and a strategy specification, whether players eventually settle down to
strategies without further switching. We show that this problem can be
algorithmically solved using automata theoretic methods.

Keywords: Graphical games, strategy specifications, strategy switching.

1 Overview

Consider the game of cricket1. A bowler, starting on his run-up, considers: Should
I bowl on his off-side or leg-side? Should I bowl a short-pitch ball? Should I bowl
a slower one? Since he mis-hit the last bouncer I bowled to him, should I bowl
one again? The batsman, on his part, considers as he takes his stance: If he
bowls on my legs, should I pelt him for a boundary and reveal my strength off
that flank? Or should I play it safe and settle for a single? I have already hit two
boundaries in this over; if I hit him for too many runs, will he be taken off the
attack?

In an ideal world, both bowler and batsman would have perfect information
not only about each other’s prowess but also about the nature of the pitch,
and would play optimal mixed strategies, since they could go through all the
reasoning above before a single ball is ever bowled. We could compute equilibria
and predict rational cricket play.

Not only is the actual game far from ideal, it is also more interesting. If we
are interested in predicting, in addition to outcomes, also how the play is likely

1 Wikipedia-level understanding of cricket http://en.wikipedia.org/wiki/Cricket is
enough to understand the points being made here, though some knowledge of cricket
would surely help.

to progress (at some partial play), we need to correspondingly look not just at
which strategies are available to players, but also how they select a strategy from
among many. Such considerations naturally lead to partial strategies, and the
notion of switching between (partial) strategies.

In such a view, a player enters the game arena with information on the game
structure and on other players’ skills, as well as an initial set of possible strategies
to employ. As the play progresses, she makes observations and accordingly revises
strategies, switches from one to another, perhaps even devises new strategies that
she hadn’t considered before. The dynamics of such interaction eventually leads
to some strategies being eliminated, and some becoming stable.

Such considerations can be entirely eliminated by taking into account all
possible futures while strategizing. However, such omniscient strategizing may
be impossible, even in principle, for finitary agents (who have access only to finite
resources). Dynamical system models of social interaction and negotiations have
for long considered such switching behaviour ([7], [5]), and we suggest that such
a consideration is relevant for computational models as well.

What questions can one study in such a model? Since the model describes
dynamics, it is best suited to address questions that relate to eventual patterns
in game evolution dictated by the dynamics in the model. For instance, since
some strategies may simply get eliminated in the course of play, eventual game
evolution may get restricted, and one can ask: “Does the play finally settle down
to some subset of the entire arena?”, “Can a player ensure certain objectives
using a strategy which does not involve switching between a set of strategies?”

Another interesting question is, “Given a sub-arena of the game, is the strat-
egy of a player live in that subset?” A strategy is live if for every history in the
subset, the action it specifies is present in the set. Such questions are especially
relevant in the context of bargaining and negotiations, as evidenced in many
political contexts.

In this work, we look at algorithmic issues concerning the above questions.
We give a simple but expressive syntax for specifying and composing strategies.
We then show that in the case of bounded memory strategies, these questions can
be algorithmically solved. At the heart of these questions lie the issue of liveness

of a strategy which we formalise in the next section. However what is emphasized
is the need and possibility of computational models that include process aspects
of strategizing and application of algorithmic tools on them, rather than a study
of the complexity of determining stability under switching.

Related Work

Dynamic learning has been extensively studied in game theory: for instance,
Young ([15],[16]) considers a model in which each player chooses an optimal
strategy based on a sample of information about what other players have done
in the past. Similar analyses have been carried out in the context of cooperative
game theory as well: here players decide dynamically which coalition to join. One
asks how coalition structures change over time, and which coalition players will
eventually arrive at ([2]). Evolutionary game theory ([14]) studies how players

2

observe payoffs of other players in their neighbourhood and accordingly change
strategies to maximise fitness.

Our work is located in the logical foundations of game theory, and hence
employs logical descriptions of strategies and algorithms to answer questions.
Modal logics have been used in various ways to reason about games. Notable
among these is the work on alternating temporal logic (ATL) [1], a logic where
assertions are made on outcomes a coalition of players can ensure. Various exten-
sions of ATL ([10],[11]) has been proposed to incorporate knowledge of players
and strategies explicitly into the logic. In [8, 9] van Benthem uses dynamic logic
to describe games as well as strategies. [4] presents a complete axiomatisation
of a logic describing both games and strategies in a dynamic logic framework
where assertions are made about atomic strategies. [6] studies a logic in which
not only are games structured, but so also are strategies.

Somewhat different in approach, and yet closely related is the work of De
Vos and Vermeir ([12],[13]) in which the authors present a framework for deci-
sion making with circumstance dependent preferences and decisions (OCLP). It
allows decisions that comprise of multiple alternatives which become available
only when a choice between them is forced.

Due to space restrictions, detailed proofs have been omitted2.

2 Preliminaries

We are interested in looking at infinite duration games. We first introduce ex-
tensive form games which constitutes our game models.

2.1 Extensive Form Games

Let N = {1, . . . , n} be the set of players. For each i ∈ N , let Ai be a finite
set of actions, which represent the moves of the players. We assume that the
action sets of the players are mutually disjoint, i.e., Ai ∩ Aj = ∅ for i 6= j. Let

A = A1 × · · · ×An denote the set of action tuples and Ã = A1 ∪ · · · ∪An denote
the set of actions of all the players. For any action tuple ā = (a1, . . . , an) ∈ A,
we write a ∈ ā if a = ai for some 1 ≤ i ≤ n.

An extensive form game is a tree T = (T,⇒, t0) where T ⊆ A∗ is a prefix-

closed set called the set of nodes or game positions. The initial game position or
the root of T is t0 = ǫ (the empty word) and the edge relation is ⇒⊆ T × T . A
play in the game is just a path in T starting at t0. For technical convenience we
assume that all plays are infinite, i.e. for all t ∈ T , ∃t′ such that t⇒ t′.

Strictly speaking, a game consists of a game tree along with winning condi-

tions for the players. As we shall see later the winning conditions in our case
will be some properties of the game model which are fairly general. Assuming
that the outcomes and payoffs of the game arise from a fixed finite set, they can
be coded up using propositions in our logical framework on the lines of [3]. Our

2 For a full version see http://www.imsc.res.in/∼soumya/Files/Stability.pdf

3

main focus in this exposition is the strategies of players rather than the winning
conditions themselves.

2.2 Strategies

A strategy for player i tells her at each game position, which action to choose.
Given the game tree T = (T,⇒, t0), a strategy µ for a player i is a function
µ : T → Ai.

For a history ā1 . . . āk of the game, a strategy for player i after the history
ā1 . . . āk is a function µ[ā1 . . . āk] : {ā1 . . . āku ∈ T } → Ai where u ∈ A∗. Thus
µ[ǫ] is a strategy for the entire game and we denote it by µ itself. The function
µ[ā1 . . . āk] may be viewed as a subtree T µ[ā1...āk] = (T ′,⇒′, t′0) of T with root
t′0 such that t′0 = ā1 . . . āk ∈ T ′ and

– For any node t = ā1 . . . āl ∈ T ′, (l ≥ k) if µ[ā1 . . . āk](t) = a then the children
of t in T µ[ā1...āk] are exactly those nodes tā ∈ T such that the ith component
of ā, ā(i) is equal to a.

We shall call such a subtree T µ[ā1...āk], a strategy tree for the strategy
µ[ā1 . . . āk]. Note that the values of µ[ā1 . . . āk] at positions, t /∈ T ′ does not
affect the outcome of a play conforming to µ[ā1 . . . āk]. Hence, we can interpret
the semantics of a strategy in terms of its strategy tree without any loss of gen-
erality. We shall also use the terms ‘strategy’ and ‘strategy tree’ interchangeably.
Let Ωi(t) denote the set of all strategies of player i after history t in T and let
Ωi = ∪t∈T Ωi(t). Note that the set of strategies is infinite for any game T .

Composition of Strategies: Let µ1, µ2 ∈ Ωi. Suppose player i starts playing
the game T with strategy µ1 and after k rounds (k ≥ 0), she decides to use the
strategy µ2 for the rest of the game. The resulting prescription is also a strategy
µ (say) in the set of strategies of player i, that is, µ ∈ Ωi. In a sense µ may be
viewed as a composition of the strategies µ1 and µ2. We denote the strategy µ
by µk

1µ2.

The strategy tree T µk
1µ2 for the strategy is obtained by taking T µ1 and

removing all the nodes with height greater than or equal to k + 1, resulting
in a tree of height k, and pasting T µ2[ā1...āk] at each leaf node ā1 . . . āk of this
resulting tree.

2.3 Partial Strategies

Given T = (T,⇒, t0), a history ā1 . . . āk ∈ T , a partial strategy σ[ā1 . . . āk] for
player i after this history is a partial function

σ[ā1 . . . āk] : {ā1 . . . āku ∈ T }⇀ Ai

where u ∈ A∗, with the interpretation that if σ is not defined for some history
ā1 . . . āku ∈ T , the player may play any available action there.The strategy σ[ǫ]
is identified with the strategy σ for the entire game.

4

The strategy tree T σ[ā1...āk] = (T ′,⇒′, t′0) is again a subtree of T with root
t′0 = ā1 . . . āk ∈ T ′ and for any node t = ā1 . . . āl ∈ T ′ (l ≥ k), if σ[ā1 . . . āk](t) =
a, then the children of t are exactly those nodes tā ∈ T such that the ith
component of ā, ā(i) is equal to a. On the other hand if σ[ā1 . . . āk] is undefined
on t, then the children of t are {tā | tā ∈ T }, i.e., all the nodes that are the
children of the node t in the game tree T itself.

We let Σi(t) denote the set of all partial strategies of player i after history t
in T and let Σi = ∪t∈T Σi(t) denote the set of all partial strategies of player i.

A partial strategy may be viewed as a set of total strategies. Given the
strategy tree T σ

G for a partial strategy σ for player i we obtain a set of trees T̃ σ
G

of total strategies as follows. T = (T,⇒, t0) ∈ T̃ σ
G if and only if t0 = ǫ and

– If ā1 . . . āk ∈ T then ā1 . . . āk+1 ∈ T if and only if ā1 . . . āk+1 ∈ T σ
G and for

all ā1 . . . āk+1, ā1 . . . ā
′
k+1 ∈ T , āk+1(i) = ā′k+1(i).

For any history ā1 . . . āk, the set T̃
σ[ā1...āk]

G of total strategy trees for the
partial strategy σ[ā1 . . . āk] of player i may be defined similarly.

It is convenient to define the maps PT i and T P i for all i ∈ N . PT i : Σi →

2Ωi , such that PT i(T
σ[ā1...āk]

G) = T̃
σ[ā1...āk]

G . And T P i : 2Ωi → Σi, such that

given a set T̃
µ[ā1...āk]

G of total strategy trees of player i, T P i(T̃
µ[ā1...āk]

G) is the
partial strategy tree (T,⇒, t0) such that t0 = ā1 . . . āk and

– t ∈ T if and only if t ∈ T for some T ∈ T̃
µ[ā1...āk]

G

– ⇒ =
⋃

T ∈eT
µ[ā1...āk]

G

{⇒∈ T }.

2.4 Relevant Questions

Given the above notion of partial strategies, it makes sense to talk about what
it means to compose several (usually simple) strategies to obtain another (more
complex) strategy. A player will start out with a set (possibly finite) of elemen-

tary or atomic strategies, and as the game progresses, combine them to obtain
new strategies. Switching from one strategy to another is based on certain ob-
servable properties of the game. Strategies thus generated may not be present
in her initial set of strategies.

Given a region of the game arena, to check whether a player’s strategy eventu-
ally becomes stable with respect to switching, we need to be able to first check
whether a strategy is live in the region. For a subtree T ′ of T and a partial
strategy σi of player i, we say σi is live in T ′ if ∀t ∈ T ′ the following condition
holds:

– if σi(t) is defined and σi(t) = a then ∃t′ = tā ∈ T ′ such that ā(i) = a.

Given a game T , natural questions of interest include:

– Given a subtree T ′ of T and a partial strategy σi, is σi live in T ′?
– Is it the case that a given strategy σi eventually becomes not live ?
– Find the set of all partial strategies which are live in a substructure.

5

Note that here we assume that every strategy is equally viable and switch-
ing between strategies does not involve any overhead. A model where different
strategies have different costs would be interesting to study in its own right.

To solve these questions algorithmically and to subsequently address the
stability issue, we need to present partial strategies and game trees in a finite
manner. Below we show how this can be achieved.

3 Strategy Specifications

We present a syntax to specify partial strategies and their composition in a
structural manner. We crucially use a construct which allows players to play the
game with a strategy σ1 up to some point and then switch to a strategy σ2.

Syntax: The strategy set Πi of player i is obtained by combining her atomic
strategies as follows:

Πi ::= σ ∈ Σi | π1 ∪ π2 | π1 ∩ π2 | π1
aπ2 | (π1 + π2) | ψ?π

Using the test operator ψ?π, a player checks whether an observable condition
ψ holds and then decides on a strategy. We think of these conditions as past
time formulas of a simple tense logic over an atomic set of observables.

In the atomic case, σ simply denotes a partial strategy. The intuitive meaning
of the operators are given as:

– π1 ∪ π2 means that the player plays according to the strategy π1 or the
strategy π2.

– π1 ∩ π2 means that if at a history t ∈ T , π1 is defined then the player plays
according to π1; else if π2 is defined at t then the player plays according to π2.
If both π1 and π2 are defined at t then the moves that π1 and π2 specify at
t must be the same (we call such a pair π1 and π2, compatible). Henceforth,
we shall use the ∩ operator only for compatible pairs of strategies.

– π1
aπ2 means that the player plays according to the strategy π1 and then

after some history, switches to playing according to π2. The position at which
she makes the switch is not fixed in advance.

– (π1 + π2) says that at every point, the player can choose to follow either π1

or π2.
– ψ?π says at every history, the player tests if the property ψ holds of that

history. If it does then she plays according to π.

Example: In the cricket example, let the bowler’s set of atomic strategies be
given as Σbowler = {σshort , σgood , σoutside−off , σlegs} which corresponds to bowl-
ing a short-pitch, good length, off-side and leg-side ball respectively.

Let p(short,sixer) be the observable which says that the outcome of a short ball
is a sixer. Then the following specification says that the bowler keeps bowling
short balls till he is hit for a sixer after which he changes to good-length deliveries.

6

– ¬3- (p(short,sixer)?(σshort)) ∪ 3- (p(short,sixer)?(σgood))

The specification σshort
aσgood

aσlegs for the bowler says that he starts by
bowling short-pitch balls and after some point he switches to bowling at the
batsman’s legs and again switches to bowling good-length balls.

Semantics: Formally, given the game tree T = (T,⇒, t0), the semantics of a
strategy specification π ∈ Πi is a function [[·]]T : Πi × T → 2Ωi . That is, each
specification at a node t of the game tree is associated with a set of total strategy
trees after history t.

For any t = ā1 . . . āk ∈ T , [[·]]T is defined inductively as follows:

– [[σ, (ā1 . . . āk)]]T = PT i(T
σ[ā1...āk]).

– [[π1 ∪ π2, (ā1 . . . āk)]]T = [[π1, (ā1 . . . āk)]]T ∪ [[π2, (ā1 . . . āk)]]T .
– [[π1 ∩ π2, (ā1 . . . āk)]]T = [[π1, (ā1 . . . āk)]]T ∩ [[π2, (ā1 . . . āk)]]T .

– [[π1
aπ2, (ā1 . . . āk)]]T =

⋃
l≥k[[[[π1, (ā1 . . . āk)]]T

a

(π2, l)]]T

where [[[[π1, (ā1 . . . āk)]]T
a(π2, l)]]T is defined as follows: For every tree T ∈

[[π1, (ā1 . . . āk)]]T , prune the tree T at depth l and call it Tl. Then

[[[[π1, (ā1 . . . āk)]]T
a

(π2, l)]]T is the set of trees got by appending to every
leaf node ā1 . . . āl of such trees Tl, the trees in [[π2, (ā1 . . . āl)]]T .

– [[(π1+π2), (ā1 . . . āk)]]T =
⋃

k1,k2,...

[[[[[[π1, (ā1 . . . āk)]]T
a

(π2, k1)]]T
a

(π1, k2)]]T · · ·

where k ≤ k1 ≤ k2
– [[ψ?π, (ā1 . . . āk)]]T :[[ψ?π, (ā1 . . . āk)]]T is obtained from [[π, (ā1 . . . āk)]]T and

T as follows. Let T P i([[π, (ā1 . . . āk)]]T) = T π[ā1...āk] be the partial strategy
tree of π[ā1 . . . āk]. Then [[ψ?π, (ā1 . . . āk)]]T is a set of trees such that the
following holds. T ∈ [[ψ?π, (ā1 . . . āk)]]T if and only if:
• ā1 . . . āk ∈ T .
• If ā1 . . . āl ∈ T and ψ holds at ā1 . . . āl then ā1 . . . āl+1 ∈ T if and only

if ā1 . . . āl+1 ∈ T π[ā1...āk] and for all ā1 . . . āl+1, ā1 . . . ā
′
l+1 ∈ T , āl+1(i) =

ā′l+1(i). If ā1 . . . āl ∈ T and ψ does not hold at ā1 . . . āl then ā1 . . . āl+1 ∈
T if and only if ā1 . . . āl+1 ∈ T and for all ā1 . . . āl+1, ā1 . . . ā

′
l+1 ∈

T , āl+1(i) = ā′l+1(i).

4 Finite Presentation of Games and Strategies

For algorithmic analysis, we need to present the infinite game in a finite fashion.
In this paper, we assume that the game is presented as a finite graph. The
extensive form game is just the unfolding of this graph.

Game Arena: The game arena is a finite graph G = (W,→, w0) where W is a
finite set of game positions, w0 ∈ W is the initial position and →: W × A → W ,

is the set of edges. For w ∈ W , let w→ = {ā | w
ā
→ w′ for some w′ ∈ W}. For

technical convenience, we assume that for all w ∈ W , w→ 6= ∅. The infinite

7

extensive form game tree corresponding to G is obtained by the tree-unfolding

of G.
For a word on notation, given an arena G and a strategy specification π, we

denote the function [[·]]TG
by just [[·]]G.

Finite State Transducers and Bounded Memory Strategies: A finite

state transducer (FST) over the input alphabet A and output alphabet Ai is a
tuple A = (Q,→, I, f) where Q is a finite set of states, I ⊆ Q is the set of initial
states, →: Q×A → 2Q is the transition function and f : Q → Ai is the output
function.

The semantics of strategy specifications is presented with respect to the set
of all strategies. For algorithmic concerns we restrict our attention to bounded
memory strategies. As we will see later, strategy specifications can only enforce
bounded memory strategies.

A strategy σ of player i is said to be bounded memory if there exists an FST
A = (Q,→, I, f) where the set of states Q is the memory of σ, I is the initial
memory, → is the memory update function and f is the action output function

such that the following is true. When ā1 . . . āk−1 is a play and the sequence

q0, q1, . . . , qk is determined by q0 ∈ I and qi
āi→ qi+1 then σ(ā1 . . . āk−1) = f(qk).

The intuition is that the FST faithfully reflects the outputs of the strategy σ.
Given a strategy µ of player i, a run of an FST A on T µ

G is a Q labelled tree
(T,⇒, t0, χ). The labelling function χ : T → Q is defined as: χ(t0) = q0 ∈ I and
if ā1 . . . āk ⇒ ā1 . . . āk+1 then χ(ā1 . . . āk) ∈→ (χ(ā1 . . . āk), āk+1).

We say that µ is accepted by A if there is a run χ of A on T µ
G satisfied the

condition: ∀t = ā1 . . . āk ∈ T µ
G , ā(i) = f(χ(t)). The language of A, L(A) = {µ | µ

is accepted by A}.
The following lemma relates strategy specifications to finite state transducers.

Lemma 4.1. Given game arena G, a player i ∈ N and a strategy specification

π ∈ Πi, where all the atomic strategies mentioned in π are bounded memory,

we can construct an FST Aπ such that for all µ ∈ Ωi we have µ ∈ [[π]]G iff

µ ∈ L(Aπ).

5 Stability

Call a strategy π switch-free if it does not have any of the a or the + construct.
Given a strategy π ∈ Πi of player i, the set of substrategies of π, Sπ are just
the subformulae of π. Let SF (Sπ) be the set of switch-free strategies of Sπ. Note
that SF (Sπ) is a finite set for a given π.

Given a game arena G and strategy specifications of the players, we may ask
whether there exists some subarena of G that the game settles down to if the
players play according to their strategy specifications. This subarena is in some
sense the equilibrium states of the game. It is also meaningful to ask if the game
settles down to such an equilibrium subarena, then whether the strategy of a
particular player attains stability with respect to switching.

8

Let G = (W,→, w0) be the game arena, π ∈ Πi and Aπ = (Q,→, I, f, λ) be
the FST for π. We define the restriction of G with respect to Aπ as G↾Aπ =

(W ′,→′, w′
0) where W ′ = W × Q, w′

0 = {w0} × I and (w1, q1)
ā

→′ (w2, q2) iff

w1
ā
→ w2, q

ā
→ q2 and f(q1) = ā(i).

Theorem 5.1. Given a game arena G = (W,→, w0) with a valuation of the

observables on W , a subarena R of G and strategy specifications π1, . . . , πn for

players 1 to n, the question, “Do all plays conforming to these specifications

eventually settle down to R?” is decidable.

Proof. Construct the graph Gπ = (· · · ((G↾Aπ1)↾Aπ2 · · ·)↾Aπn
) = (Wπ ,→π, wπ).

Let F ⊆ Gπ = (W ′,→′) such that W ′ = {(w, q1, . . . , qn) | w ∈ R, q1 ∈
Qπ1 , . . . , qn ∈ Qπn

} where Qπ1 , . . . , Qπn
are the state sets of the FST’s

Aπ1 , . . . ,Aπn
respectively. Let →′ = →π ∩(W ′ ×W ′).

1. Check if F is a maximal connected component in Gπ . If so proceed to step
2, else output a ‘NO’.

2. Check if all paths strating at all initial nodes w′ ∈ wπ reach F and output
a ‘YES’. Otherwise, output a ‘NO’.

Theorem 5.2. Given a game arena G = (W,→, w0) with a valuation of the

observables on W , a subarena R of G and strategy specifications π1, . . . , πn for

players 1 to n, the question, “If all plays conforming to these specifications con-

verge to R, does the strategy of player i become eventually stable with respect to

switching?” is decidable in time O(mm · p · 2np) where m is the size of the arena

G and p is the maximum length of a specification formula π1 or . . . or πn.

Proof. We first check if all the plays settle down to R. But in doing so we also
have to keep track of all the strategy-switches (a’s) of player i along these plays.
Because given a subformula of the form πaπ′, once the player has switched to
strategy π′ she cannot play π later. We do this by an inductive procedure by
first indexing all the subformulae of the specification πi of player i and then aug-
menting the FST’s with an output so that at each point they output the indices
of only those subformulae that are still relevant at that point. We also keep track
of the states each of the FST’s are in when the plays reach R. Having done so,
we check, by constructing FST’s for each relevant switch free substrategy of πi,
whether the play stays inside R if player i plays according to that substrategy,
given that all the FST’s start at the states in which they were on reaching R.

6 Discussion

The framework presented here is intended only as an initial step of a research
programme that studies computational models of social interaction. It is to be
noted that the presentation of game arenas as graphs may be inappropriate for
many contexts, and it may be more natural to define games by rules.

9

Moreover, the assumption of a fixed finite set of players may also be unreal-
istic for models of social dynamics. The notion of strategy switching is demon-
strated quite naturally in a framework which consists of a population of players
and a neighbourhood model. In such a set up, the players are parts of differ-
ent neighbourhoods and can observe the outcomes within their neighbourhoods.
Such a structure besides giving a rationale to the players for playing certain
strategies and switching between them, would also model various game-theoretic
and social scenarios more concretely. We hope that the study of formal models of
dynamics in interaction will lead to new questions for games and computations.

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of ACM, 49(5):672–713, 2002.

2. T. Arnold and U. Schwalbe. Dynamic coalition formation and the core. Journal
of Economic Behavior and Organization, 49:363–380, 2002.

3. G. Bonanno. Modal logic and game theory: Two alternative approaches. Risk
Decision and Policy, 7:309–324, December 2002.

4. S. Ghosh. Strategies made explicit in dynamic game logic. In Logic and the
Foundations of Game and Decision Theory, 2008.

5. U. Horst. Dynamic systems of social interactions. In NSF/CEME Mathematical
Economics Conference at Berkeley, 2005.

6. R. Ramanujam and S. Simon. Dynamic logic on games with structured strategies.
In Proceedings of the Conference on Principles of Knowledge Representation and
Reasoning, pages 49–58, 2008.

7. B. Skyrms and R. Pemantle. A dynamic model of social network formation. Pro-
ceedings of the National Academy of Sciences, 97(16):9340–9346, 2000.

8. J. vanBenthem. Games in dynamic epistemic logic. Bulletin of Economic Research,
53(4):219–248, 2001.

9. J. vanBenthem. Extensive games as process models. Journal of Logic Language
and Information, 11:289–313, 2002.

10. W. vanderHoek, W. Jamroga, and M. Wooldridge. A logic for strategic reasoning.
In Proceedings of AAMAS, pages 157–164, 2005.

11. W. vanderHoek and M. Wooldridge. Cooperation, knowledge, and time:
Alternating-time temporal epistemic logic and its applications. Studia Logica,
75(1):125–157, 2003.

12. M. D. Vos and D. Vermeir. A logic for modeling decision making with dynamic
preferences. In Proceedings of JELIA, volume 1919 of LNAI, pages 391–406, 2000.

13. M. D. Vos and D. Vermeir. Dynamic decision-making in logic programming and
game theory. In Australian Joint Conference on Artificial Intelligence, pages 36–47,
2002.

14. J. W. Weibull. Evolutionary Game Theory. MIT Press, 1997.
15. H. P. Young. The evolution of conventions. In Econometrica, volume 61, pages

57–84. Blackwell Publishing, 1993.
16. H. P. Young. The diffusion of innovations in social networks. Economics Working

Paper Archive 437, The Johns Hopkins University,Department of Economics, May
2000.

10

