Cyber-Security: Learning from Relational Data

Piyush Rai

Dept. of CSE, IIT Kanpur

Nov 27, 2015
Probabilistic Machine Learning

- Machine Learning via probabilistic modeling of data

- Data assumed generated from a probability model
 \[x_1, \ldots, x_N \sim p(x|\theta) \]

- Unified perspective; subsume many paradigms in ML: regression, classification, clustering, dimensionality reduction, time-series analysis, etc.
Probabilistic Machine Learning

- Machine Learning via probabilistic modeling of data

\[x_1, \ldots, x_N \sim p(x|\theta) \]

- Data assumed generated from a probability model

- **Unified perspective**; subsume many paradigms in ML: regression, classification, clustering, dimensionality reduction, time-series analysis, etc.

- Handling **missing data, outliers, skewness, temporal evolution**, etc.

- Easily incorporate **prior beliefs**, quantify **uncertainty** (Bayesian learning)
Probabilistic Machine Learning

- Machine Learning via probabilistic modeling of data
 \[x_1, \ldots, x_N \sim p(x|\theta) \]

- Data assumed generated from a probability model

- **Unified perspective**; subsume many paradigms in ML: regression, classification, clustering, dimensionality reduction, time-series analysis, etc.

- Handling **missing data, outliers, skewness, temporal evolution**, etc.

- Easily incorporate **prior beliefs**, quantify **uncertainty** (**Bayesian learning**)

- Enables principled combinations of simpler paradigms to solve complex tasks
My Research

- Learning from **complex, messy, heterogeneous data**
- Focus: **Feature representation learning**, **Cross-modal/Transfer Learning**, reducing **labeling costs**, **scalability** (online/distributed learning), **model-size adaptability** as data grows (nonparametric models)

![Diagram showing data processing and relationships between documents, images, topics, communities, and biological pathways.](attachment:diagram.png)
Relational Data in the “Networked” World

- A natural representation of various types of data in the cyber-space, e.g.,
 - Physical networks
 - Links between webpages
 - Links between users on social networks
 - Links across networks

- Almost all of this data is also **time-evolving** in nature
Relational Data as Graphs

- Unipartite graphs and bipartite graphs

- Multi-dimensional graphs ("tensors")

- Dynamic/time-evolving graphs
Relational Data as Graphs

- Unipartite graphs and bipartite graphs

![Unipartite graph example](image1)

- Multi-dimensional graphs ("tensors")

![Multi-dimensional graph example](image2)

- Dynamic/time-evolving graphs

![Dynamic graph example](image3)

Picture source: www.aboutdm.com
Cyber-Security Problems on Relational Data

- Anomaly detection
 - Anomalous nodes
 - Anomalous edges
 - Anomalous sub-communities
- Detecting/predicting change-points in evolving graphs
- Learning good representations of the data is key

Picture courtesy: http://www.cis.jhu.edu/parky/
Embeddings to Represent Relational Data

- Embedding relational data (graphs) to a vector space

- Allows performing various machine learning tasks such as clustering, classification, anomaly detection, etc., using the learned embeddings

- A challenging problem in general
Embeddings to Represent Relational Data

- Embedding relational data (graphs) to a vector space

- Allows performing various machine learning tasks such as clustering, classification, anomaly detection, etc., using the learned embeddings

- A challenging problem in general

Tensors or “Multi-Relational” Data

Tensors are useful for encoding multi-way relations

![Binary 3D Tensor Diagram]

- X_{ijk} = 1 or 0
 - (activity or not)
Tensor factorization allows embeddings the entities of each “way” of the tensor.
Tensor Factorization

Tensor factorization allows embeddings the entities of each “way” of the tensor

Embeddings can be used as a feature representation
Tensor Factorization

An SVD like approach: express a tensor as a weighted sum of K rank-one tensors
Tensor Factorization: Challenges

- Significant amounts of missing data
- Interpretability (desirable, e.g., sparse and non-negative eigenvectors)
- Modeling the time-dimension (useful for forecasting)
- Integrating sources of side-information
- Scalability for massive tensors
Tensor Factorization: Challenges

- Significant amounts of missing data
- Interpretability (desirable, e.g., sparse and non-negative eigenvectors)
- Modeling the time-dimension (useful for forecasting)
- Integrating sources of side-information
- Scalability for massive tensors

Tensor Factorization for Anomaly Detection

Data: a four-way tensor Source IP \times Dest. IP \times Port \times Time

Eigenvectors of this tensor can identify normal vs anomalous behavior1

1Koutra et al. (2012)
Tensor Factorization for Anomaly Detection

Data: a four-way tensor $\text{Source IP} \times \text{Dest. IP} \times \text{Port} \times \text{Time}$

Eigenvectors of this tensor can identify normal vs anomalous behavior\(^1\)

\(^1\)Koutra et al. (2012)
Other Work Relevant to Cyber-Security

- Probabilistic modeling of rare-events
- Learning only from positive examples
- Time-series of count-data (via Poisson Processes)
- Privacy preserving machine learning (private Bayesian inference)
Thanks! Questions?