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Optimization vs Inference

All ML problems require estimating parameters given data. Primarily two views:

1. Learning as Optimization
@ Parameter 6 is a fixed unknown

@ Seeks a point estimate (single best answer) for 0
0=arg main Loss(D; 0) subject to constraints on 6

@ Probabilistic methods such as MLE and MAP also fall in this category

2. Learning as (Bayesian) Inference

o Parameter 6 is a random variable with a prior distribution P(6)
@ Seeks a posterior distribution over the parameters

P(D | 6)P(0)

P | D) = =553
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Bayesian Learning

@ Prior distribution specifies our prior belief/knowledge about parameters 6

@ Bayesian inference updates the prior and gives the posterior

Prior
P(68)
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Bayesian Learning

@ Prior distribution specifies our prior belief/knowledge about parameters 6

@ Bayesian inference updates the prior and gives the posterior

Bayesian Inference

Prior
P(68)
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Bayesian Learning

@ Prior distribution specifies our prior belief/knowledge about parameters 6

@ Bayesian inference updates the prior and gives the posterior

Bayesian Inference

Prior
P(0) Old posterior becomes
the new prior
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Bayesian Learning

@ Prior distribution specifies our prior belief/knowledge about parameters 6

@ Bayesian inference updates the prior and gives the posterior

Bayesian Inference

@ ~ I -

Posterior
P(8|D)

Prior
P(6) Old posterior becomes

the new prior
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Why be Bayesian?

@ Posterior P(0|D) quantifies uncertainty in the parameters

#
Wiy
- gl
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Why be Bayesian?

@ Posterior P(0|D) quantifies uncertainty in the parameters

@ More robust predictions by averaging over the posterior P(6|D)

P(dwest|0)  vs  P(dsest|D) = / P(d:est|0)P(0]D)d0
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Why be Bayesian?

@ Posterior P(0|D) quantifies uncertainty in the parameters

@ More robust predictions by averaging over the posterior P(6|D)
P(diwst|0)  vs  P(dwst|D) = / P(dyest|0)P(0)D)d6

@ Allows inferring hyperparameters of the model and doing model comparison
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Why be Bayesian?

@ Posterior P(0|D) quantifies uncertainty in the parameters

@ More robust predictions by averaging over the posterior P(6|D)
P(diwst|0)  vs  P(dwst|D) = / P(dyest|0)P(0)D)d6

@ Allows inferring hyperparameters of the model and doing model comparison
o Offers a natural way for informed data acquisition (active learning)

o Can use the predictive posterior of unseen data points to guide data selection
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Why be Bayesian?

@ Posterior P(0|D) quantifies uncertainty in the parameters

@ More robust predictions by averaging over the posterior P(6|D)
P(diwst|0)  vs  P(dwst|D) = / P(dyest|0)P(0)D)d6

@ Allows inferring hyperparameters of the model and doing model comparison
o Offers a natural way for informed data acquisition (active learning)

o Can use the predictive posterior of unseen data points to guide data selection

@ Can do nonparametric Bayesian modeling
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Nonparametric Bayesian Learning

@ How big/complex my model should be? How many parameters suffice?

Samples

Genes

How many
topics ?
How many

How many communities ?
biological pathways ?
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Nonparametric Bayesian Learning

@ How big/complex my model should be? How many parameters suffice?

Samples

Function
Approximation

Genes

How many Best class
topics ? oy How many states ? of functions?
How many communities ?
biological pathways ?

Hidden Markov Model
Nesvork of entiies l 1

@ Model-selection or cross-validation, can often be expensive and impractical
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Nonparametric Bayesian Learning

@ How big/complex my model should be? How many parameters suffice?

Samples

Function
Approximation

Genes

Hidden Markov Model
Nesvork of entiies l 1
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@ Model-selection or cross-validation, can often be expensive and impractical

@ Nonparametric Bayesian Models: Allow unbounded number of parameters
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Nonparametric Bayesian Learning

@ How big/complex my model should be? How many parameters suffice?

Samples

Function
Approximation

Genes

Hidden Markov Model

How many
topics ? oy How many states ? of functions?
How many communities ?
biological pathways ?

Best class

@ Model-selection or cross-validation, can often be expensive and impractical
@ Nonparametric Bayesian Models: Allow unbounded number of parameters

e The model can grow/shrink adaptively as we observe more and more data
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Nonparametric Bayesian Learning

@ How big/complex my model should be? How many parameters suffice?

Samples

Function
Approximation

Genes

Hidden Markov Model

How many
topics ? oy How many states ? of functions?
How many communities ?
biological pathways ?

Best class

@ Model-selection or cross-validation, can often be expensive and impractical
@ Nonparametric Bayesian Models: Allow unbounded number of parameters

e The model can grow/shrink adaptively as we observe more and more data

o We “let the data speak” how complex the model needs to be
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What’s a Nonparametric Bayesian Model?

@ An NPBayes model is NOT a model with no parameters!
@ It has potentially infinite many (unbounded number of) parameters

@ It has the ability to “create” new parameters if data requires so..
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What’s a Nonparametric Bayesian Model?

@ An NPBayes model is NOT a model with no parameters!
@ It has potentially infinite many (unbounded number of) parameters

@ It has the ability to “create” new parameters if data requires so..

caria. e
T

@ Some non-Bayesian models are also nonparametric. For example: nearest
neighbor regression /classification, kernel SVMs, kernel density estimation
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What’s a Nonparametric Bayesian Model?

@ An NPBayes model is NOT a model with no parameters!
@ It has potentially infinite many (unbounded number of) parameters

@ It has the ability to “create” new parameters if data requires so..

@ Some non-Bayesian models are also nonparametric. For example: nearest
neighbor regression /classification, kernel SVMs, kernel density estimation

o NPBayes models offer the benefits of both Bayesian modeling and
nonparametric modeling
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Examples of NPBayes Models

Some modeling problems and NPBayes models of choice!:

Distributions on functions
Distributions on distributions

Clustering
Hierarchical clustering
Sparse binary matrices

Survival analysis
Distributions on measures

Gaussian process

Dirichlet process

Polya Tree

Chinese restaurant process
Pitman-Yor process

Dirichlet diffusion tree
Kingman's coalescent

Indian buffet processes

Beta processes

Completely random measures
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Gaussian Process

@ A Gaussian Process (GP) is a distribution over functions f: f ~ GP(u, X)

@ .. such that f's value at a finite set of points x1,...,xy is jointly Gaussian

{f(xl)a f(Xz), ) f(XN)} ~ N(H’v K)
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@ A Gaussian Process (GP) is a distribution over functions f: f ~ GP(u, X)

@ .. such that f's value at a finite set of points x1,...,xy is jointly Gaussian

{f(xl)a f(Xz), ) f(XN)} ~ N(H’v K)

o If p =0, a GP is fully specified by its covariance (kernel) matrix K
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Gaussian Process

@ A Gaussian Process (GP) is a distribution over functions f: f ~ GP(u, X)

. such that f's value at a finite set of points x1,...,xpy is jointly Gaussian

{f(xl)a f(Xz), ) f(XN)} ~ N(H’v K)

o If p =0, a GP is fully specified by its covariance (kernel) matrix K
o Covariance matrix defined by a kernel function k(x,, x,). Some examples:
o k(xn,xm) = exp (—%): Gaussian kernel

o k(Xn,Xm) = voexp {— (M)a} + Vi + V2bnm
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Gaussian Process

@ A Gaussian Process (GP) is a distribution over functions f: f ~ GP(u, X)

. such that f's value at a finite set of points x1,...,xpy is jointly Gaussian

{f(xl)a f(Xz), ) f(XN)} ~ N(H’v K)

o If p =0, a GP is fully specified by its covariance (kernel) matrix K

o Covariance matrix defined by a kernel function k(x,, x,). Some examples:

[1xn=xm][*
20

o k(xpn,Xm) = vo exp{ (M) } + Vi + V2bnm

o k(xn,Xm) = exp (— ): Gaussian kernel

@ GP based modeling also allows learning the kernel hyperparameters from data
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Gaussian Process

Left: some functions drawn from a GP prior (0, K)

Right: posterior over these functions after observing 5 examples {x,, y,}

output, f(x)
OS
output, f(x)
o -
+Q
S

input, x input, x
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Gaussian Process Regression

o Training data: {x,,y,}"~_,. Response is a noisy function of the input
yn=f(xn) +€n
@ Assume a zero-mean Gaussian error
plelo?) = N(e[0, 0?)
@ Leads to a Gaussian likelihood model for the responses

P(ynlf(xn)) = N(yalf (xn), 02)

Piyush Rai (IIT Kanpur) Nonp: ric Bayesian Modeling and G ian Process Regression

11



Gaussian Process Regression

o Training data: {x,,y,}"~_,. Response is a noisy function of the input
Yo = f(Xn) + €n
@ Assume a zero-mean Gaussian error
plelo?) = N(€0, 0?)
@ Leads to a Gaussian likelihood model for the responses
P(yalF(xn)) = N (yalf(xn), 0%)
e Denote y = [y1,...,yn]" € RN, f=[f(x1),...,f(xn)]" € RN and write

p(y|f) = N(yIf. a%Iy)
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Gaussian Process Regression

o Training data: {x,,y,}"~_,. Response is a noisy function of the input
Yo = f(Xn) + €n
@ Assume a zero-mean Gaussian error
plelo?) = N(€0, 0?)
@ Leads to a Gaussian likelihood model for the responses
P(yalF(xn)) = N (yalf(xn), 0%)
Denote y = [y1,...,yn]" € RN, f=[f(x1),...,f(xn)]" € RN and write

p(y|f) = N(yIf. a%Iy)

@ In GP regression, we assume f drawn from a GP

p(f) = N (|0, K)
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Gaussian Process Regression

@ The likelihood model
p(y|f) = N(yIf, o’In)

@ The prior distribution
p(f) = N(£[0. K)

@ The marginal distribution over the responses y

ply) = / p(yI)p(F)df = N (y[0,0%ly + K)
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Gaussian Process Regression

@ The likelihood model
p(ylf) = N(ylf, o%In)

@ The prior distribution
p(f) = N(£[0. K)

@ The marginal distribution over the responses y
p() = [ p(yINpE = AyI0, 0% + K)

Marginal and Conditional of Gaussians

If, p(z) = N(x|g, A1), and p(y|z) = N'(y|Az + b, L~ 1), then the marginal,
p(y). and the conditional p(z|y) distributions are also Gaussians and are given
by,

p(y) =N(y|Ap +b, L7 + AA1AT),
p(zly) = N(z|E(ATL(y — b) + Ap), X).
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Making Predictions

@ Recall, the marginal distribution over the responses y = [y1, ...

p(y) = N(y[0, 0%y + K) = N(y|0,Cn)
o Adding the response y, of a new test point x.
p([y; y+]) = N(ly, y+]10, Crns1)

where the (N + 1) x (N + 1) matrix Cy41 is given by

S
NHLE T
and k. = [k(xu, x1), ..., k(x, xn)], € = k(x4, X)) + 02
N+1 B
_ 1
N+1 CN+1 = CN T
kKT ld
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Making Predictions on Test Data

e Recall p([y, y«]) = N(y, y«]|0,Cn+1). The predictive distribution will be

p(ly. y<])
pysly) N(ya|m(x.),0%(x.))
m(x.) = k. Cyly
o%(x.) = c—k. Cylk.
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Making Predictions on Test Data

e Recall p([y, y«]) = N(y, y«]|0,Cn+1). The predictive distribution will be

p(ly. v.])
p(yly) Nyl m(x.), 0%(x.))
m(x.) = k. Cyly
o%(x.) = c—k. Cylk.

Partitioned Gaussians

If 2, and 2}, are Gaussian variables respectively with means y, and p;, then
the conditional distribution, p(x,|z}) is also Gaussian with mean and variance
respectively, j1q5 and X, 3, given by,

-1
Halb = Ha + SubEbb (b — ),

-1
\‘——:u b= Srm = S(zbzb(, \'——:b(l'

Piyush Rai (IIT Kanpur) Nonp: ric Bayesian Modeling and G ian Process Regression 14



Making Predictions on Test Data

e Recall p([y, y«]) = N(y, y«]|0,Cn+1). The predictive distribution will be

p(ly. v.])
p(yly) Nyl m(x.), 0%(x.))
m(x.) = k. Cyly
o%(x.) = c—k. Cylk.

Partitioned Gaussians

If 2, and 2}, are Gaussian variables respectively with means y, and p;, then
the conditional distribution, p(x,|z}) is also Gaussian with mean and variance
respectively, j1q5 and X, 3, given by,

-1
Halb = Ha + Subgbb (b — ),

-1
\——:u b= Srm = Subzb(, \——:bu-

@ Note that for GP regression, exact inference is possible at test time!
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Interpreting GP predictions..

@ Let's look at the predictions made by GP regression

p(ysly) = N(ylm(x.),0%(x.))
m(x.) = k*TCle
o%(x.) = c—k. Cylk.

e Two interpretations for the mean prediction m(x.)

e An SVM like interpretation
N

m(x.)=k. Cyly =k. o= Z k(Xx, Xn)tn

n=1
where « is akin to the weights of support vectors

e A nearest neighbors interpretation

N
Fe~—1 I
m(x.) =k. Cyly=w y= E WnYn
n=1
where w is akin to the weights of the neighbors
Piyush Rai (IIT Kanpur) Nonp: ric Bayesian Modeling and G ian Process Regression

15



Inferring Hyperparameters

@ Recall, the marginal distribution over the responses y = [y1,. .., yn]
p(ylo?,0) = N(y|0, 01y + Kg)

e Can maximize the (log) marginal likelihood w.r.t. 2 and the kernel
hyperparameterss 6 and get point estimates of the hyperparameters

1 1
log p(y|o?,0) = ~3 log |02l + Kg| — 5yT(UZIN +Kp) "'y + const
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Inferring Hyperparameters

@ Recall, the marginal distribution over the responses y = [y1,. .., yn]
p(ylo?,0) = N(y|0, 01y + Kg)

e Can maximize the (log) marginal likelihood w.r.t. 2 and the kernel
hyperparameterss 6 and get point estimates of the hyperparameters

1 1
log p(y|o?,0) = ~3 log |02l + Kg| — 5yT(UZIN +Kp) "'y + const

@ Note: Can also put hyperpriors on the hyperparameters and infer the
hyperparameters in a fully Bayesian manner
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Gaussian Process Classification

Binary classification problem: Given a data set D = {(x;,y;) }l-;, with binary class
labels y; € {—1.41}, infer class label probabilities at new points.

— =41
= §oy

0 05 1
x i 5 B

There are many ways to relate function values f; = f(x;) to class probabilities:

-1 -05

Wl—y]m sigmoid (logistic)
pluilfi) = Dy fi) cumulative normal (probit)
' H(y:f:) threshold
e+ (1 —2e)H (i fi) robust threshold

Non-Gaussian likelihood, so we need to use approximate inference methods (Laplace, EP, MCMC).

@ Non-binary labels (multiclass, counts, etc.) can also be easily handled
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GP vs (Kernel) SVM

@ The objective function of a soft-margin SVM looks like

N
1
§HW||2 + CZ(l — Ynfa)+

n=1

T

where f, = w ' x, and y, is the true label for x,
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GP vs (Kernel) SVM

@ The objective function of a soft-margin SVM looks like

N
1
§HW||2 + CZ(l — Ynfa)+

n=1

T

where f, = w ' x, and y, is the true label for x,

o Kernel SVM: f, = Z,/X:l amk(Xp, Xm). Denote f=[fi,...
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GP vs (Kernel) SVM

@ The objective function of a soft-margin SVM looks like

N
1
§HW||2 + CZ(l — Ynfa)+

n=1

T

where f, = w ' x, and y, is the true label for x,

o Kernel SVM: f, = Z,/X:l amk(Xn, Xm). Denote f=[f,...,fy]"

o We can write w = a"Ka = fTKf, and kernel SVM objective becomes

N
1 Te—1
SF K+ C;(l — Yofa)s
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GP vs (Kernel) SVM

@ The objective function of a soft-margin SVM looks like

N
1
§HW||2 + CZ(l — Ynfa)+

n=1

T

where f, = w ' x, and y, is the true label for x,

o Kernel SVM: f, = Z,/X:l amk(Xn, Xm). Denote f=[f,...,fy]"

o We can write w = a"Ka = fTKf, and kernel SVM objective becomes
Lerk-te 4 CEN:(I — Ynfa)+
2 n=1

o Negative log of the likelihood p(f|X) of a GP can be written as

N
L1
Ef K ffZ|ogp(yn\fn)+const

n=1
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GP vs (Kernel) SVM

@ Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
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GP vs (Kernel) SVM

@ Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
@ Both GP and SVM need dealing with (storing/inverting) large kernel matrices

e Various approximations proposed to address this issue (applicable to both)
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@ Both GP and SVM need dealing with (storing/inverting) large kernel matrices

e Various approximations proposed to address this issue (applicable to both)

@ Ability to learn the kernel hyperparameters in GP is very useful, e.g.,
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GP vs (Kernel) SVM

@ Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
@ Both GP and SVM need dealing with (storing/inverting) large kernel matrices

e Various approximations proposed to address this issue (applicable to both)

@ Ability to learn the kernel hyperparameters in GP is very useful, e.g.,
o Learning the kernel bandwidth for Gaussian kernels

_ 2
K(%n, Xm) = exp (_M)

202
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GP vs (Kernel) SVM

@ Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
@ Both GP and SVM need dealing with (storing/inverting) large kernel matrices

e Various approximations proposed to address this issue (applicable to both)

@ Ability to learn the kernel hyperparameters in GP is very useful, e.g.,
o Learning the kernel bandwidth for Gaussian kernels

_ 2
K(%n, Xm) = exp (_M)

202

e Doing feature selection (via Automatic Relevance Determination)

ZD (Xng — Xma)?
nd — Xmd
k(Xn,xm):exp (— w)

d=1
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GP vs (Kernel) SVM

@ Thus GPs can be interpreted as a Bayesian analogue of kernel SVMs
@ Both GP and SVM need dealing with (storing/inverting) large kernel matrices

e Various approximations proposed to address this issue (applicable to both)

@ Ability to learn the kernel hyperparameters in GP is very useful, e.g.,
o Learning the kernel bandwidth for Gaussian kernels

_ 2
K(%n, Xm) = exp (_M)

202

e Doing feature selection (via Automatic Relevance Determination)

3 Gt — )’

nd — Xmd

k(Xn,xm):exp (— w)
d=1

e Learning compositions of kernels for more flexible modeling

K:K91+K92+...
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Other Usage of GP

@ Nonlinear Dimensionality Reduction: Gaussian Process Latent Variable
Models

e Bayesian Optimization: Optimizing functions that have an unknown
functional form and are expensive to evaluate

@ Deep Gaussian Processes: Data assumed to be an output of a multivariate
GP, inputs to each GP are outputs of another GP, and so on..

@ Many applications: Robotics and control, vision, spatial statistics, and so on..

Piyush Rai (IIT Kanpur) Nonp: ric Bayesian Modeling and G ian Process Regression 20



Resources on Gaussian Processes

@ Book: Gaussian Processes for Machine Learning (freely available online)

o MATLAB Packages: Useful to play with, build applications, extend existing
models and inference algorithms for GPs (both regression and classification)

o GPML: http://www.gaussianprocess.org/gpml/code/matlab/doc/
o GPStuff: http://research.cs.aalto.fi/pml/software/gpstuff/
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Next Talk

@ Nonparametric Bayesian models for mixture modeling (clustering): Dirichlet
Processes and Chinese Restaurant Process

@ Nonparametric Bayesian models for latent factor modeling (dimensionality
reduction): Beta Processes and Indian Buffet Process
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Thanks! Questions?
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