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Figure 1: When humans look at a scene, we can instantly recognize the scene’s affordances, or what we can do in it: we
can stand on the floor and the desk if necessary; we can sit on the desk too, but not on the bookshelf. We illustrate these
by placing the appropriate human pose (white) and contact point (black) on top of likely parts of a per-pixel functional map
estimated by one of our algorithms. This paper proposes to revisit the notion of recognizing functional properties directly
from pixel data. Note the humans are for illustrative purposes only; our approach generates the heatmap.

In a tribute to Gibson, we show that it is indeed pos-
sible to have algorithms that directly perceive affordances
in a scene and we evaluate why the direct approach may
have advantages over mediated approaches. To do this, we
present two approaches that estimate affordances without
using an intermediate representations, one based on mid-
level representations and the other based on deep learning.
We show that these approaches can out-perform mediated
approaches based on estimating an intermediate represen-
tation in the form of semantics or 3D. Additionally, we
present evidence that shows that our affordances can act as
a feature for 3D scene understanding.

This paper is a proof of concept that aims to rekindle dis-
cussion of direct perception. Our ultimate goal is to obtain
an action-centric understanding of scenes. It is genuinely
not clear whether direct perception is the right approach for
getting this understanding: there are many reasons why di-
rect perception may be wrong, and the final answer may
involve mediated perception. However, we believe that the
direct approach deserves a genuine second look.

1.1. A Modern View of Direct Perception

Gibson was never clear about what he meant by direct
perception. Ullman, in his classic work Against Direct Per-
ception [31] gives a good definition: the representation can-
not be decomposed further at that particular level of repre-
sentation. He also provided an illustrative example: adding
two single digit numbers is a direct (via lookup), but multi-
digit addition is not, because it is decomposed into these
single digit operations. The “direct” lookup for single digits
might be electrically implemented as a complex operation,
but this is at a lower level of understanding than addition.

Building on this idea, we try to define what we mean by
direct perception and how it differs from most recent work
on affordances in computer vision. By direct perception,
we mean that we have a feedforward mapping from pixels
to our desired output in terms of a function. This function

could be linear or non-linear, use the whole image or part
of an image; it could be simple or the composition of sev-
eral simple functions, etc. However there are a few proper-
ties that must be satisfied: (a) In the process, the function
cannot calculate some externally meaningful representation
(i.e., pre-specified and immediately human-interpretable) as
an intermediate representation, such as semantics or 3D (b)
The function cannot be defined over the output space itself
but should be representable by the form y = f(x).

For instance, if we were predicting semantic classes, a
random forest on bag-of-words features over dense SIFT on
superpixels would be direct; CRF reasoning on top would
not be because it is not feedforward and does reasoning over
the labels. A template over HOG would be direct, but using
these detection in terms of categories to infer a scene class
would not be direct because it makes use of a semantically
meaningful intermediate representation.

In this paper, we demonstrate two direct perception ap-
proaches for affordances. The first is a bank of linear tem-
plates over HOG features [5] that are used to directly trans-
fer affordance labels. The second approach is inspired by
Gibson’s view of affordances as an invariance. We learn
a deep convolutional neural network (CNN) over RGB im-
ages to create segmentation masks for affordances like sit-
table, walkable, etc. It should be highlighted that while
CNNs have layers, they are feedforward. Furthermore, for
every deep network there also exists a “shallow” non-linear
network which can often yield similar performance [1].
This suggests that intermediate layers are just for conve-
nience of learning and representation.

2. Related Work
The notion that the objects are defined by their functions

(e.g., “sitting”) dates back to the early 20th century when
Gestaltists proposed that some functions of objects can be
perceived directly. These ideas were picked upon by James
J. Gibson who proposed the theory of affordances [11]. Af-
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Convolutional Neural Networks

Fukushima,	1980 LeCun	et	al,	1989 Krizhevsky	et	al,	2012

❑ CNNs	are	Neural	Networks	with	Convolutional	layers	–	each	
output	unit	depends	(via	a	spatially	invariant	linear	function)	on	a	
set	of	neighbouring	input	units	

❑ Particularly	relevant	for	input	domains	with	spatial	structure	(e.g.	
images)
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Shape Collections

Reconstruction ‘in the wild’

Shape Representation

(a) Input images and shapes (b) Camera pose estimation (c) Correspondences (d) Segmentation (e) Reconstruction

Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-

(a) Input images and shapes (b) Camera pose estimation (c) Correspondences (d) Segmentation (e) Reconstruction
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that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.
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Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
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An early image-based modeling system that utilized human assis-
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interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Method

Training Config. Test Config. Classification

(Accuracy)

Retrieval

(mAP)

Pre-train Fine-tune #Views #Views

(1) SPH [16] - - - - 68.2% 33.3%
(2) LFD [5] - - - - 75.5% 40.9%
(3) 3D ShapeNets [37] ModelNet40 ModelNet40 - - 77.3% 49.2%

(4) FV - ModelNet40 12 1 78.8% 37.5%
(5) FV, 12⇥ - ModelNet40 12 12 84.8% 43.9%
(6) CNN ImageNet1K - - 1 83.0% 44.1%
(7) CNN, f.t. ImageNet1K ModelNet40 12 1 85.1% 61.7%
(8) CNN, 12⇥ ImageNet1K - - 12 87.5% 49.6%
(9) CNN, f.t.,12⇥ ImageNet1K ModelNet40 12 12 88.6% 62.8%

(10) MVCNN, 12⇥ ImageNet1K - - 12 88.1% 49.4%
(11) MVCNN, f.t., 12⇥ ImageNet1K ModelNet40 12 12 89.9% 70.1%
(12) MVCNN, f.t.+metric, 12⇥ ImageNet1K ModelNet40 12 12 89.5% 80.2%
(13) MVCNN, 80⇥ ImageNet1K - 80 80 84.3% 36.8%
(14) MVCNN, f.t., 80⇥ ImageNet1K ModelNet40 80 80 90.1% 70.4%
(15) MVCNN, f.t.+metric, 80⇥ ImageNet1K ModelNet40 80 80 90.1% 79.5%

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

Table 1. Classification and retrieval results on the ModelNet40 dataset. On the top are results using state-of-the-art 3D shape descriptors.
Our view-based descriptors including Fisher vectors (FV) significantly outperform these even when a single view is available at test
time (#Views = 1). When multiple views (#Views=12 or 80) are available at test time, the performance of view-based methods improve
significantly. The multi-view CNN (MVCNN) architecture outperforms the view-based methods, especially for retrieval.

to synthesize the information from all views into a single,
compact 3D shape descriptor.

We design the multi-view CNN (MVCNN) on top of
image-based CNNs (Fig. 1). Each image in a 3D shape’s
multi-view representation is passed through the first part
of the network (CNN1) separately, aggregated at a view-
pooling layer, and then sent through the remaining part
of the network (CNN2). All branches in the first part of
the network share the same parameters in CNN1. We use
element-wise maximum operation across the views in the
view-pooling layer. An alternative is element-wise mean
operation, but it is not as effective in our experiments. The
view-pooling layer can be placed anywhere in the network.
We show in our experiments that it should be placed close
to the last convolutional layer (conv5) for optimal classifi-
cation and retrieval performance. View-pooling layers are
closely related to max-pooling layers and maxout layers
[14], with the only difference being the dimension that their
pooling operations are carried out on. The MVCNN is a di-
rected acyclic graphs and can be trained or fine-tuned using
stochastic gradient descent with back-propagation.

Using fc7 (after ReLU non-linearity) in an MVCNN
as an aggregated shape descriptor, we achieve higher per-
formance than using separate image descriptors from an
image-based CNN directly, especially in retrieval (62.8%
! 70.1%). Perhaps more importantly, the aggregated de-
scriptor is readily available for a variety of tasks, e.g., shape
classification and retrieval, and offers significant speed-ups

against multiple image descriptors.
An MVCNN can also be used as a general framework

to integrate perturbed image samples (also known as data
jittering). We illustrate this capability of MVCNNs in the
context of sketch recognition in Sect. 4.2.

Low-rank Mahalanobis metric. Our MVCNN is fine-
tuned for classification, and thus retrieval performance is
not directly optimized. Although we could train it with a
different objective function suitable for retrieval, we found
that a simpler approach can readily yield a significant re-
trieval performance boost (see row 12 in Tab. 1). We learn a
Mahalanobis metric W that directly projects MVCNN de-
scriptors � 2 Rd to W� 2 Rp, such that the `2 distances
in the projected space are small between shapes of the same
category, and large otherwise. We use the large-margin met-
ric learning algorithm and implementation from [32], with
p < d to make the final descriptor compact (p = 128 in our
experiments). The fact that we can readily use metric learn-
ing over the output shape descriptor demonstrates another
advantage of using MVCNNs.

4. Experiments

4.1. 3D Shape Classification and Retrieval

We evaluate our shape descriptors on the Princeton Mod-
elNet dataset [1]. ModelNet currently contains 127,915
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-

(a) Input images and shapes (b) Camera pose estimation (c) Correspondences (d) Segmentation (e) Reconstruction

Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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timization on a grid drawn from vanishing point rays [11],
while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [37] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-
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Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.

timization on a grid drawn from vanishing point rays [11],
while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [37] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-
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Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.
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timization on a grid drawn from vanishing point rays [11],
while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [37] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-
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Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.

timization on a grid drawn from vanishing point rays [11],
while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [37] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-
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Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.
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while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [37] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-
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Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.
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timization on a grid drawn from vanishing point rays [11],
while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [37] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-
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tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.
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ing methods with a new architecture to achieve this goal.
Szeliski [30] suggests using image prediction error as a met-
ric for stereo algorithms; our method directly minimizes this
prediction error.

Finally, a few recent papers have applied deep learning
to synthesizing imagery. Dosovitskiy et al. train a network
on synthetic images of rendered 3D chairs that can gener-
ate new chair images given parameters such as pose [7].
Kulkarni et al. propose a “deep convolutional inverse graph-
ics network” that can parse and rerender imagery such as
faces [22]. However, we believe ours is the first method to
apply deep learning to synthesizing novel natural imagery
from posed real-world input images.

3. Approach

C

V1 V2

Figure 2: The goal of image-based rendering is to render a
new view at C from existing images at V1 and V2.

Given a set of posed input images I1, I2, . . . , In, with
poses V1, V2, . . . , Vn, the view synthesis problem is to ren-
der a new image from the viewpoint of a new target camera
C (Fig. 2). Despite the representative power of deep net-
works, naively training a deep network to synthesize new
views by supplying the input images Ik as inputs directly is
unlikely to work well, for two key reasons.

First, the pose parameters of C and of the views
V1, V2, . . . , Vn would need to be supplied as inputs to the
network in order to produce the desired view. The rela-
tionship between the pose parameters, the input pixels and
the output pixels is complex and non-linear—the network
would effectively need to learn how to interpret rotation
angles and to perform image reprojection. Requiring the
network to learn projection is inefficient—it is a straightfor-
ward operation that we can represent outside of the network.

Second, in order to synthesize a new view, the network
would need to compare and combine potentially distant pix-
els in the original source images, necessitating very dense,

long-range connections. Such a network would have many
parameters and would be slow to train, prone to overfitting,
and slow to run inference on. It is possible that a network
structure could be designed to use the epipolar constraint
internally in order to limit connections to those on corre-
sponding epipolar lines. However, the epipolar lines, and
thus the network connections, would be pose-dependent,
making this very difficult and likely computationally ineffi-
cient in practice.

Using plane-sweep volumes. Instead, we address these
problems by using ideas from traditional plane sweep stereo
[3, 31]. We provide our network with a set of 3D plane
sweep volumes as input. A plane sweep volume consists of
a stack of images reprojected to the target camera C (Fig. 3).
Each image Ik in the stack is reprojected into the target
camera C at a set of varying depths d 2 {d1, d2, . . . dD} to
form a plane sweep volume V k

C = {P k
1 , P

k
2 , . . . P

k
D}, where

P k
i refers to the reprojected image Ik at depth di. Repro-

jecting an input image into the target camera only requires
basic texture mapping capabilities and can be performed on
a GPU. A separate plane sweep volume V k

C is created for
each input image Ik. Each voxel vki,j,z in each plane sweep
volume V k

C has R, G, B and A (alpha) components. The
alpha channel indicates the availability of source pixels for
that voxel (e.g., alpha is zero for pixels outside the field of
view of a source image).

Figure 3: Plane sweep stereo reprojects images I1 and I2
from viewpoints V1 and V2 to the target camera C at a range
of depths d 2 d1 . . . dD. The dotted rays indicate the pixels
from the input images reprojected to a particular output im-
age pixel, and the images above each input view show the
corresponding reprojected images at different depths.

Using plane sweep volumes as input to the network re-
moves the need to supply the pose parameters since they
are now implicit inputs used in the construction of the plane

Images if all pixels were 
at same depth
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Figure 5: The selection tower learns to produce a selection
probability si,j,z for each pixel pi,j in each depth plane Pz .

whilst ensuring that the sum over all depth planes is 1. We
found that using a tanh activation for the penultimate layer
gives more stable training than the more natural choice of
a linear layer. In our experiments the linear layer would
often “shut down” certain depth planes1 and never recover,
presumably, due to large gradients from the softmax layer.
The output of the selection tower is a 3D volume of single-
channel nodes si,j,z where

DX

z=1

si,j,z = 1.

The color tower. The color tower (Fig. 6) is simpler and
consists of only 2D convolutional rectified linear layers that
share weights across all planes, followed by a linear recon-
struction layer. Occlusion effects are not relevant for the
color layer so no across-depth interaction is needed. The
output of the color tower is again a 3D volume of nodes
ci,j,z . Each node in the output has 3 channels, correspond-
ing to R, G and B.

The output of the color tower and the selection tower are
multiplied together per node to produce the output image
cf (Eq. 1). During training the resulting image is compared
with the known target image It using a per-pixel L1 loss.
The total loss is thus:

L =
X

i,j

|cti,j � cfi,j |

where cti,j is the target color at pixel i, j.

Multi-resolution patches. Rather than predict a full im-
age at a time, we predict the output image patch-by-patch.

1The depth planes would receive zero weight for all inputs and all pix-
els.
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Figure 6: The color tower learns to combine and warp pixels
across sources to produce a color ci,j,z for each pixel pi,j in
each depth plane Pz .

We found that passing in a set of lower resolution versions
of successively larger areas around the input patches helped
improve results by providing the network with more con-
text. We pass in four different resolutions. Each resolution
is first processed independently by several layers and then
upsampled and concatenated before entering the final lay-
ers. The upsampling is performed using nearest neighbor
interpolation.

The full details of the complete network are shown in
Fig. 7.

3.1. Training

To train our network, we used images of street scenes
captured by a moving vehicle. The images were posed using
a combination of odometry and traditional structure-from-
motion techniques [16]. The vehicle captures a set of im-
ages, known as a rosette, from different directions for each
exposure. The capturing camera uses a rolling shutter sen-
sor, which is taken into account by our camera model. We
used approximately 100K of such image sets during train-
ing.

We used a continuously running online sample genera-
tion pipeline that selected and reprojected random patches
from the training imagery. The network was trained to pro-
duce 8 ⇥ 8 patches from overlapping input patches of size
26 ⇥ 26. We used 96 depth planes in all results shown.
Since the network is fully convolutional there are no border
effects as we transition between patches in the output im-
age. In order to increase the variability of the patches that
the network sees during training patches from many images
are mixed together to create mini-batches of size 400. We
trained our network with Adagrad [8] with an initial learn-
ing rate of 0.0005 using the system described by Dean, et
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whilst ensuring that the sum over all depth planes is 1. We
found that using a tanh activation for the penultimate layer
gives more stable training than the more natural choice of
a linear layer. In our experiments the linear layer would
often “shut down” certain depth planes1 and never recover,
presumably, due to large gradients from the softmax layer.
The output of the selection tower is a 3D volume of single-
channel nodes si,j,z where
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The color tower. The color tower (Fig. 6) is simpler and
consists of only 2D convolutional rectified linear layers that
share weights across all planes, followed by a linear recon-
struction layer. Occlusion effects are not relevant for the
color layer so no across-depth interaction is needed. The
output of the color tower is again a 3D volume of nodes
ci,j,z . Each node in the output has 3 channels, correspond-
ing to R, G and B.

The output of the color tower and the selection tower are
multiplied together per node to produce the output image
cf (Eq. 1). During training the resulting image is compared
with the known target image It using a per-pixel L1 loss.
The total loss is thus:
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where cti,j is the target color at pixel i, j.
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each depth plane Pz .

We found that passing in a set of lower resolution versions
of successively larger areas around the input patches helped
improve results by providing the network with more con-
text. We pass in four different resolutions. Each resolution
is first processed independently by several layers and then
upsampled and concatenated before entering the final lay-
ers. The upsampling is performed using nearest neighbor
interpolation.

The full details of the complete network are shown in
Fig. 7.

3.1. Training

To train our network, we used images of street scenes
captured by a moving vehicle. The images were posed using
a combination of odometry and traditional structure-from-
motion techniques [16]. The vehicle captures a set of im-
ages, known as a rosette, from different directions for each
exposure. The capturing camera uses a rolling shutter sen-
sor, which is taken into account by our camera model. We
used approximately 100K of such image sets during train-
ing.

We used a continuously running online sample genera-
tion pipeline that selected and reprojected random patches
from the training imagery. The network was trained to pro-
duce 8 ⇥ 8 patches from overlapping input patches of size
26 ⇥ 26. We used 96 depth planes in all results shown.
Since the network is fully convolutional there are no border
effects as we transition between patches in the output im-
age. In order to increase the variability of the patches that
the network sees during training patches from many images
are mixed together to create mini-batches of size 400. We
trained our network with Adagrad [8] with an initial learn-
ing rate of 0.0005 using the system described by Dean, et
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(a) Input images and shapes (b) Camera pose estimation (c) Correspondences (d) Segmentation (e) Reconstruction

Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-
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timization on a grid drawn from vanishing point rays [11],
while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [37] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-
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tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.
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then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
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Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.

Open Problems



Problem Generality

Solution 
‘Quality’

timization on a grid drawn from vanishing point rays [11],
while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [37] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-
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Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.
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local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
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use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
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proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.
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by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
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are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.
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the recent VGG ImageNet model [32] to semantic segmen-
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Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
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tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.
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Open Problems : End-to-End Reconstruction

• All methods presented have hand-coded 
intermediate representations 

• The lessons from recent successes of deep learning 
indicate we might want to instead learn these

(a) Input images and shapes (b) Camera pose estimation (c) Correspondences (d) Segmentation (e) Reconstruction

Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-

(a) Input images and shapes (b) Camera pose estimation (c) Correspondences (d) Segmentation (e) Reconstruction

Figure 2: Stages of the presented approach. (a) Input: natural images and pre-existing 3D models. (b) Camera pose estimation for natural
images, visualized by showing pre-existing models from the estimated poses. (c) Correspondence structure via a dense network of patches
that interconnect natural images and rendered images. (d) Joint image segmentation. (e) 3D reconstruction of each natural image using parts
from pre-existing models.

We evaluate the presented approach on a number of datasets col-
lected from the Web. The accuracy of the approach is validated
through extensive experiments. Figure 1 shows results on Windsor
chairs.

2 Related Work

Images are easy to acquire and provide direct information on ob-
ject appearance. However, a single image provides only limited
geometric information. To obtain veridical 3D models, additional
input is generally required. Such input can take the form of hu-
man assistance, multiple images, pre-existing models, simplifying
assumptions, or a combination thereof.

An early image-based modeling system that utilized human assis-
tance was developed by Debevec et al. [1996], who focused on ar-
chitectural modeling. More recently, Xu et al. [2011] presented a
user-guided approach that deformed stock 3D models to a given
image; human assistance was used to segment the image and es-
tablish correspondences between the image and the models. The
approaches of Zheng et al. [2012] and Chen et al. [2013] let users
interactively fit cuboids and generalized cylinders to objects in im-
ages. The system of Kholgade et al. [2014] let the user align a stock
3D model to a photograph, thus enabling advanced image editing.
In contrast to all of these systems, our approach is automatic: ambi-
guities that arise in considering a single image are resolved through
joint analysis of an image collection along with pre-existing 3D
models, and by enforcing structural relationships such as symmetry
and adjacency.

Three-dimensional models can be automatically created from an
image collection that densely samples the appearance of a single
static object or environment. The geometry of image formation can
be used to interconnect the collection with correspondences, which
can be used to reconstruct the depicted object or environment [Hart-
ley and Zisserman 2000]. This approach has been impressively ap-
plied to reconstruct a variety of public spaces from Web images
[Snavely et al. 2010]. Our work also uses Web images, but our im-
ages depict many different objects. Each object may have a distinct
shape and may only appear in a single image.

Estimation of three-dimensional layout from a single image can be
performed using projective geometry techniques [Criminisi et al.
2000] or by data-driven approaches [Fouhey et al. 2013; Su et al.
2014; Eigen et al. 2014]. In contrast to these techniques, our ap-
proach reconstructs complete 3D models, including surfaces that
are occluded in input images. A key technical difference between
our work and these prior approaches is that instead of processing
each image in isolation, we analyze a whole collection of images
jointly. Our experiments demonstrate that joint reconstruction of
the image collection produces much better results than treating each
image separately.

A number of recent works consider object reconstruction from im-
age collections [Carreira et al. 2015b; Carreira et al. 2015a; Kar
et al. 2015; Averbuch-Elor et al. 2015]. These approaches do not
use available 3D models and produce only coarse three-dimensional
proxies. Our approach analyzes images and shapes together. Al-
though our shape collections are comparatively small and do not
lend themselves to simple retrieval approaches, they provide valu-
able geometric information. Proper use of this data is at the heart
of our approach.

A number of techniques analyze shape collections, producing con-
sistent segmentations and correspondences [Huang et al. 2011; Kim
et al. 2012]. In contrast, our work is focused on joint analysis of
images and shapes for the purpose of 3D reconstruction. Shen et
al. [2012] describe a pipeline that assembles a 3D model to fit a
given depth image. In contrast, our pipeline is designed to recon-
struct objects depicted in regular images.

3 Overview

Input. The presented pipeline jointly analyzes a collection
of images I = {I1, · · · , INI} and a collection of shapes
S = {S1, · · · , SNS}, all depicting objects from a common cate-
gory, such as chairs or bicycles. For objects we consider, high-
quality images are considerably more numerous than high-quality
3D models. Thus NI is much larger than NS .

As in prior work on 3D reconstruction from image collections [Car-
reira et al. 2015b], we assume that a bounding box of the object in
each image is provided. Given the bounding boxes, each image
is automatically cropped and then scaled to 500 pixels in width or
height, whichever is larger. Henceforth we assume that each im-
age has a maximal side length of 500 pixels and the depicted object
abuts on the image boundary on all sides.

We assume that the input shapes have a consistent scale and orienta-
tion, and that the underlying reflectional symmetry plane, if present,
is about the x-plane. We also assume that each shape comprises one
or more disconnected segments. Publicly available 3D models are
often composed of disconnected parts: human modelers typically
sculpt distinct components, which correspond to parts of the object,
and then simply position them to form the model. These vestigial
segmentations are noisy, with some models segmented poorly or
not at all. We thus do not assume that the given segmentations can
be used as found. We also do not assume that any correspondence
structure between the segments is known in advance. Our pipeline
uses the given noisy segmentations to initialize automatic joint seg-
mentation of images and shapes.

To propagate information between shapes in S and images in I,
we synthesize a set of rendered images. To create these, we gen-
erate 360 camera poses by sampling the upper half of the viewing
sphere using farthest point sampling [Gonzalez 1985] and direct-



Open Problems : Domain Gap

Figure 1: System overview. Our system takes as input individual 2D image object proposal windows (top-left) generated by
the selective search algorithm [57]. The image window is passed through the initial layers of a pre-trained CaffeNet model [30]
to generate a feature vector (top-middle). Here, we visualize CNN features using the inversion network of [14] (outlined
in green), which infers the original image given a CNN layer’s response. In an offline step (bottom-left), we similarly pass
rendered views of a library of 3D object CAD models through the initial layers of CaffeNet and record their responses. As
there is a domain gap between the appearance of natural images and rendered views of CAD models, we learn to adapt the
features for a natural image to better align to those of CAD models (top-right). We compare the features and return the view
that best matches the style and pose of the input image (bottom-right).

• We introduce a cross-domain adaptation approach for
2D-3D exemplar detection using generated pairs of
rendered views of CAD models and composite views
with natural background. Our adaptation routine adapts
features of natural images depicting objects to more
closely match features of CAD model rendered views.

• We show how our adaptation routine can be incorpo-
rated into a CNN-based detection pipeline, which leads
to an increase in accuracy and speed for 2D-3D exem-
plar detection.

We evaluated our method on the tasks of CAD instance
retrieval on the IKEA dataset [38] and on 2D-3D object class
detection on the Pascal VOC subset used in Aubry et al. [4].
We show state-of-the-art exemplar detection performance on
IKEA instances and out-perform the discriminative element
approach of Aubry et al. [4] both in terms of accuracy and
speed. Finally we will release extended annotations for the
IKEA object dataset, a new diverse dataset of textured and
non-textured rendered views of CAD models we used to
learn the adaptation, and our full code.

1.1. Related Work

A 3D understanding of 2D natural images has been a
problem of interest in computer vision since its very begin-
ning [45]. Our work is in line with traditional geometry-
centric approaches for object recognition based on align-
ment [41]. There has been a number of successful ap-
proaches for instance-level recognition, e.g., [11, 36, 47],
typically based on SIFT matching [39] with geometric con-
straints. More recent approaches have leveraged contour-
based representation to align skylines [6] and statues [3].

Furthermore, simplified or parametric geometric models has
been used for category recognition/detection [17, 21, 25, 44,
59, 61]. We will focus our discussion in this section on
prior work using CAD models for category recognition and
2D-3D alignment.

Rendered views from CAD models have been used as
input for training an object class detector [42, 43, 53] or
for viewpoint prediction [51]. Most similar to us are ap-
proaches that align models directly to images. Examples
include alignment of IKEA furniture models to images [38],
exemplar-based object detection [40] by matching discrim-
inative elements [4, 10], and using hand-crafted features
for retrieving CAD models for depth prediction [50] and
compositing from multiple models [28]. Also related are ap-
proaches for CAD retrieval given RGB-D images (e.g., from
Kinect scans) [22, 49]. More recently there has been work to
enrich the feature representation for matching and alignment
using CNNs, which include CAD retrieval based on CNN
responses (e.g., AlexNet [33] “pool5” features) [5], learning
a transformation from CNN features to light-field descrip-
tors for 3D shapes [37], and training a Siamese network for
style retrieval [7]. Building on efficient CNN-based object
class detection, e.g., R-CNN [19], our approach extends the
above CNN-based approaches for efficient CAD-exemplar
detection.

Bridging two very different image modalities is a classic
problem for alignment [29]. Past approaches have addressed
this problem using two main strategies. A first line of work
has used manually-designed feature detectors and adapted
them, for example by adding a mask, so that they focus on the
information available in both CAD models and real images
[4, 10]. Another line of work has focused on increasing the
realism of rendered views, e.g., by extracting likely textures

Figure 1: System overview. Our system takes as input individual 2D image object proposal windows (top-left) generated by
the selective search algorithm [57]. The image window is passed through the initial layers of a pre-trained CaffeNet model [30]
to generate a feature vector (top-middle). Here, we visualize CNN features using the inversion network of [14] (outlined
in green), which infers the original image given a CNN layer’s response. In an offline step (bottom-left), we similarly pass
rendered views of a library of 3D object CAD models through the initial layers of CaffeNet and record their responses. As
there is a domain gap between the appearance of natural images and rendered views of CAD models, we learn to adapt the
features for a natural image to better align to those of CAD models (top-right). We compare the features and return the view
that best matches the style and pose of the input image (bottom-right).

• We introduce a cross-domain adaptation approach for
2D-3D exemplar detection using generated pairs of
rendered views of CAD models and composite views
with natural background. Our adaptation routine adapts
features of natural images depicting objects to more
closely match features of CAD model rendered views.

• We show how our adaptation routine can be incorpo-
rated into a CNN-based detection pipeline, which leads
to an increase in accuracy and speed for 2D-3D exem-
plar detection.

We evaluated our method on the tasks of CAD instance
retrieval on the IKEA dataset [38] and on 2D-3D object class
detection on the Pascal VOC subset used in Aubry et al. [4].
We show state-of-the-art exemplar detection performance on
IKEA instances and out-perform the discriminative element
approach of Aubry et al. [4] both in terms of accuracy and
speed. Finally we will release extended annotations for the
IKEA object dataset, a new diverse dataset of textured and
non-textured rendered views of CAD models we used to
learn the adaptation, and our full code.

1.1. Related Work

A 3D understanding of 2D natural images has been a
problem of interest in computer vision since its very begin-
ning [45]. Our work is in line with traditional geometry-
centric approaches for object recognition based on align-
ment [41]. There has been a number of successful ap-
proaches for instance-level recognition, e.g., [11, 36, 47],
typically based on SIFT matching [39] with geometric con-
straints. More recent approaches have leveraged contour-
based representation to align skylines [6] and statues [3].

Furthermore, simplified or parametric geometric models has
been used for category recognition/detection [17, 21, 25, 44,
59, 61]. We will focus our discussion in this section on
prior work using CAD models for category recognition and
2D-3D alignment.

Rendered views from CAD models have been used as
input for training an object class detector [42, 43, 53] or
for viewpoint prediction [51]. Most similar to us are ap-
proaches that align models directly to images. Examples
include alignment of IKEA furniture models to images [38],
exemplar-based object detection [40] by matching discrim-
inative elements [4, 10], and using hand-crafted features
for retrieving CAD models for depth prediction [50] and
compositing from multiple models [28]. Also related are ap-
proaches for CAD retrieval given RGB-D images (e.g., from
Kinect scans) [22, 49]. More recently there has been work to
enrich the feature representation for matching and alignment
using CNNs, which include CAD retrieval based on CNN
responses (e.g., AlexNet [33] “pool5” features) [5], learning
a transformation from CNN features to light-field descrip-
tors for 3D shapes [37], and training a Siamese network for
style retrieval [7]. Building on efficient CNN-based object
class detection, e.g., R-CNN [19], our approach extends the
above CNN-based approaches for efficient CAD-exemplar
detection.

Bridging two very different image modalities is a classic
problem for alignment [29]. Past approaches have addressed
this problem using two main strategies. A first line of work
has used manually-designed feature detectors and adapted
them, for example by adding a mask, so that they focus on the
information available in both CAD models and real images
[4, 10]. Another line of work has focused on increasing the
realism of rendered views, e.g., by extracting likely textures

• We don’t have real-image annotations for everything 
(symmetries, part-labels) but we have 3D models 

• How can we ensure CNNs trained on synthetic data 
work on real images ?



Open Problems : Novel Objects

• There are more than 10,000 object categories. How 
can we learn to make meaningful predictions even on 
new objects ?



Thank You


