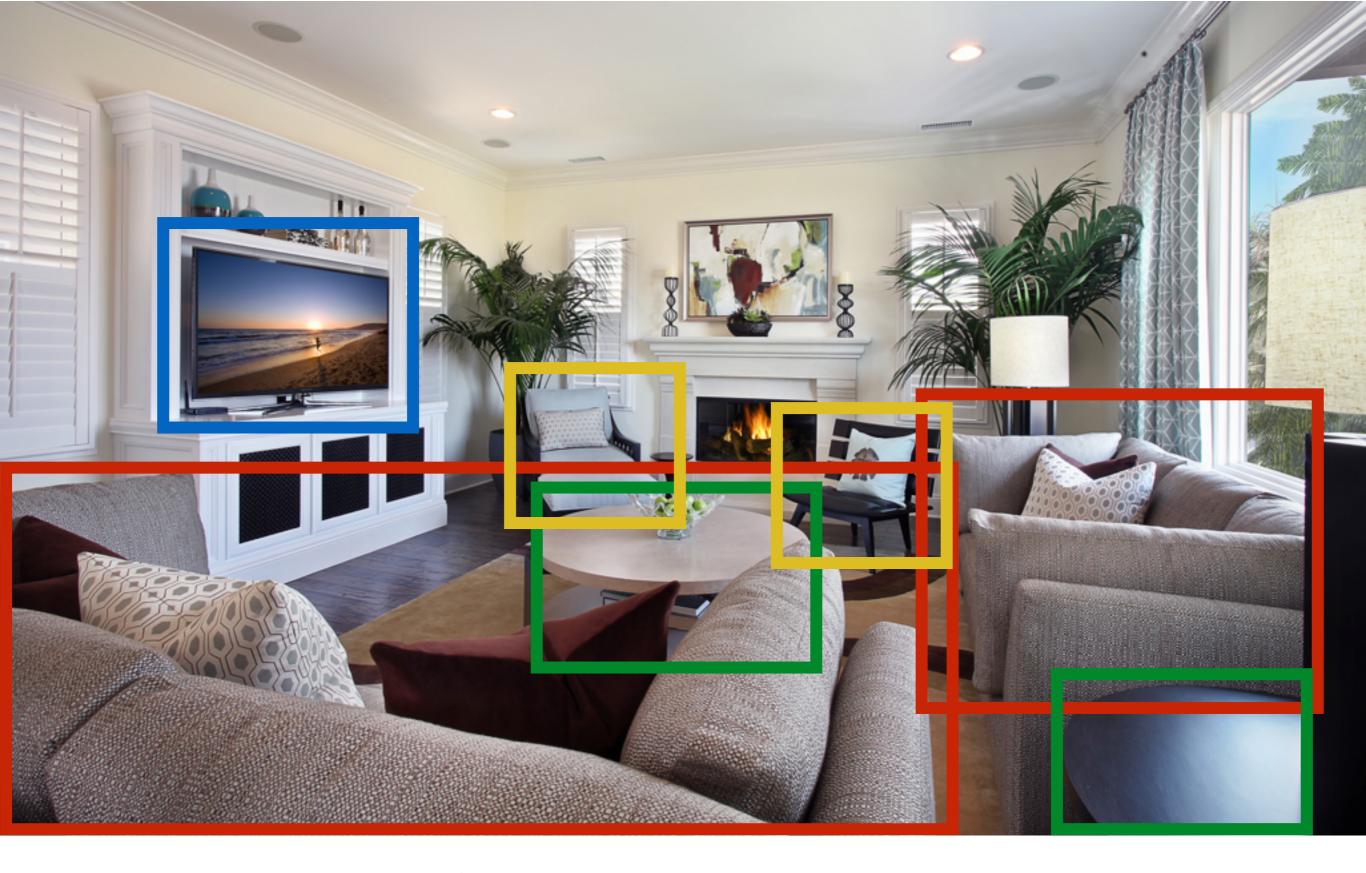


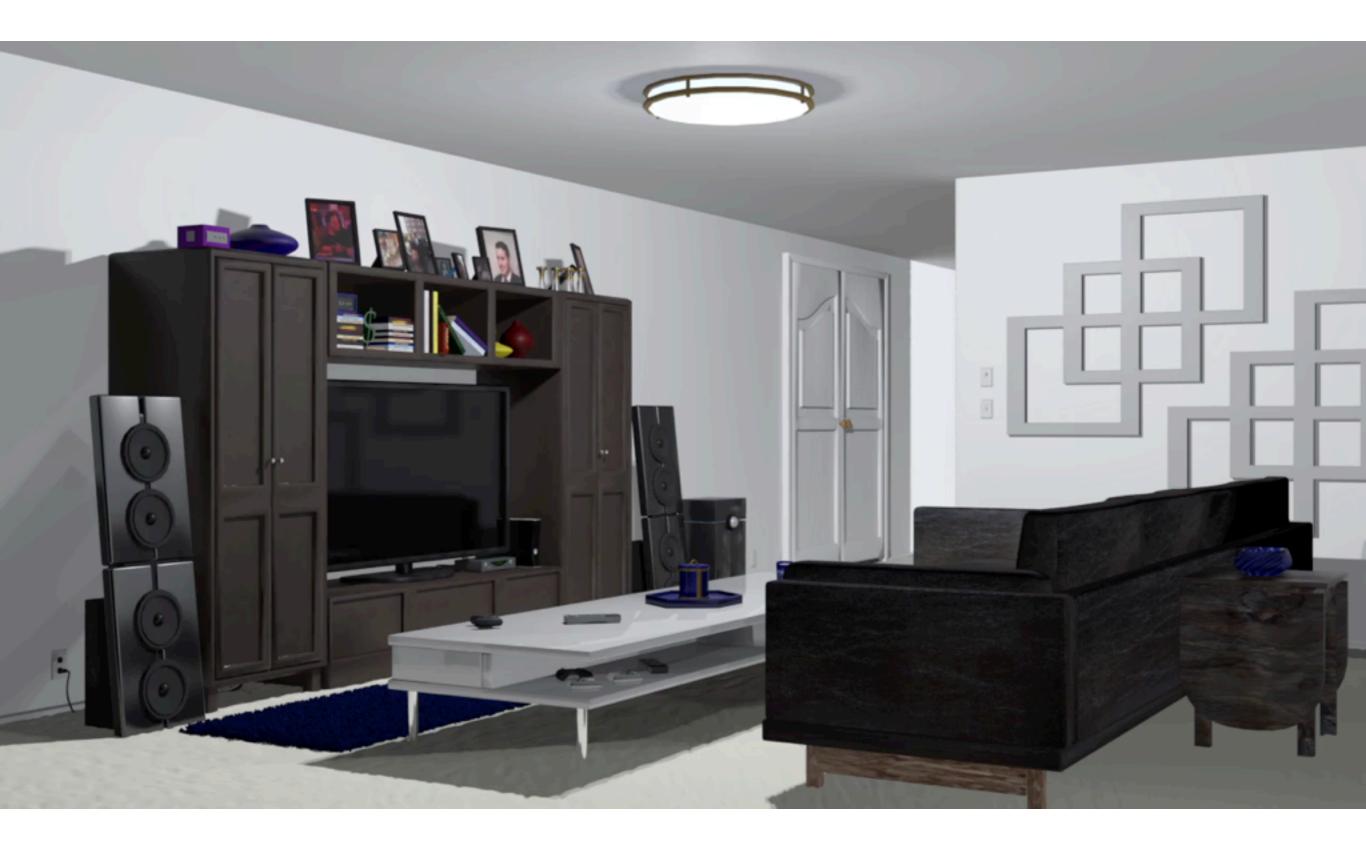
3D Visual Understanding

Shubham Tulsiani University of California, Berkeley

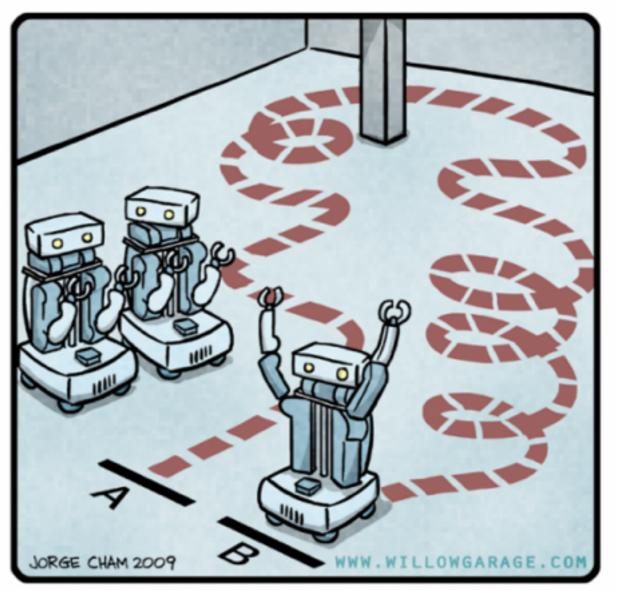
sofa, chair, table, TV...



sofa, chair, table, TV...



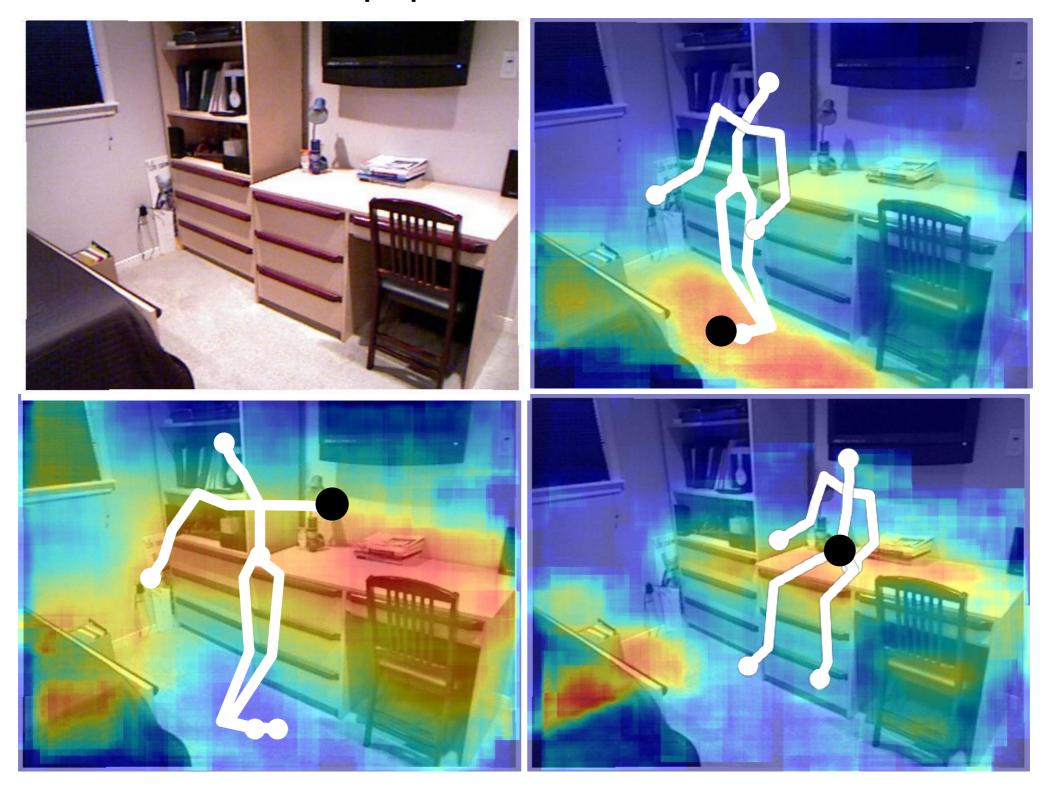
R.O.B.O.T. Comics



"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Robot Path Planning

Object Manipulation



Affordance Reasoning

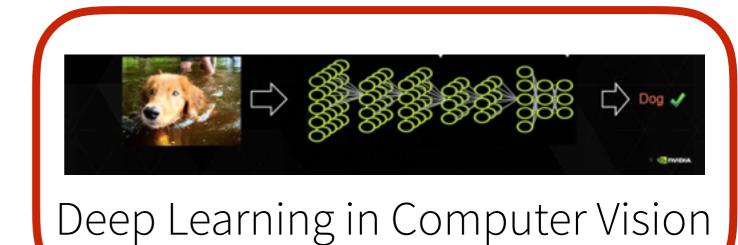
Image Based Graphics

3D Visual Understanding

- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems

3D Visual Understanding

- Background
- Objects in 3D
- Scenes in 3D

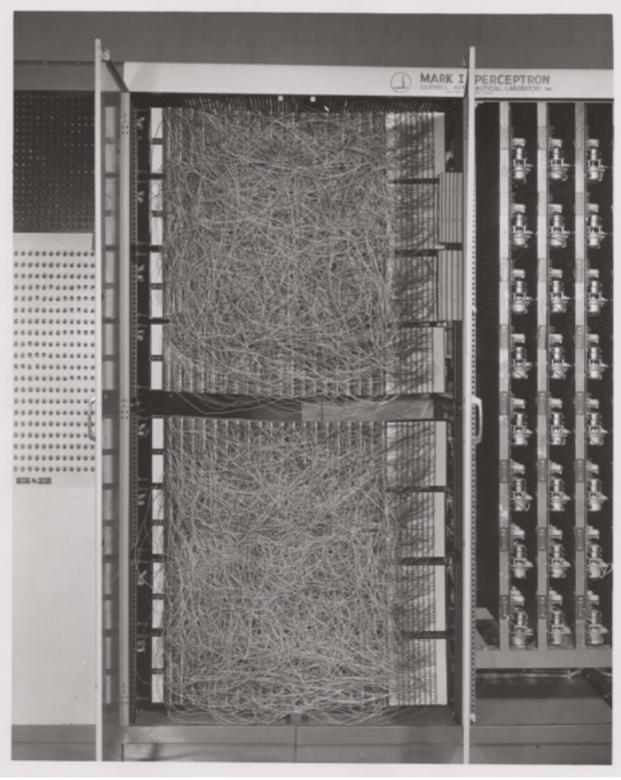


- 3D Understanding without Understanding 3D
- Open Problems

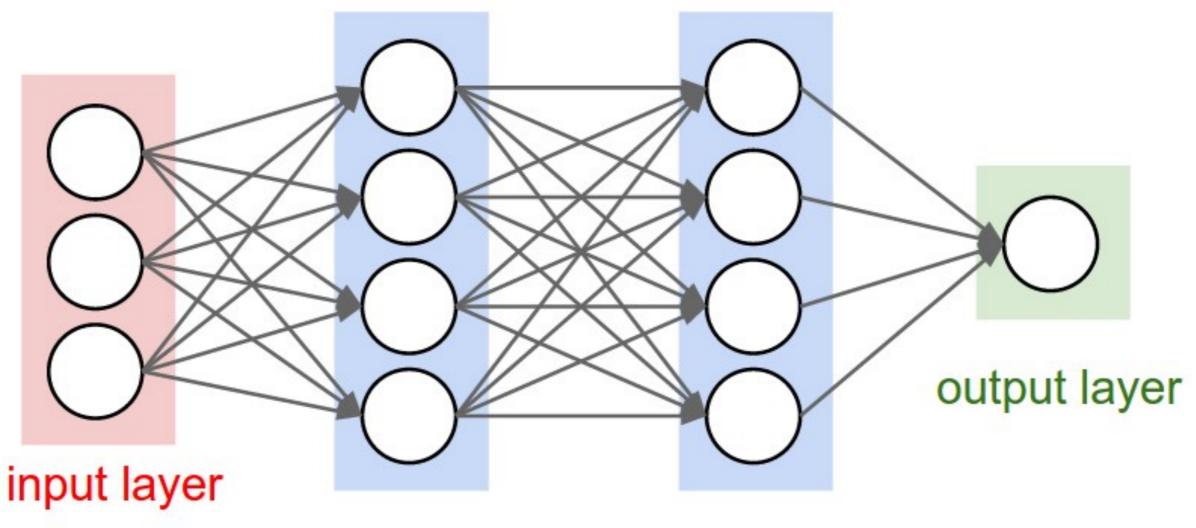
Physics of Image Formation

Perceptrons. Rosenblatt, 1957

Perceptrons. Rosenblatt, 1957

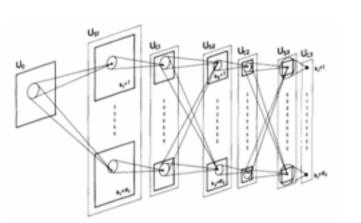


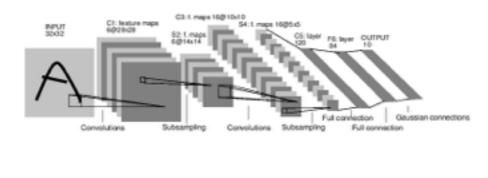
The Mark I Perceptron

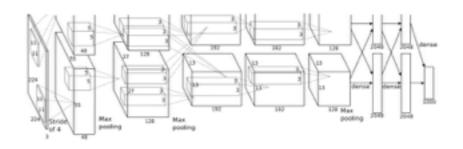


hidden layer 1 hidden layer 2

Convolutional Neural Networks







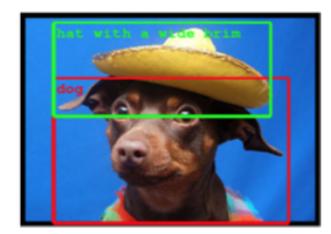
Fukushima, 1980 LeCun et al, 1989

Krizhevsky et al, 2012

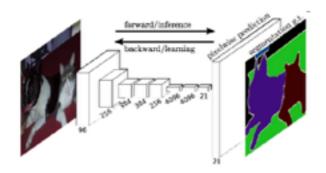
CNNs are Neural Networks with Convolutional layers – each output unit depends (via a spatially invariant linear function) on a set of neighbouring input units

Particularly relevant for input domains with spatial structure (e.g. images)

CNNs in Computer Vision



Object Detection



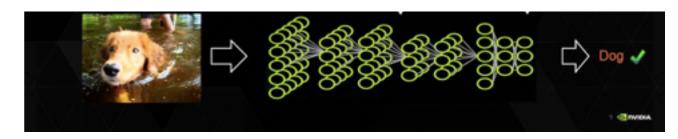
Semantic Segmentation A dog is jumping to catch a

Image Captioning

Human Pose Estimation

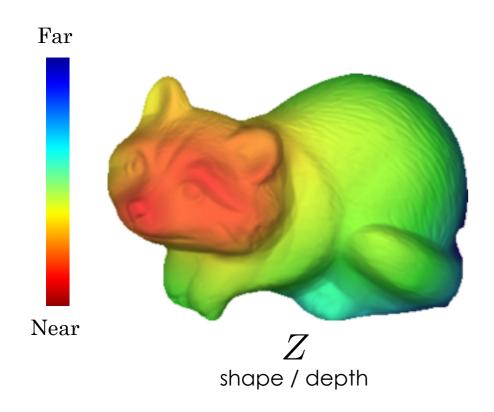
3D Visual Understanding

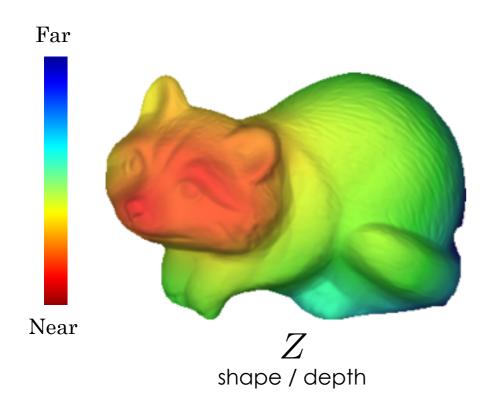
- Background
- Objects in 3D
- Scenes in 3D



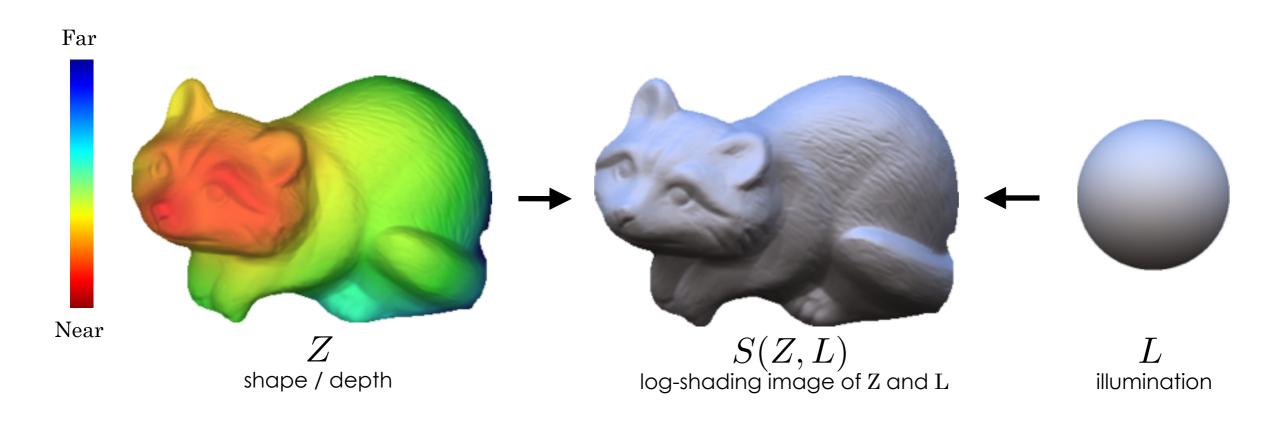
Deep Learning in Computer Vision

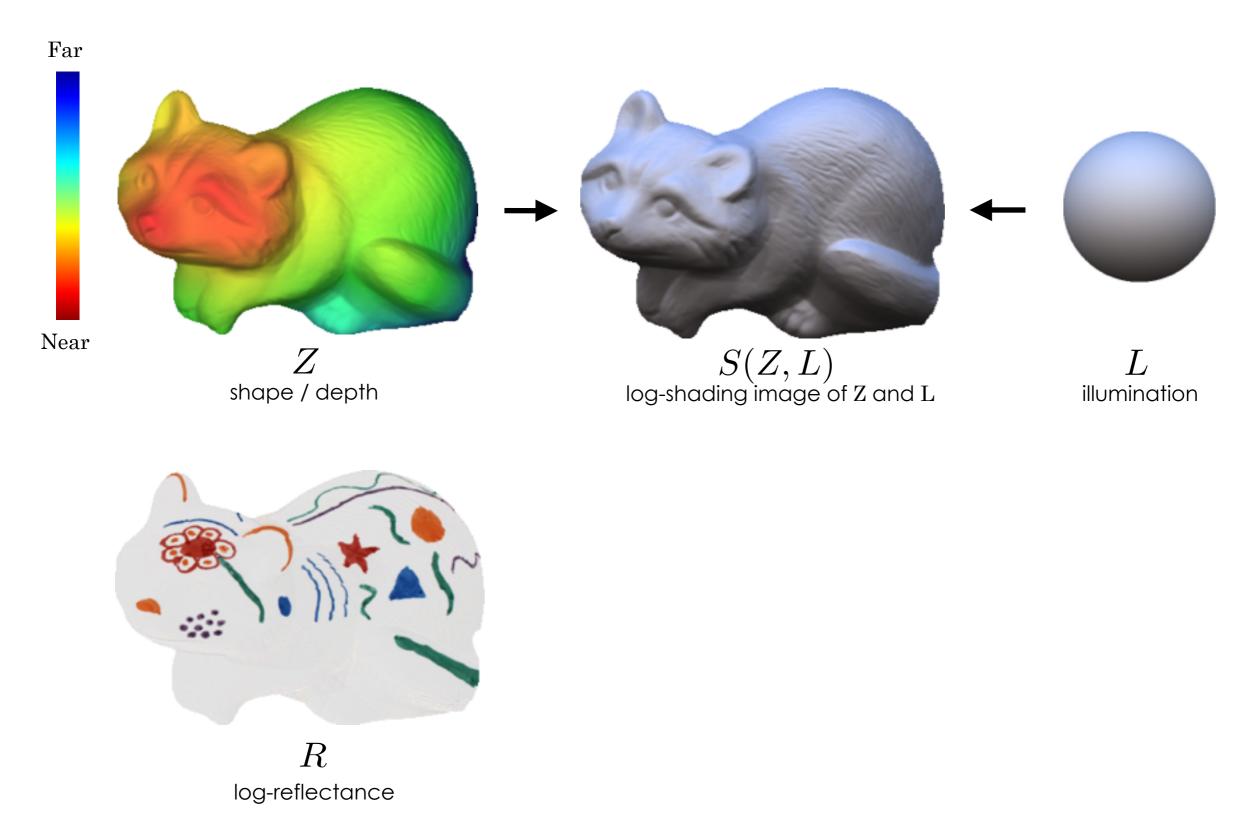
- 3D Understanding without Understanding 3D
- Open Problems

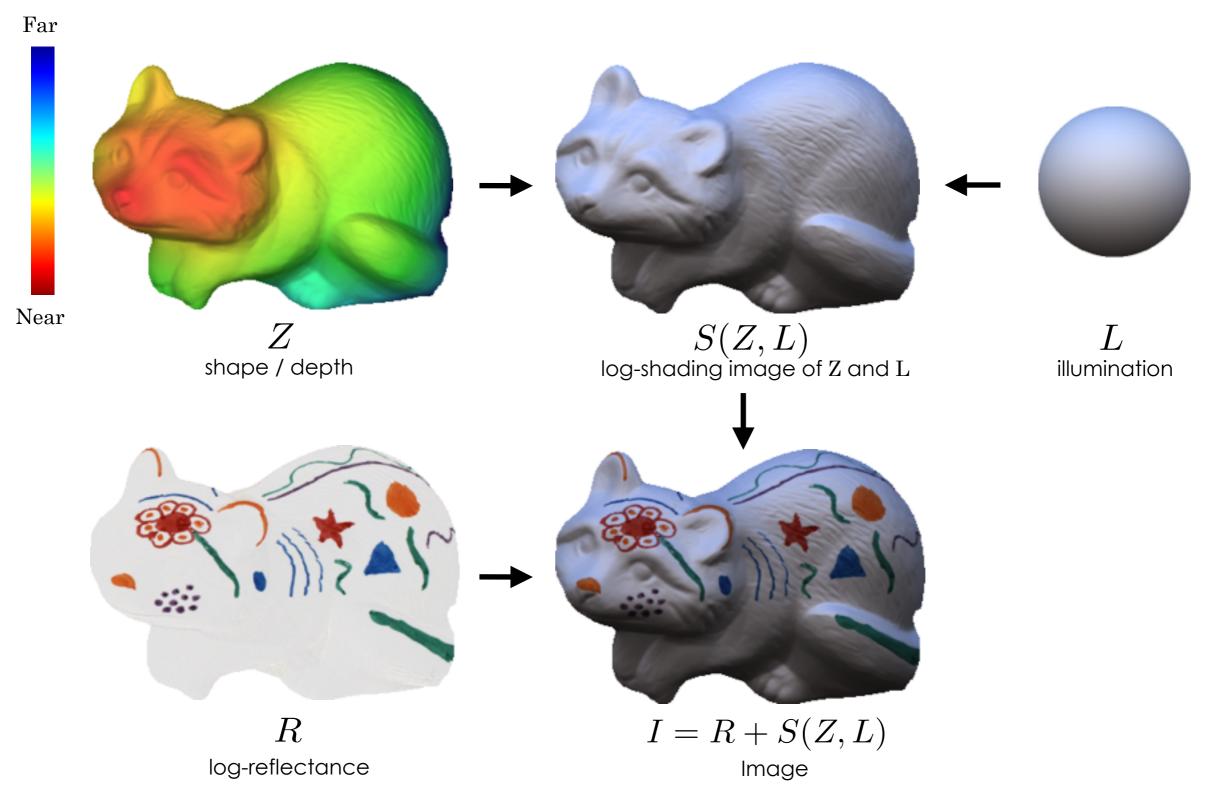




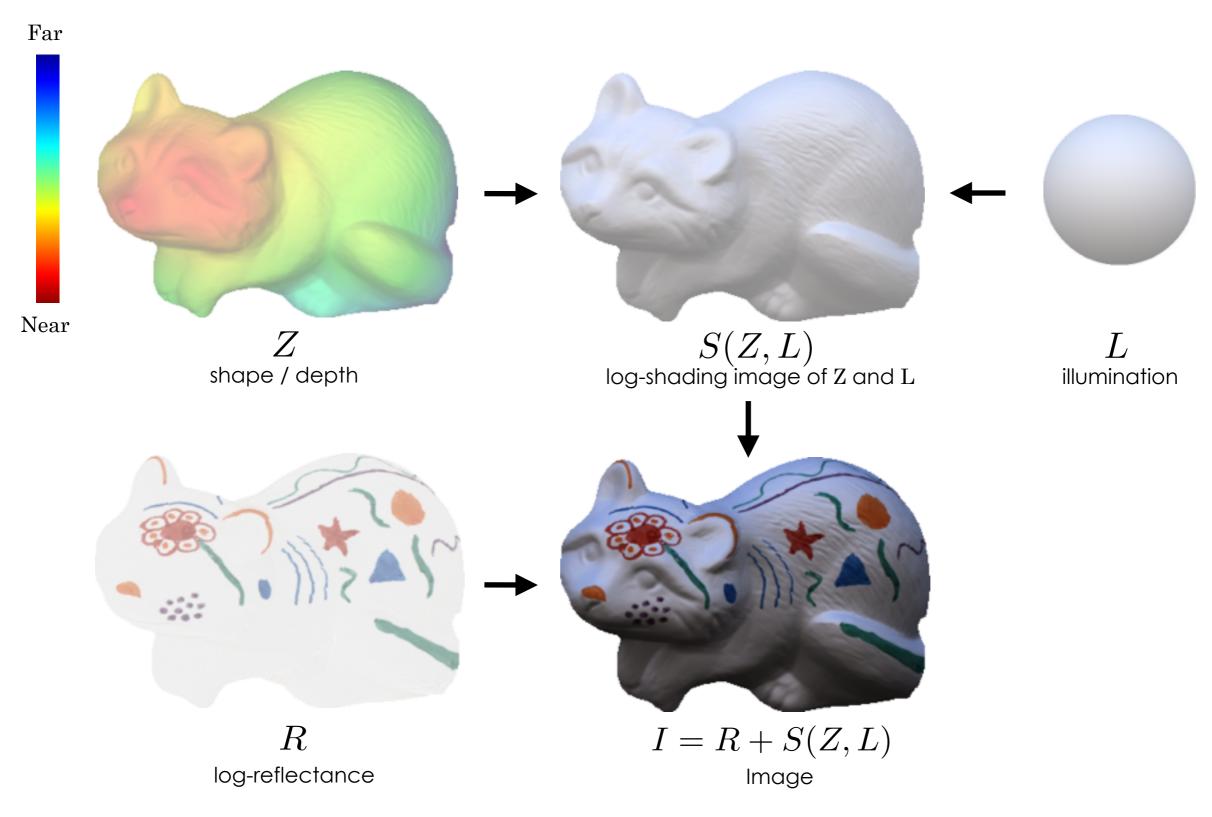
Lillumination

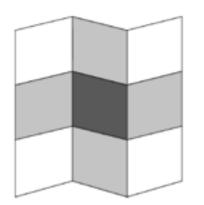




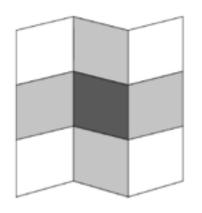


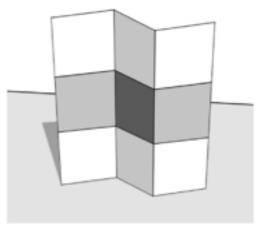
Physics of Image Formation





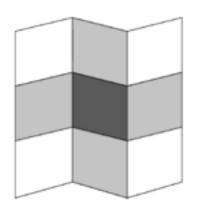
(a) an image

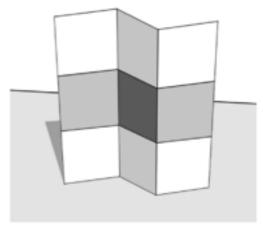




(a) an image

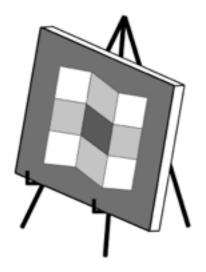
(b) a likely explanation



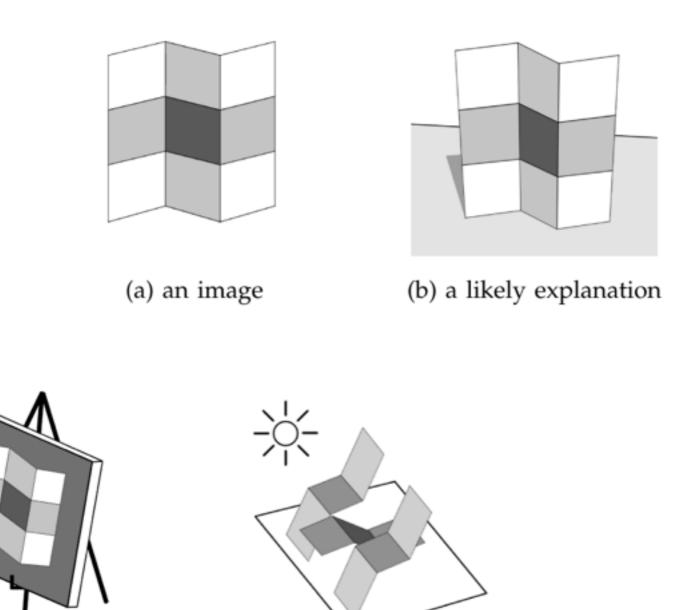


(a) an image

(b) a likely explanation

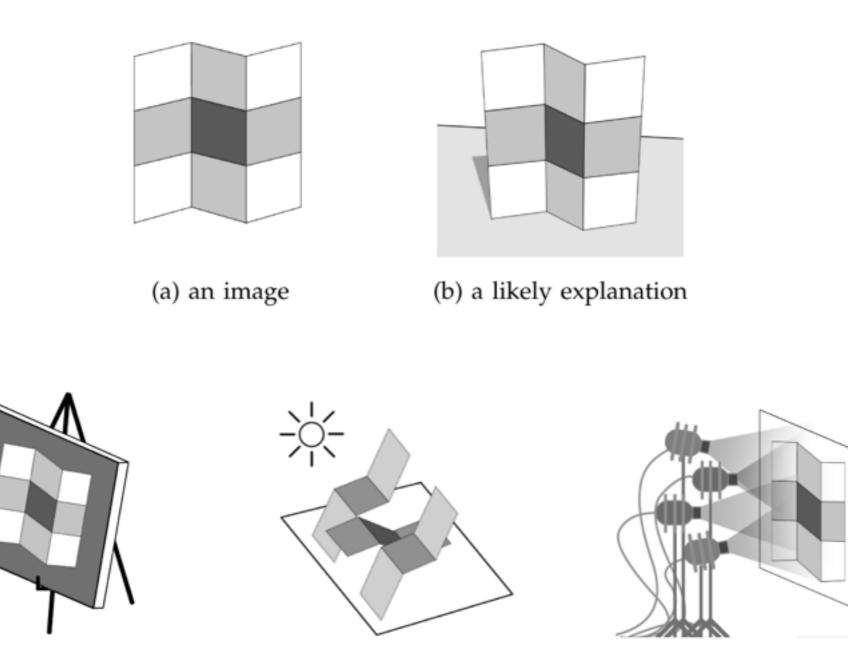


(c) painter's explanation



(c) painter's explanation

(d) sculptor's explanation



(c) painter's explanation

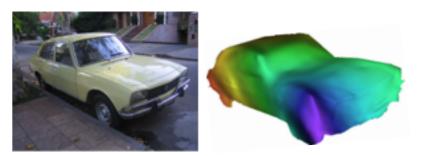
(d) sculptor's explanation

(e) gaffer's explanation

3D Visual Understanding

- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems

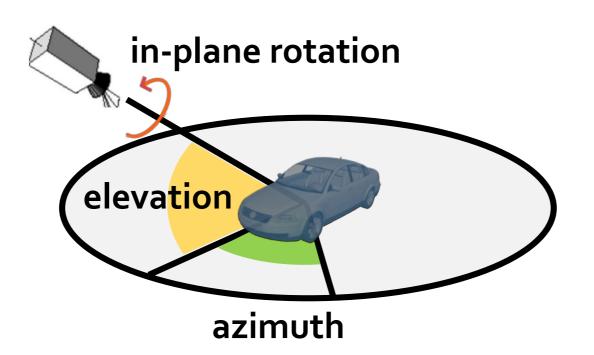




Reconstruction 'in the wild'

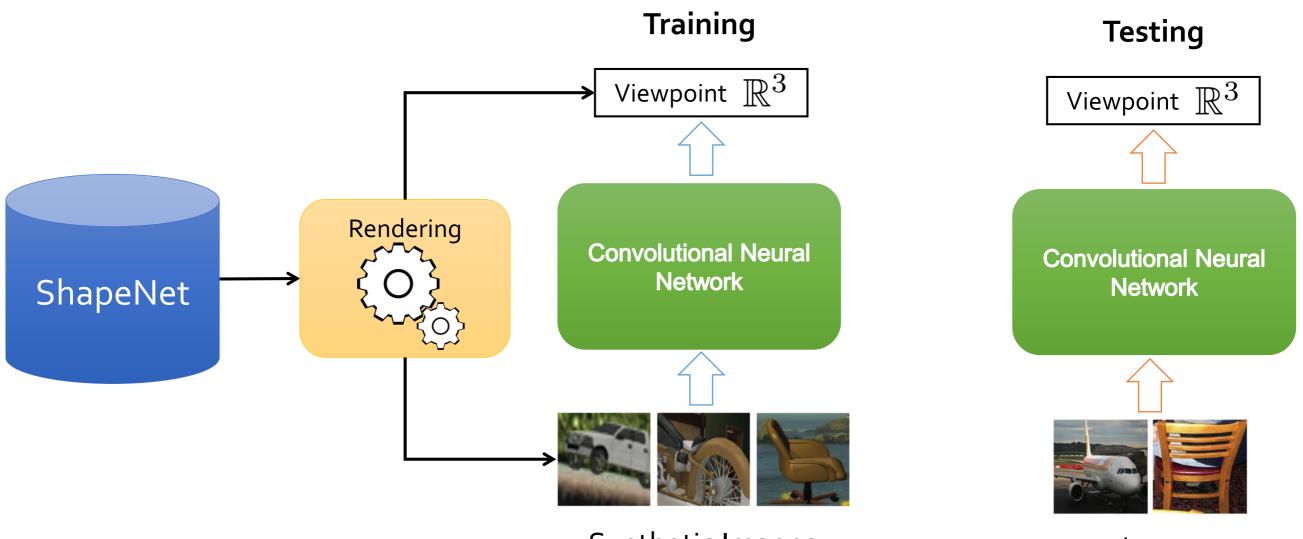
Shape Collections for 3D Understanding

3D Viewpoint Estimation



Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views Su, Qi, Li, Guibas

Shape Collections for 3D Understanding

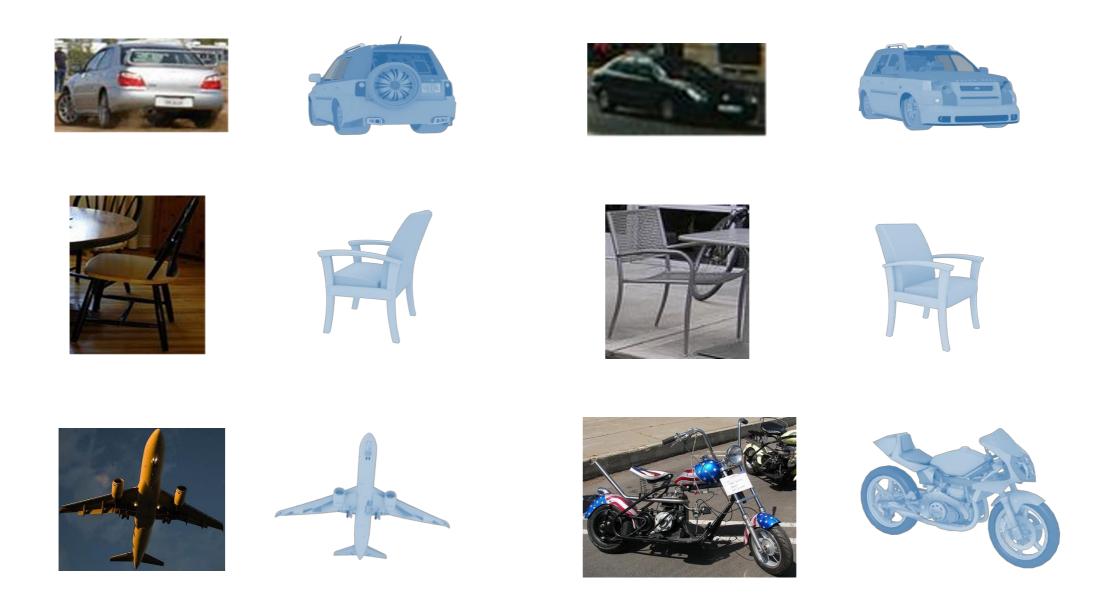


Synthetic Images

Real Images

Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views Su, Qi, Li, Guibas

Shape Collections for 3D Understanding

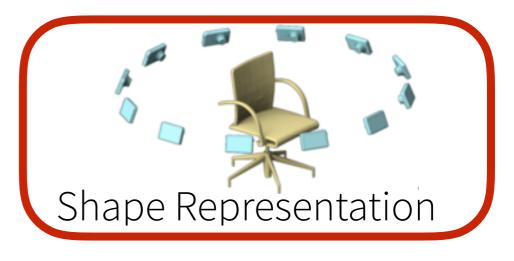


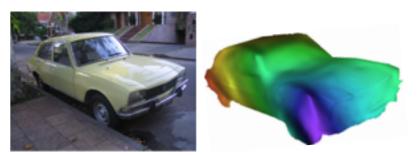
Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views Su, Qi, Li, Guibas

3D Visual Understanding

- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems

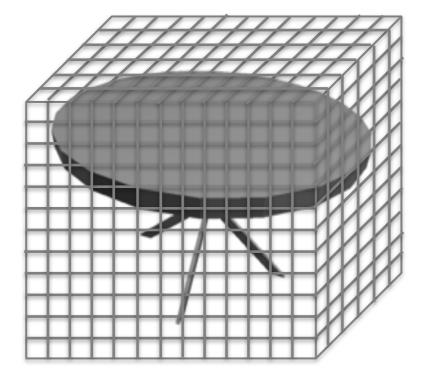
Shape Collections





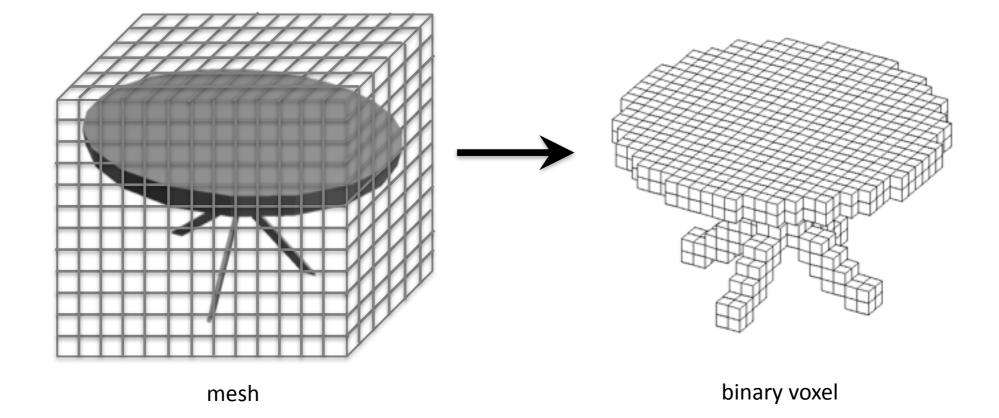
Reconstruction 'in the wild'

Shape Representations

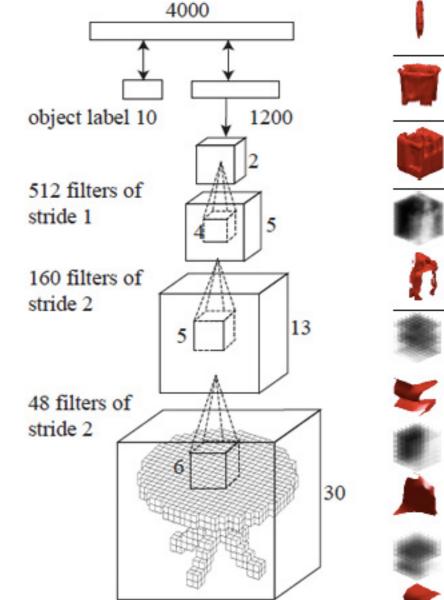


mesh

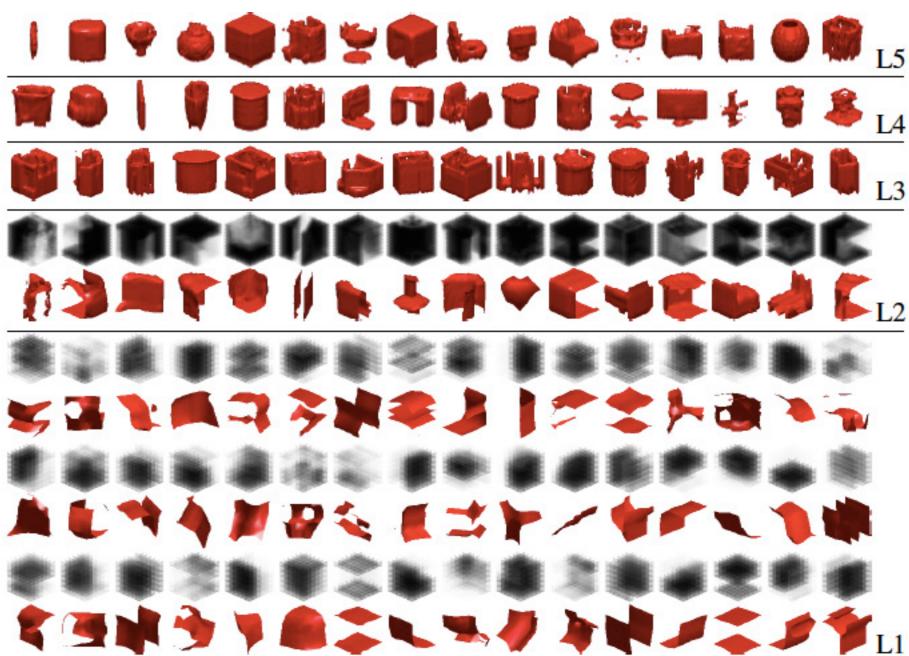
3D ShapeNets: A Deep Representation for Volumetric Shapes Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao



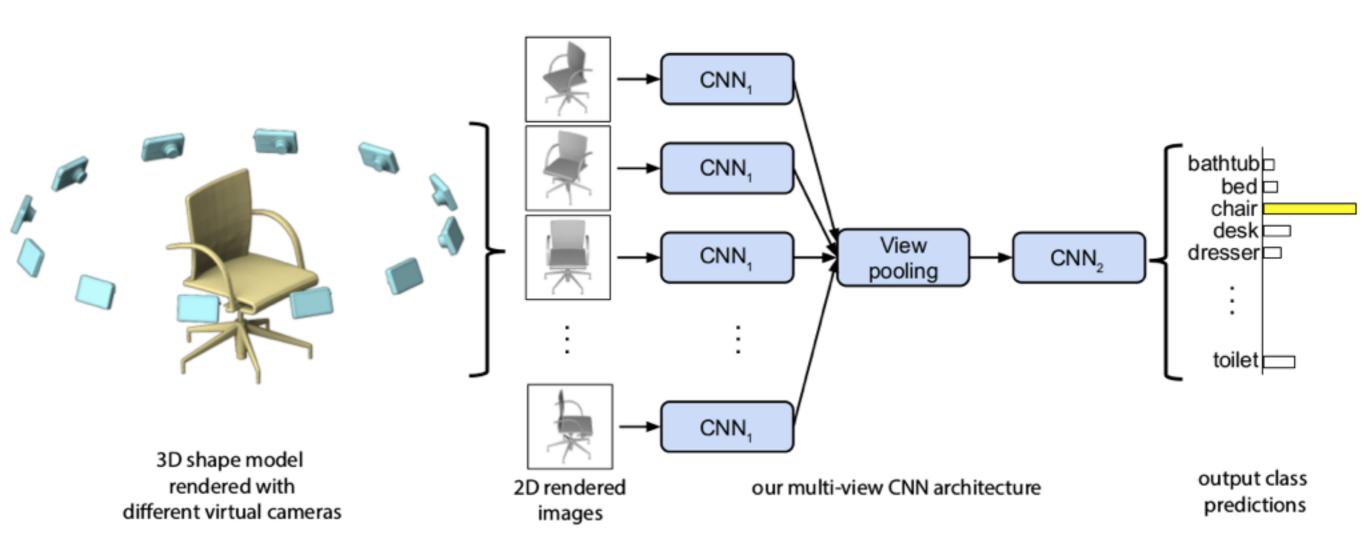
3D ShapeNets: A Deep Representation for Volumetric Shapes Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao



3D voxel input



3D ShapeNets: A Deep Representation for Volumetric Shapes Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao



Multi-view Convolutional Neural Networks for 3D Shape Recognition

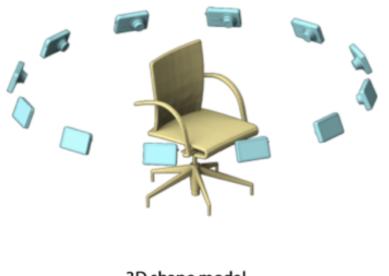
Su, Maji, Kalogerakis, Learned-Miller

Method	Training Config.			Test Config.	Classification	Retrieval
	Pre-train	Fine-tune	#Views	#Views	(Accuracy)	(mAP)
(1) SPH [16]	-	_	_	-	68.2%	33.3%
(2) LFD [5]	-	-	-	-	75.5%	40.9%
(3) 3D ShapeNets [37]	ModelNet40	ModelNet40	-	-	77.3%	49.2%
(4) FV	-	ModelNet40	12	1	78.8%	37.5%
(5) FV, $12 \times$	-	ModelNet40	12	12	84.8%	43.9%
(6) CNN	ImageNet1K	-	-	1	83.0%	44.1%
(7) CNN, f.t.	ImageNet1K	ModelNet40	12	1	85.1%	61.7%
(8) CNN, $12 \times$	ImageNet1K	-	-	12	87.5%	49.6%
(9) CNN, f.t., $12 \times$	ImageNet1K	ModelNet40	12	12	88.6%	62.8%
(10) MVCNN, 12×	ImageNet1K	-	_	12	88.1%	49.4%
(11) MVCNN, f.t., $12 \times$	ImageNet1K	ModelNet40	12	12	89.9%	70.1%
(12) MVCNN, f.t.+metric, $12 \times$	ImageNet1K	ModelNet40	12	12	89.5%	80.2 %
(13) MVCNN, 80×	ImageNet1K	-	80	80	84.3%	36.8%
(14) MVCNN, f.t., 80×	ImageNet1K	ModelNet40	80	80	90.1 %	70.4%
(15) MVCNN, f.t.+metric, $80 \times$	ImageNet1K	ModelNet40	80	80	90.1 %	79.5%

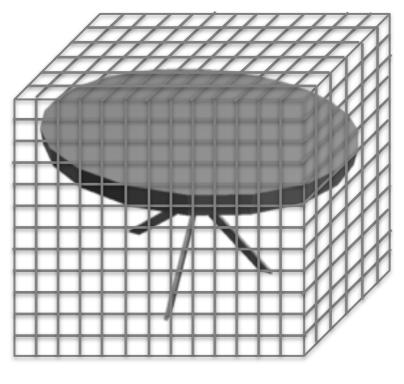
* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

Multi-view Convolutional Neural Networks for 3D Shape Recognition

Su, Maji, Kalogerakis, Learned-Miller



3D shape model rendered with different virtual cameras

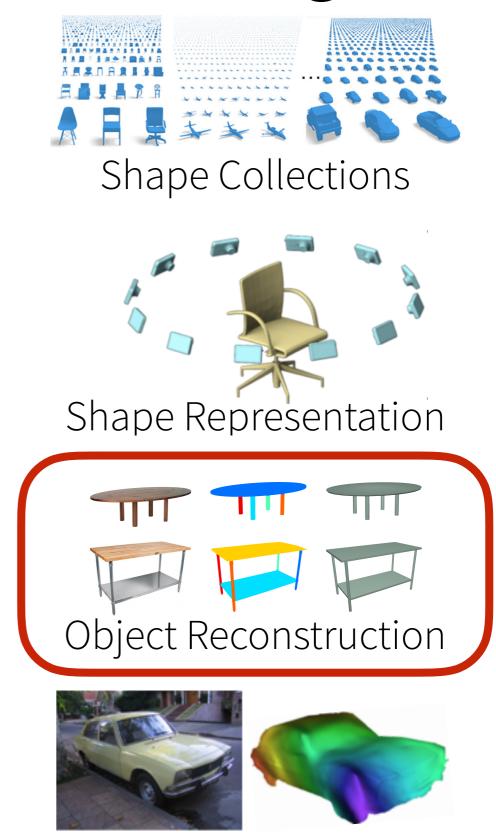


mesh

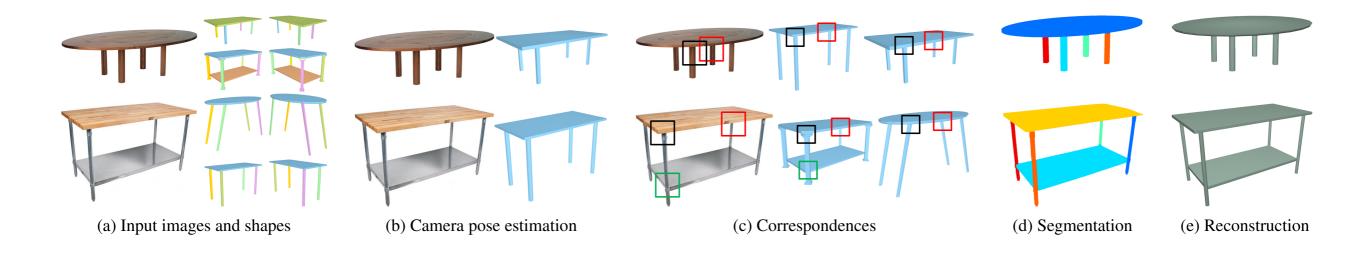
• Do we represent shapes as features in image space or mesh space ?

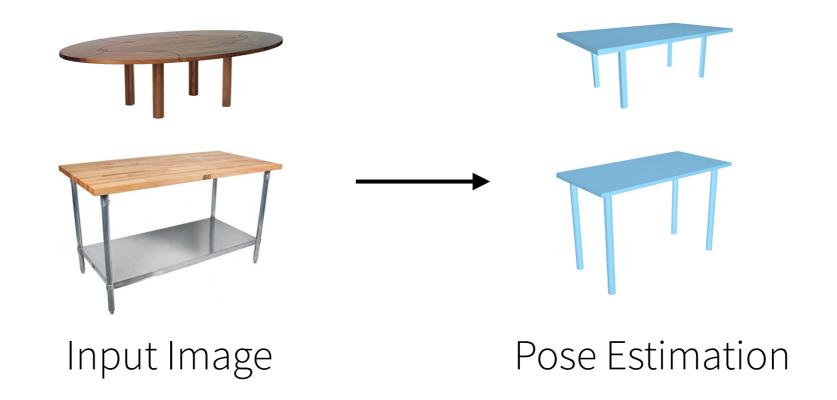
3D Visual Understanding

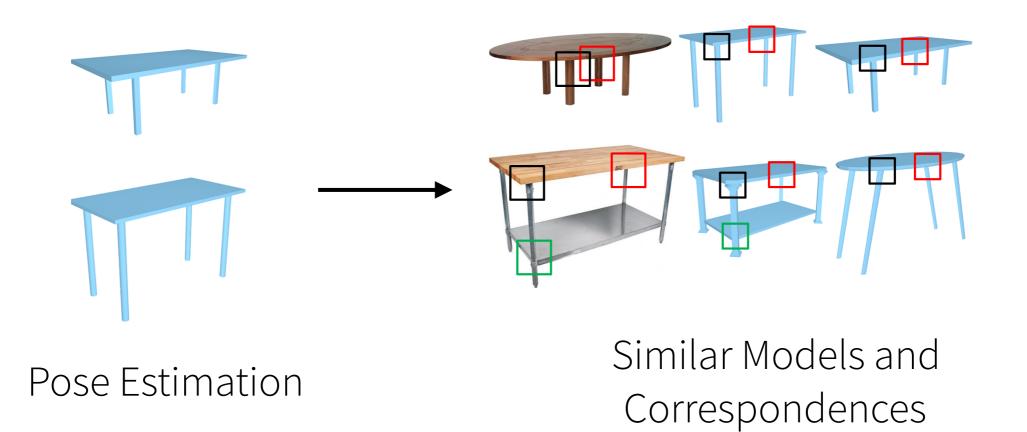
- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems



Reconstruction 'in the wild'









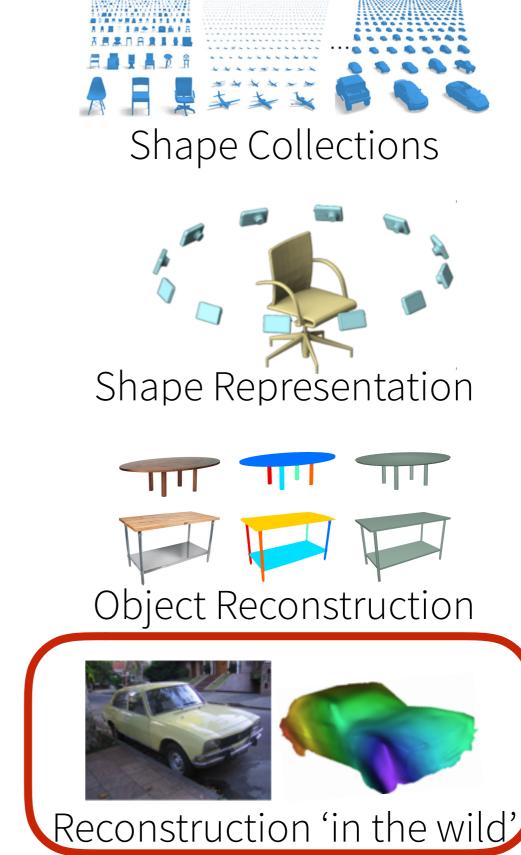
Similar Models and Correspondences Part Segmentation and Reconstruction

Figure 8: Results on four datasets. From left to right in each column: Web image, computed segmentation, 3D model reconstructed by our approach (two views, green), and closest pre-existing model, shown for reference (blue).

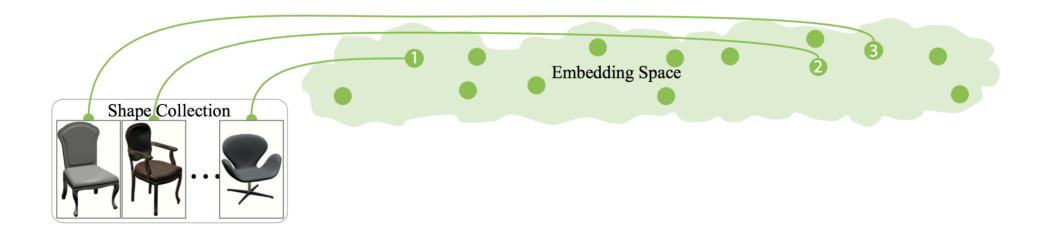
Results

3D Visual Understanding

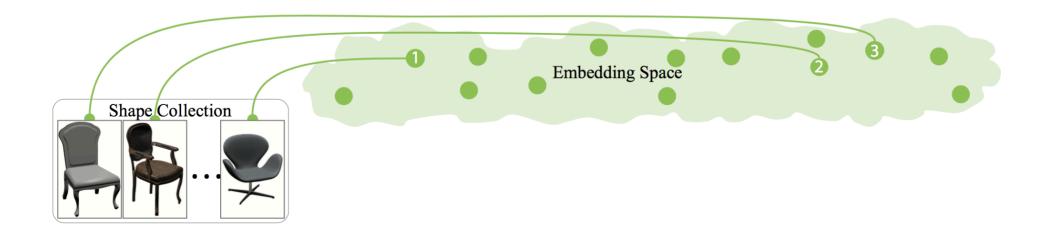
- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems



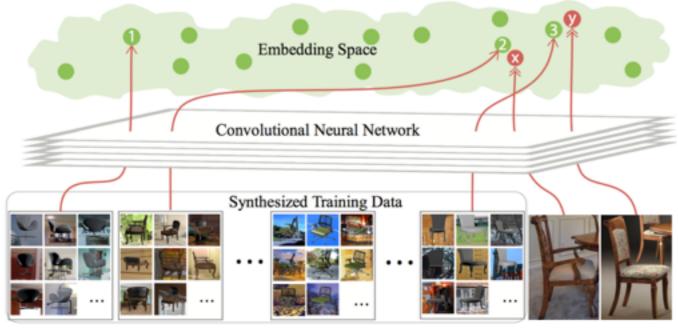
• Learn an embedding of shapes

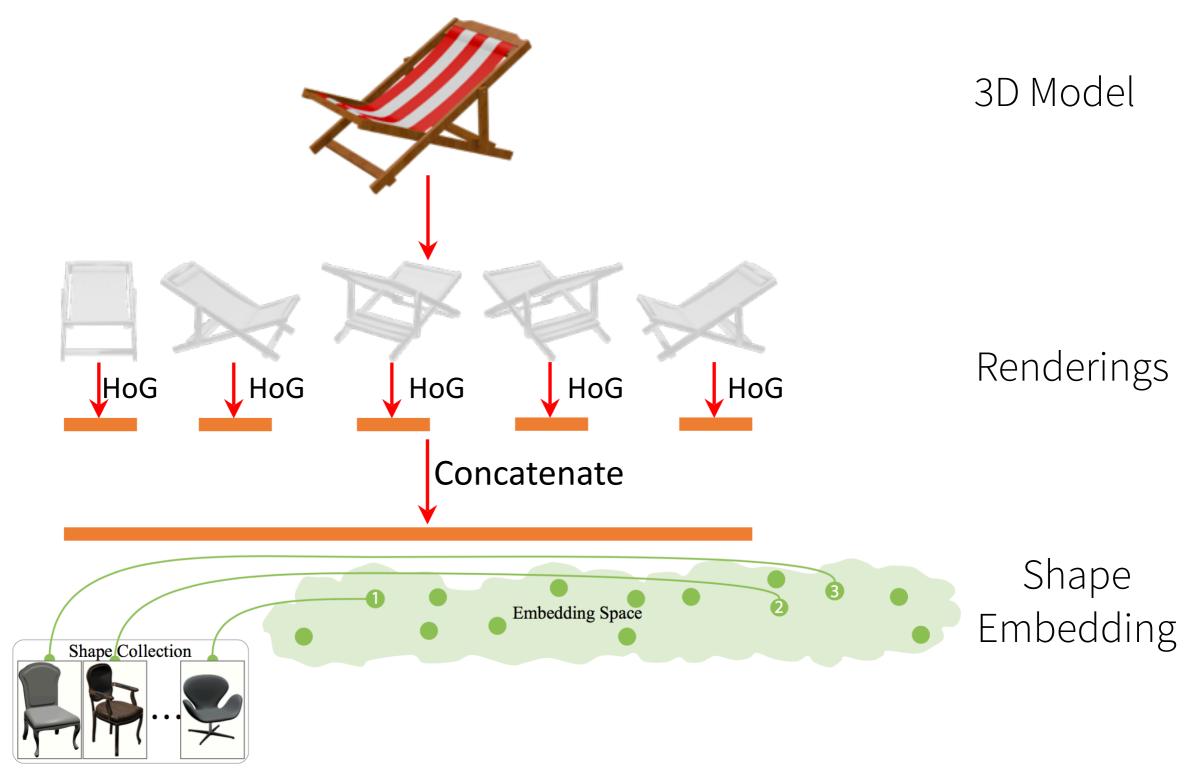


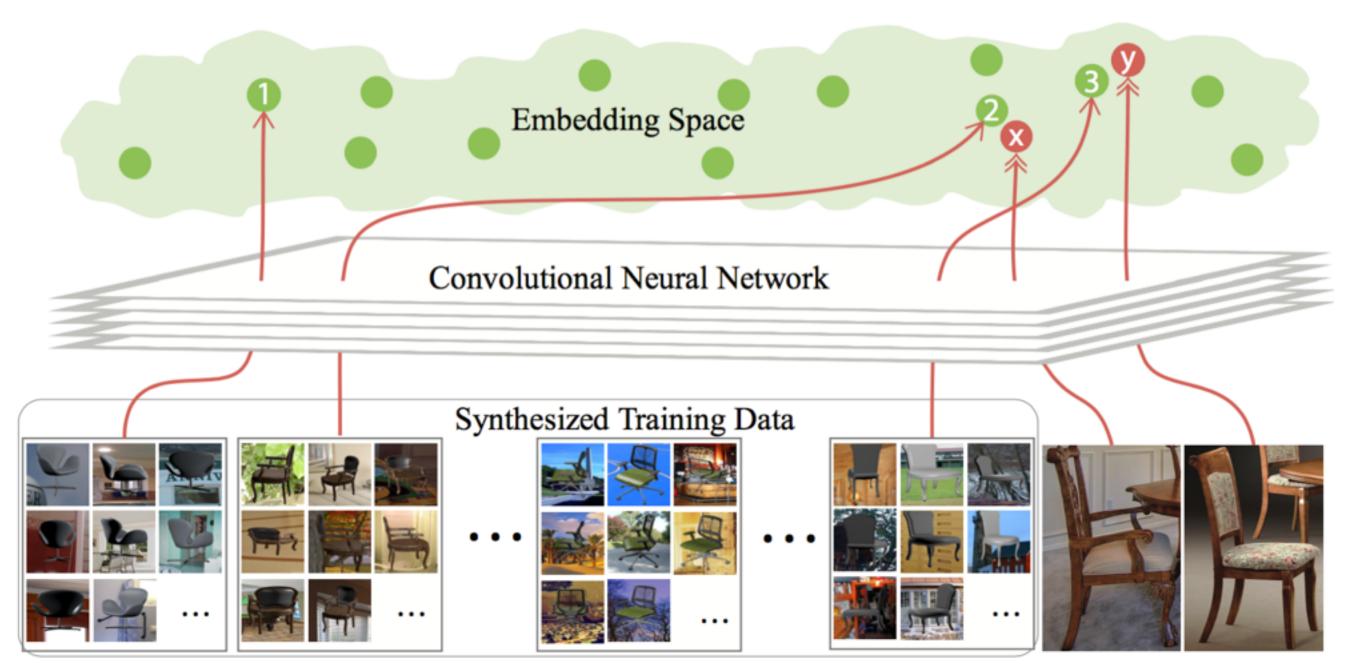
• Learn an embedding of shapes

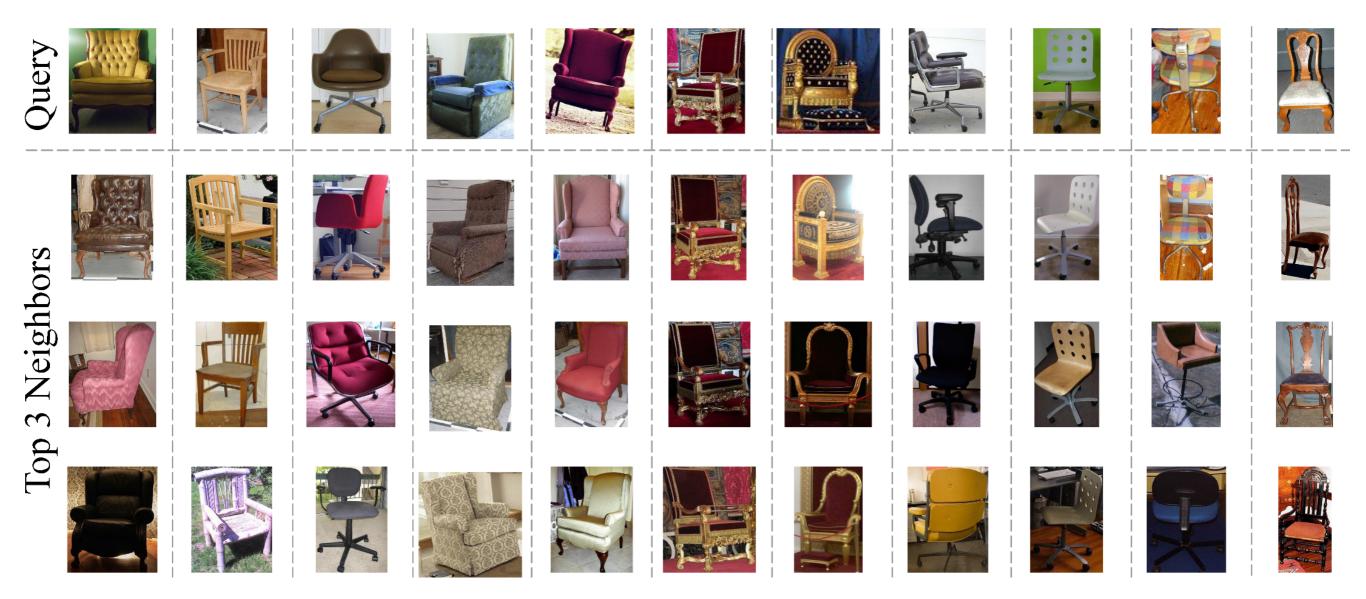


• Populate images in embedding space



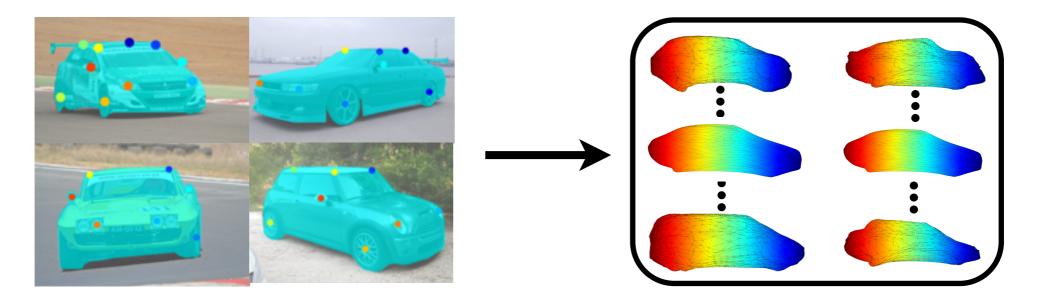






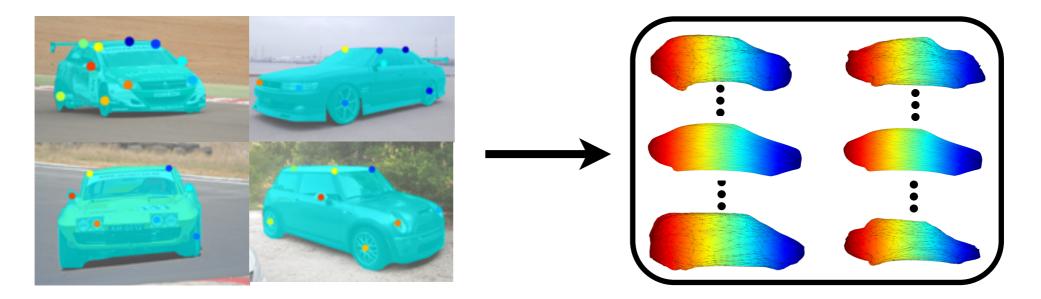
Category-Specific Object Reconstruction from a Single Image Kar, Tulsiani, Carreira, Malik

• Learn category specific 3D models from 2D images of objects



Category-Specific Object Reconstruction from a Single Image Kar, Tulsiani, Carreira, Malik

• Learn category specific 3D models from 2D images of objects

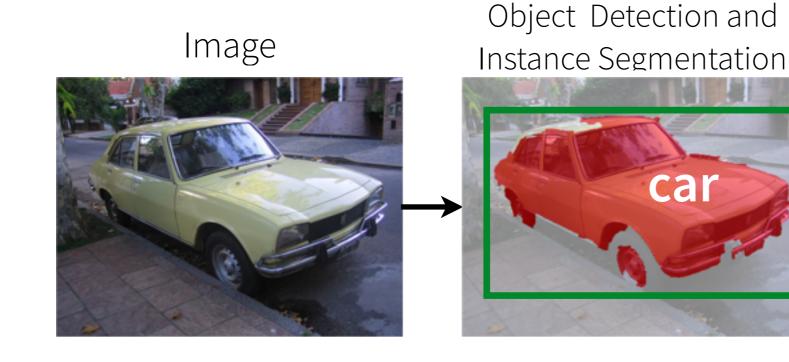


• 3D reconstruction of objects from a single image of a scene

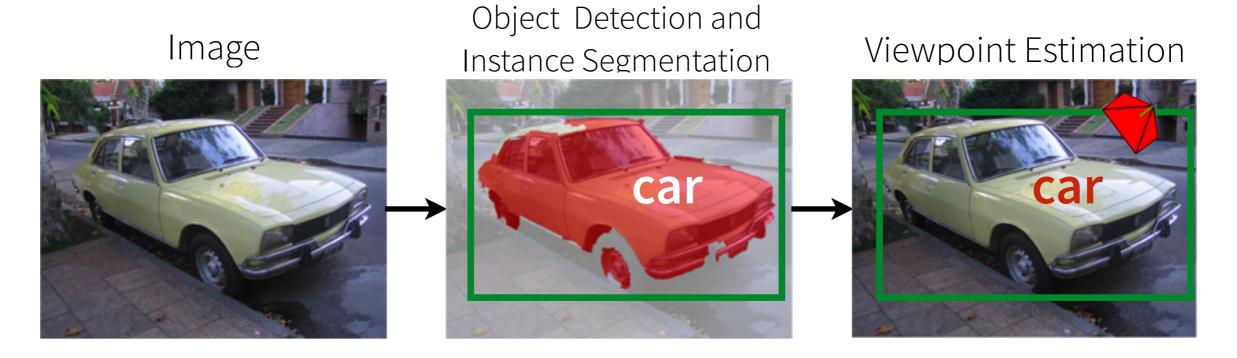
Category-Specific Object Reconstruction from a Single Image Kar, Tulsiani, Carreira, Malik

Image

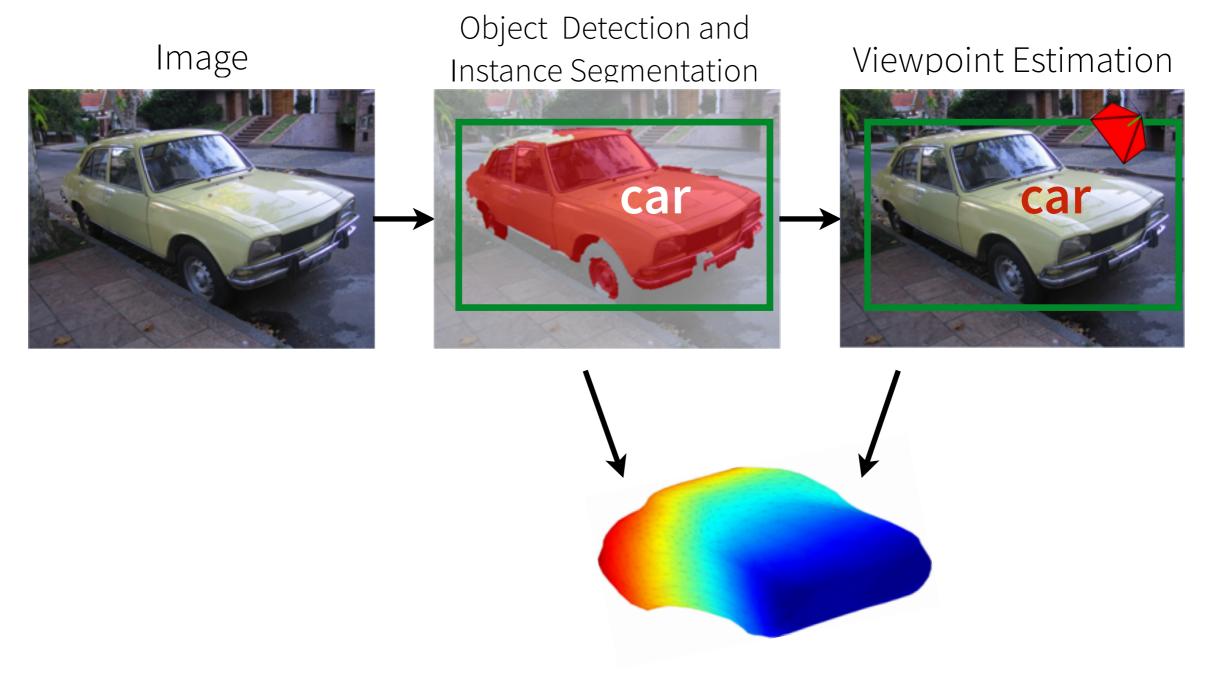
Category-Specific Object Reconstruction from a Single Image Kar, Tulsiani, Carreira, Malik



Category-Specific Object Reconstruction from a Single Image Kar, Tulsiani, Carreira, Malik

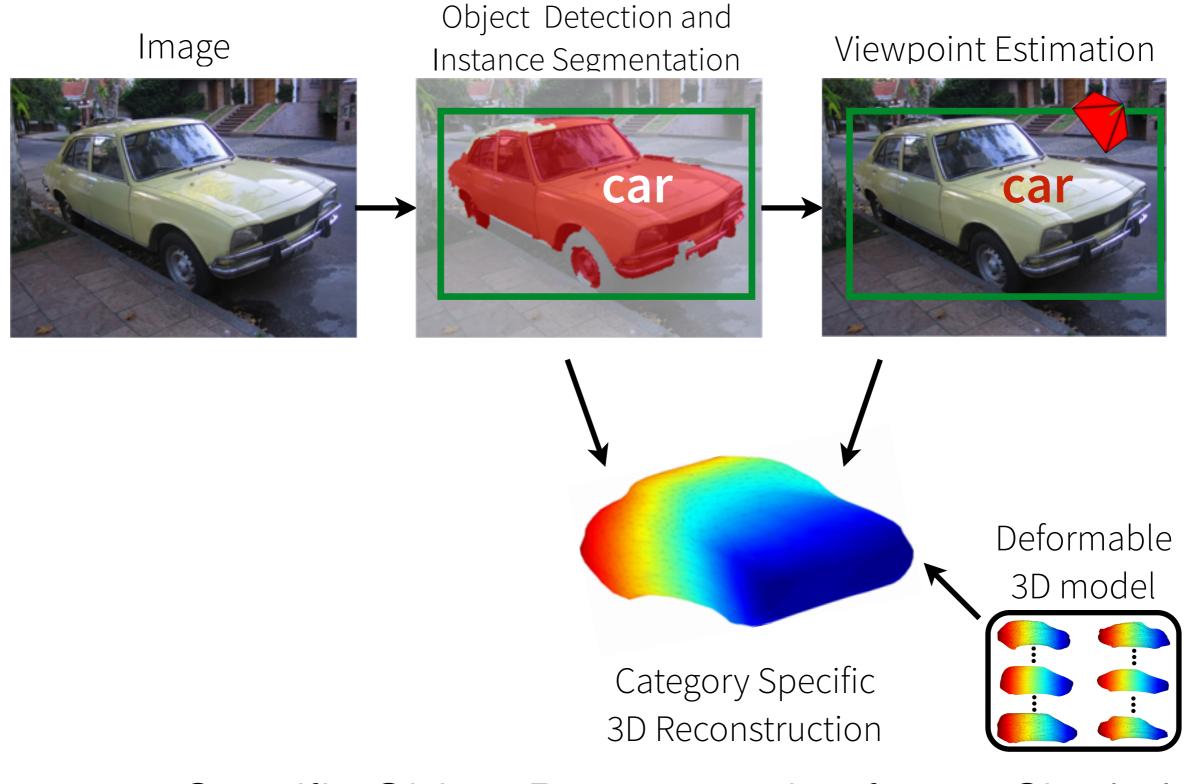


Category-Specific Object Reconstruction from a Single Image Kar, Tulsiani, Carreira, Malik

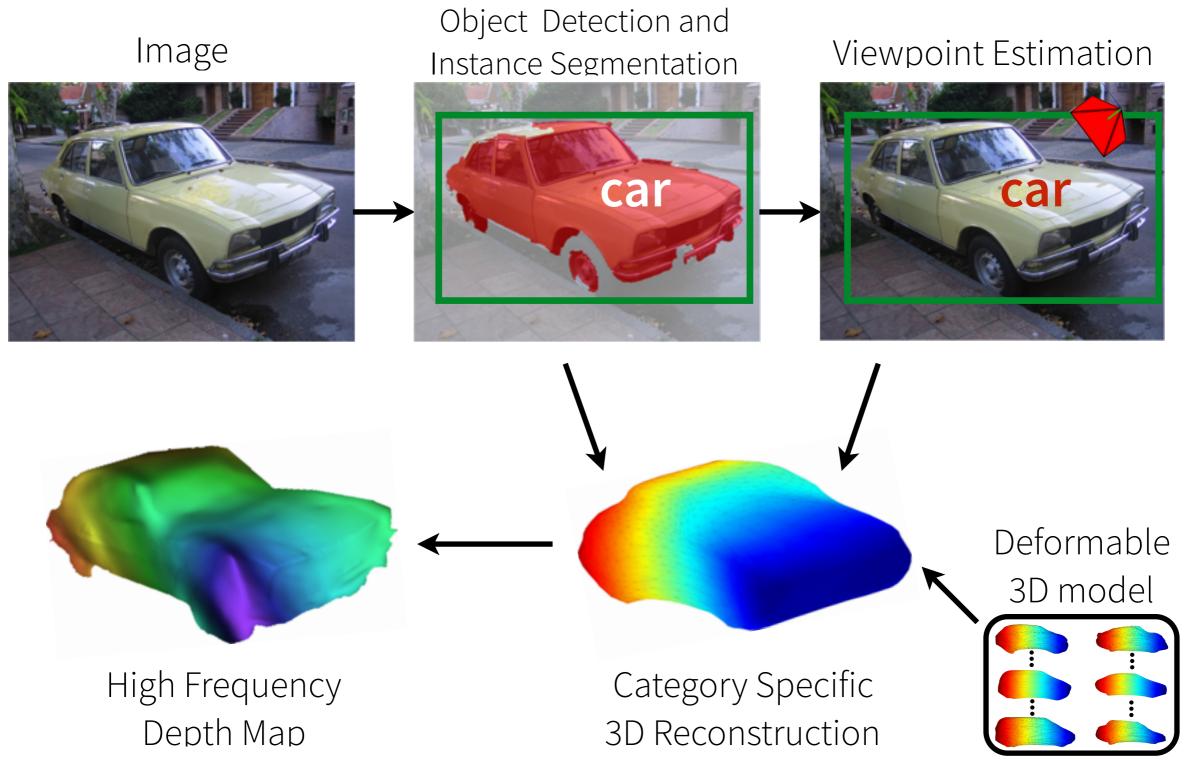


Category Specific 3D Reconstruction

Category-Specific Object Reconstruction from a Single Image Kar, Tulsiani, Carreira, Malik

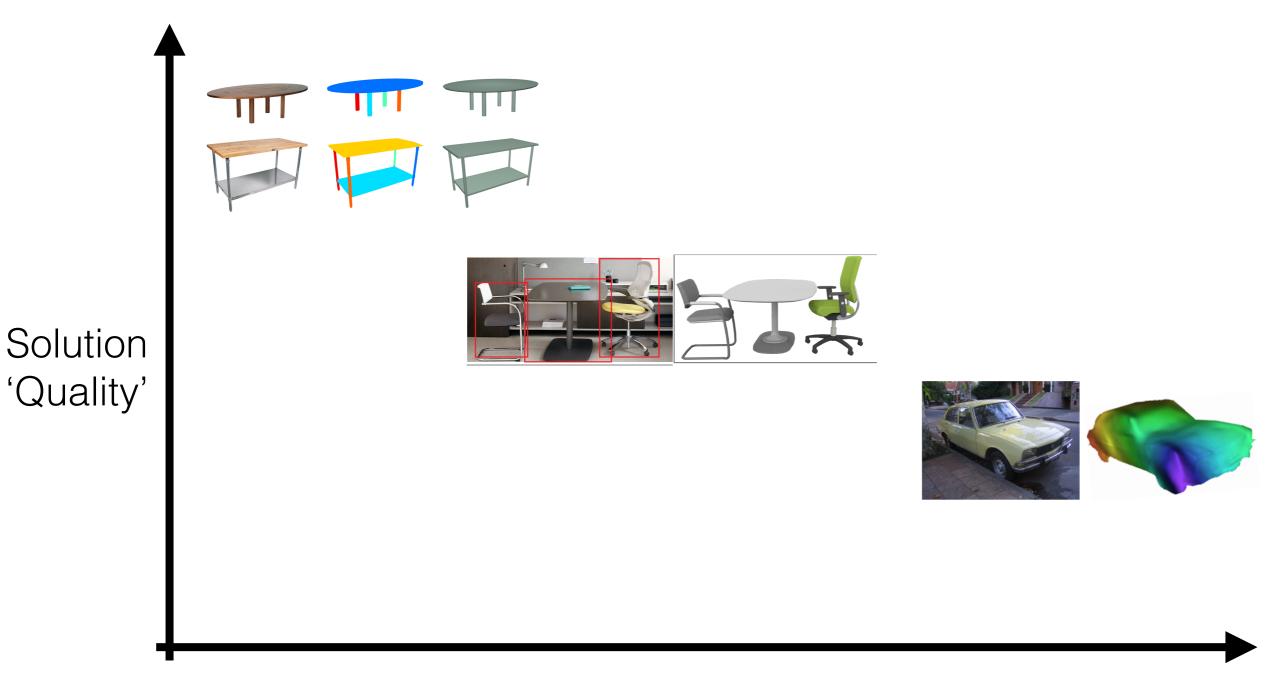


Category-Specific Object Reconstruction from a Single Image Kar, Tulsiani, Carreira, Malik



Category-Specific Object Reconstruction from a Single Image Kar, Tulsiani, Carreira, Malik

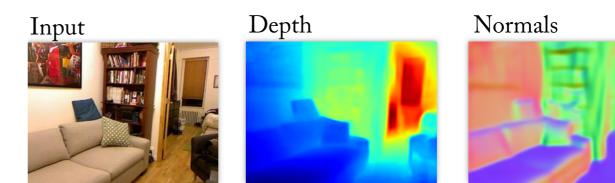
Objects in 3D



Problem Generality

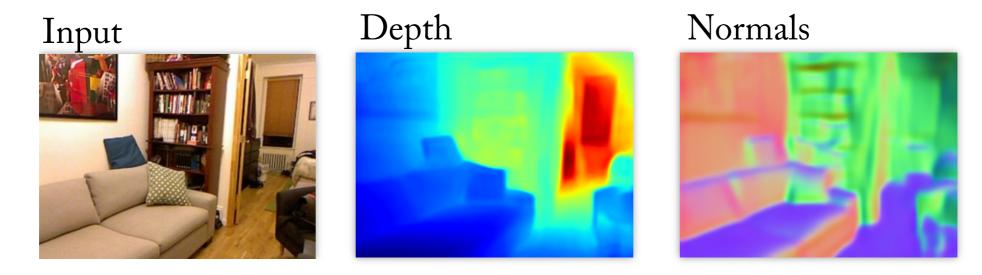
3D Visual Understanding

- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems



Depth and Normal Estimation

Scenes in 3D

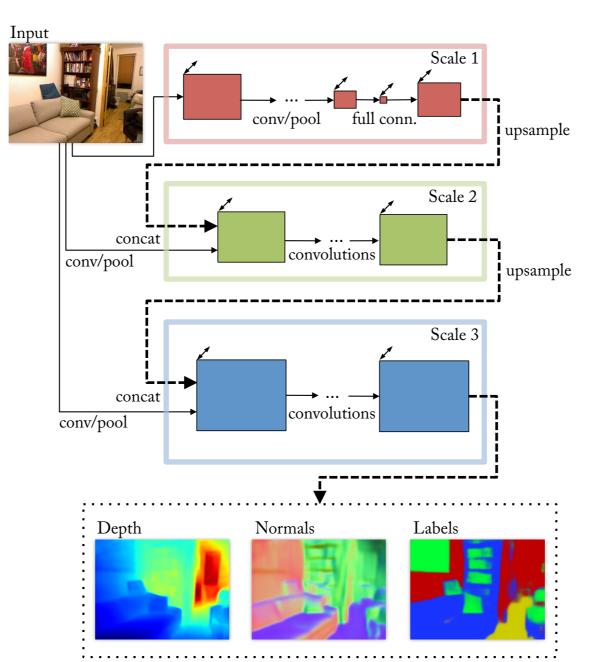


Dataset (NYU Depth Dataset)

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture

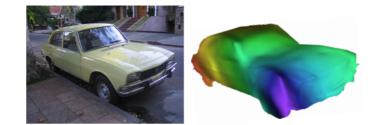
Eigen, Fergus

Scene Reconstruction

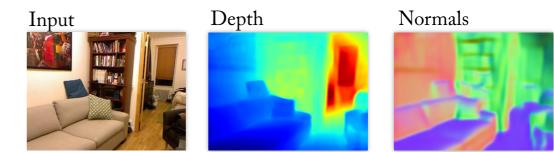


Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture

Eigen, Fergus



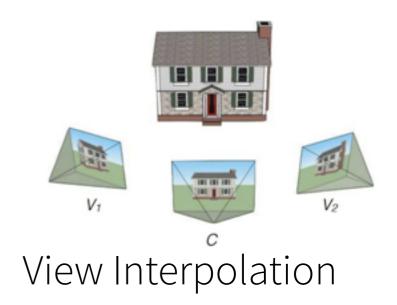
Solution 'Quality'

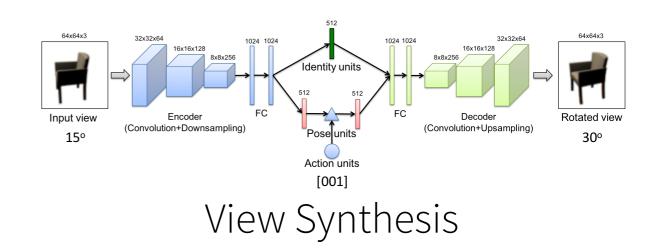


Problem Generality

3D Visual Understanding

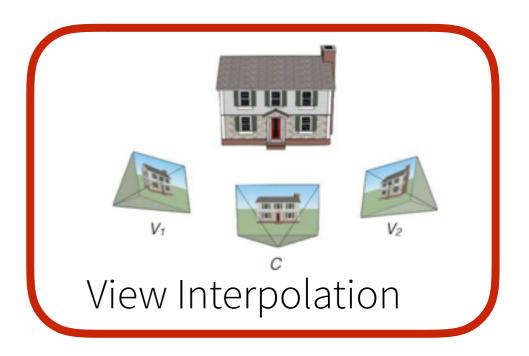
- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems

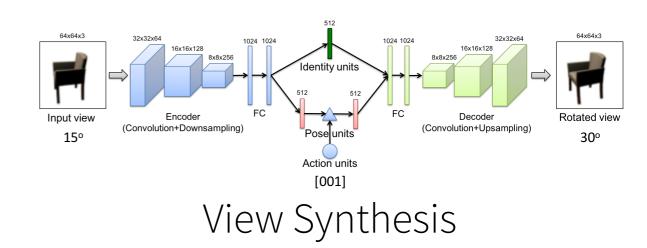




3D Visual Understanding

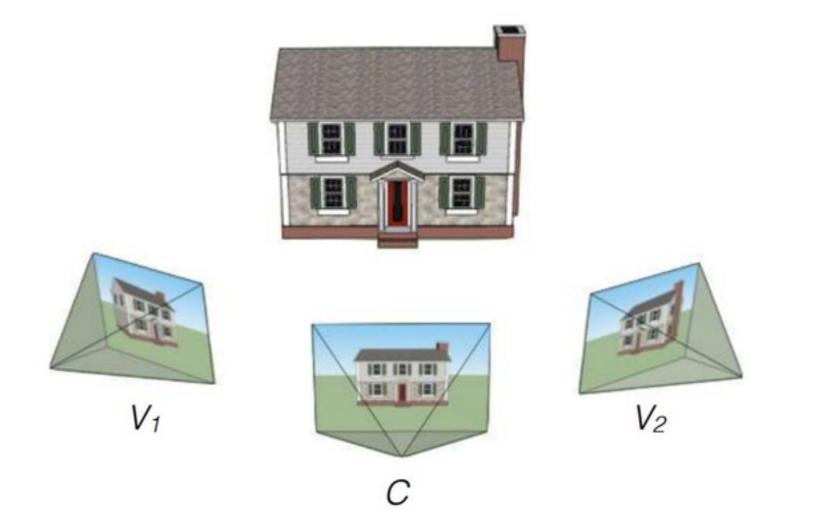
- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems

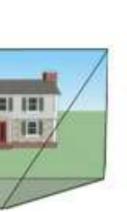


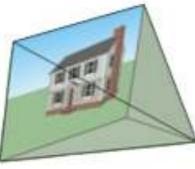


View Synthesis

Given two views, we want the image corresponding to the middle view



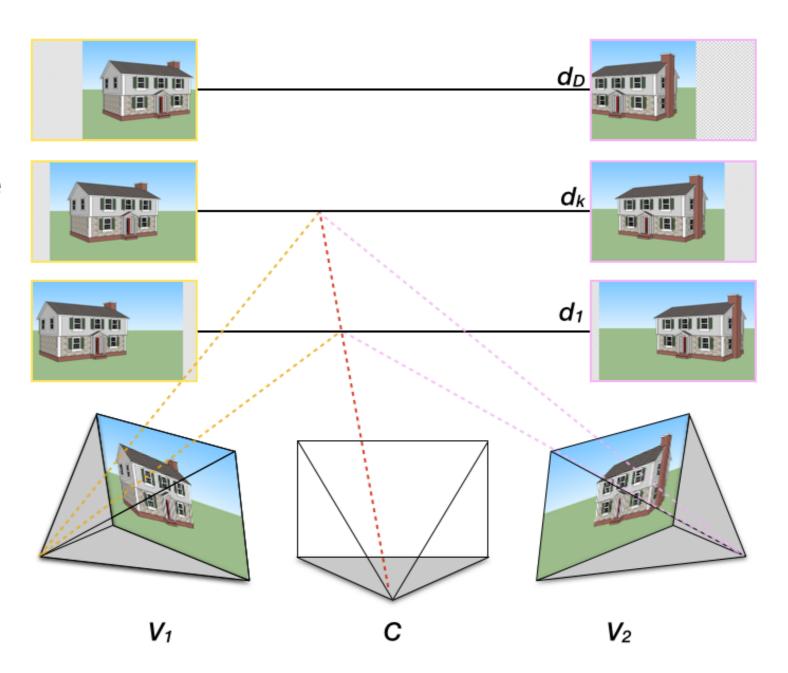




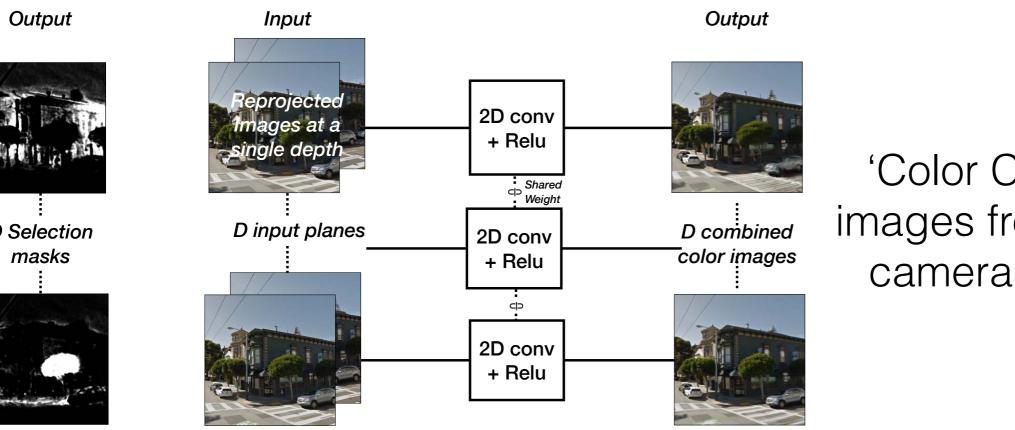
 V_2

View Synthesis

Images if all pixels were at same depth

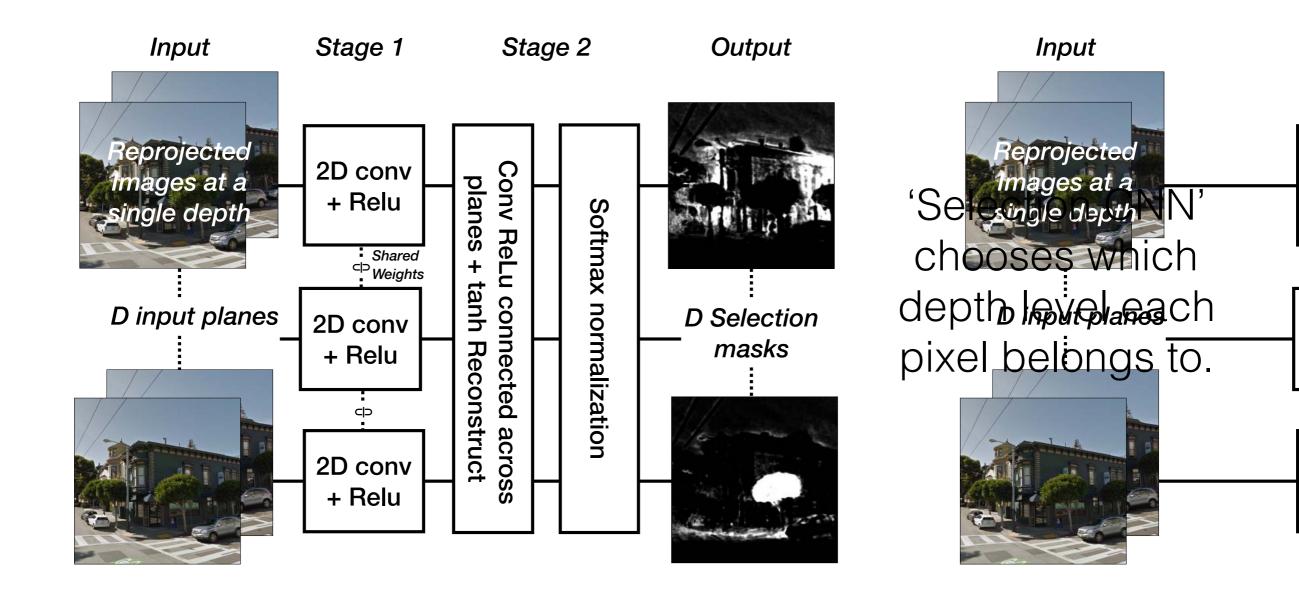


View Synthesis



'Color CNN' combines images from left and right cameras at each level

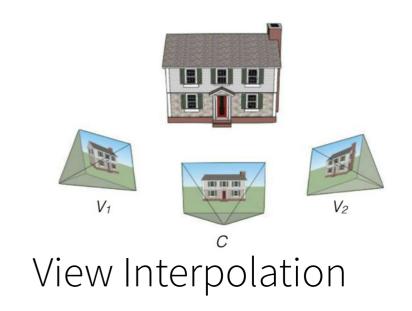
View Synthesis

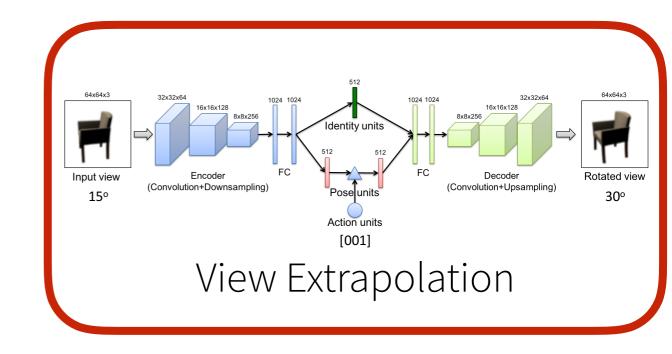


View Synthesis

3D Visual Understanding

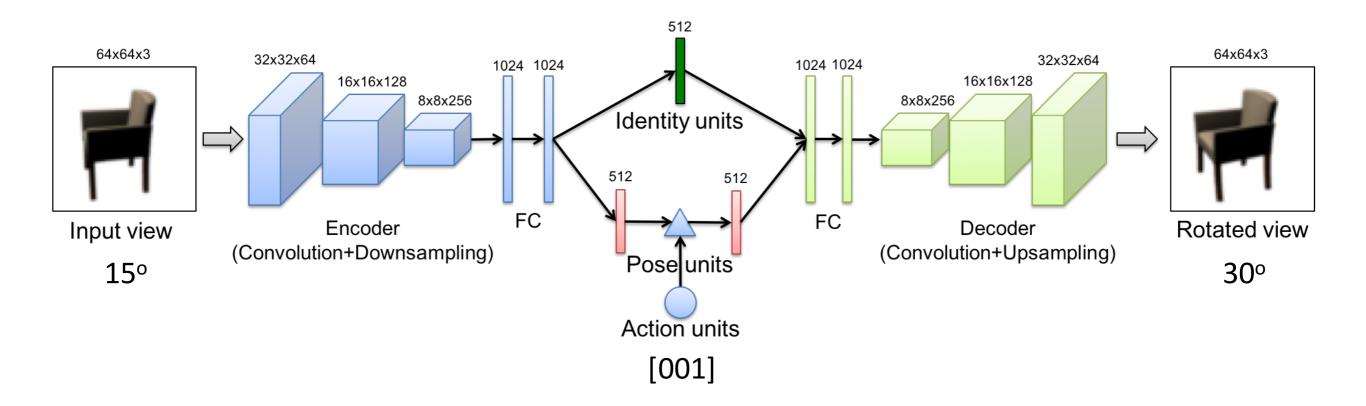
- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems





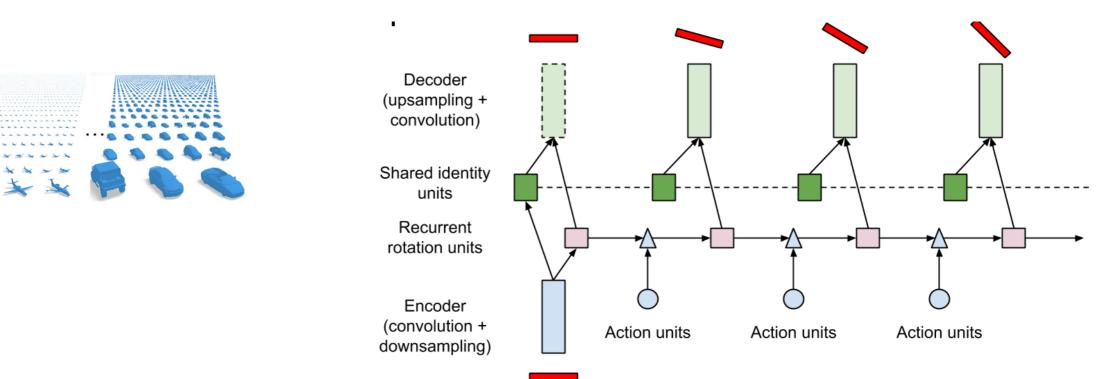
How does the object look from a different view ?

View Synthesis

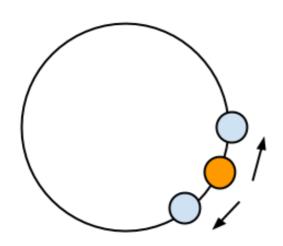


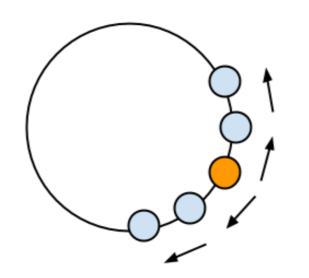
View Synthesis

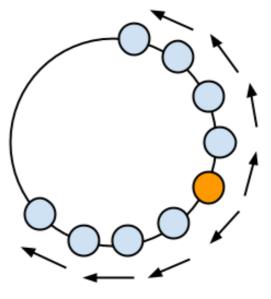
Training Data



Curriculum Learning

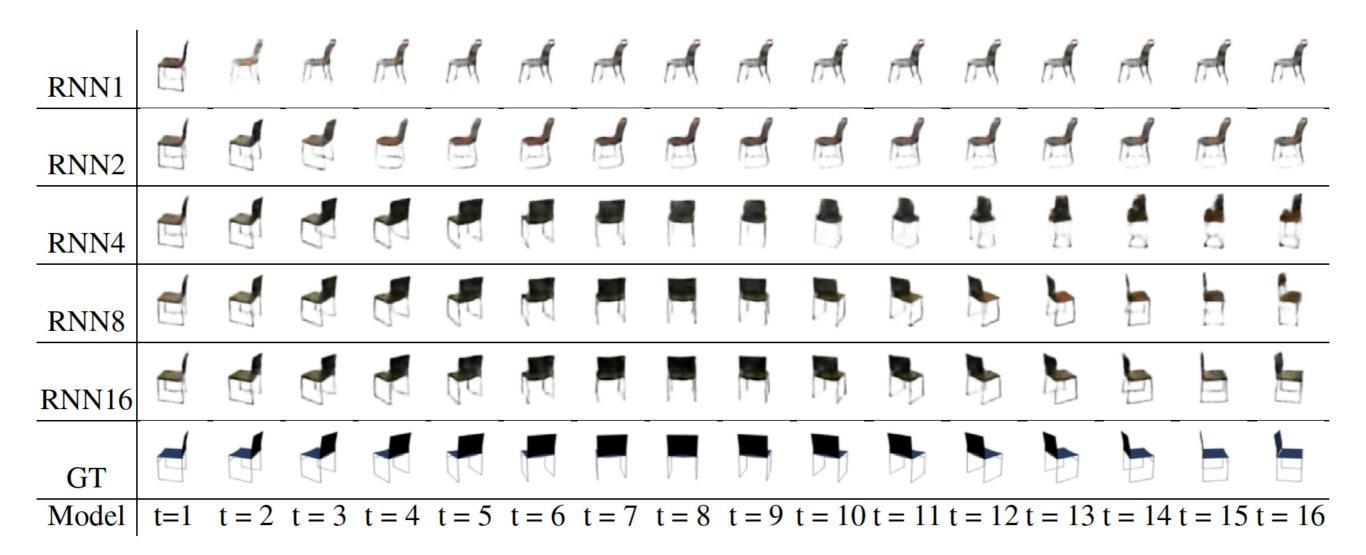


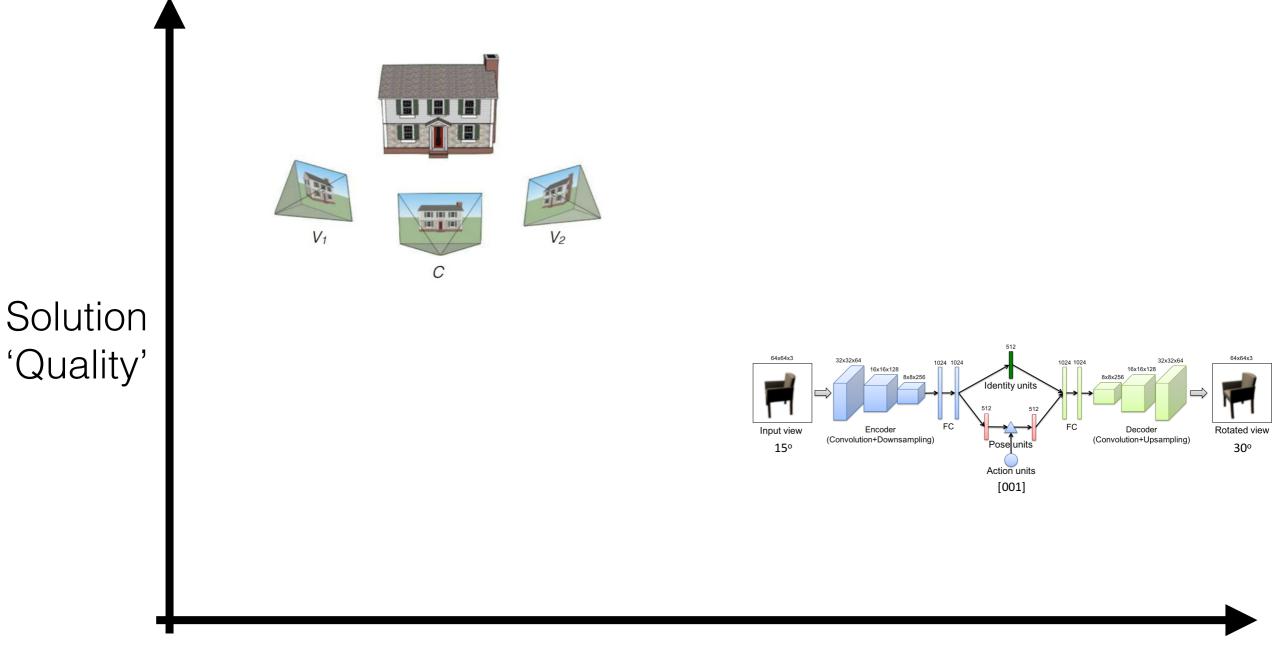




One-step rotation RNN1 Two-step rotation RNN2

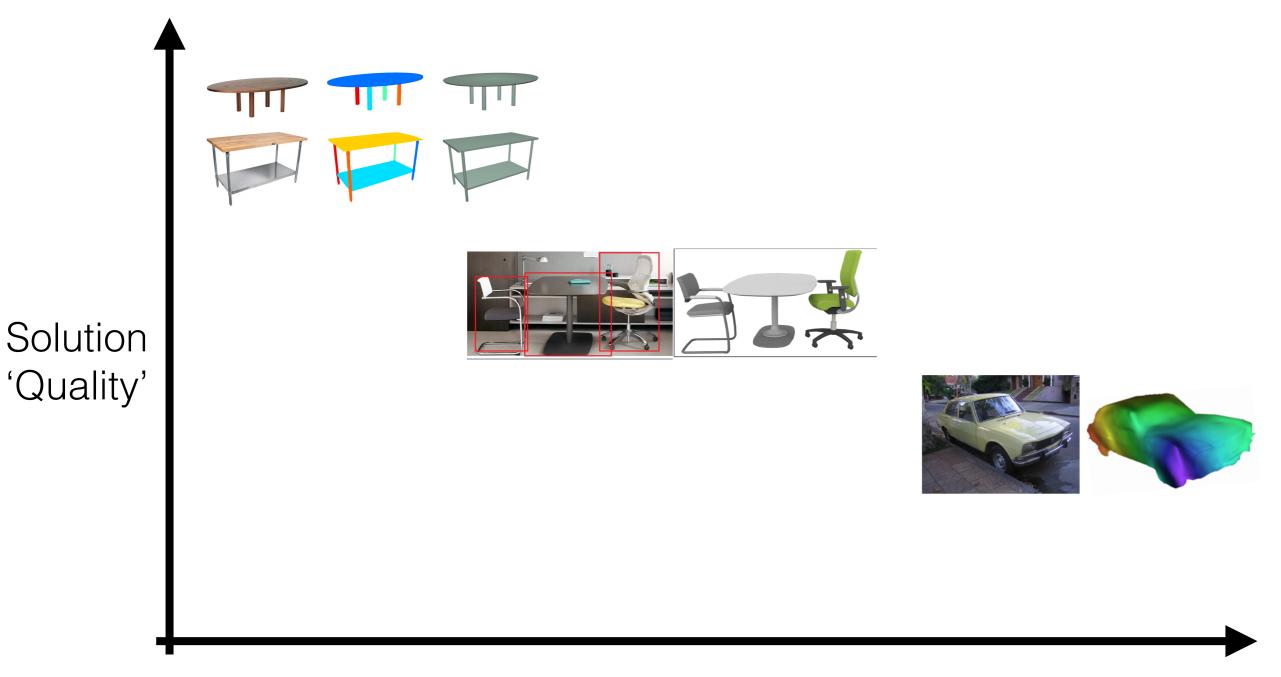
Four-step rotation RNN4

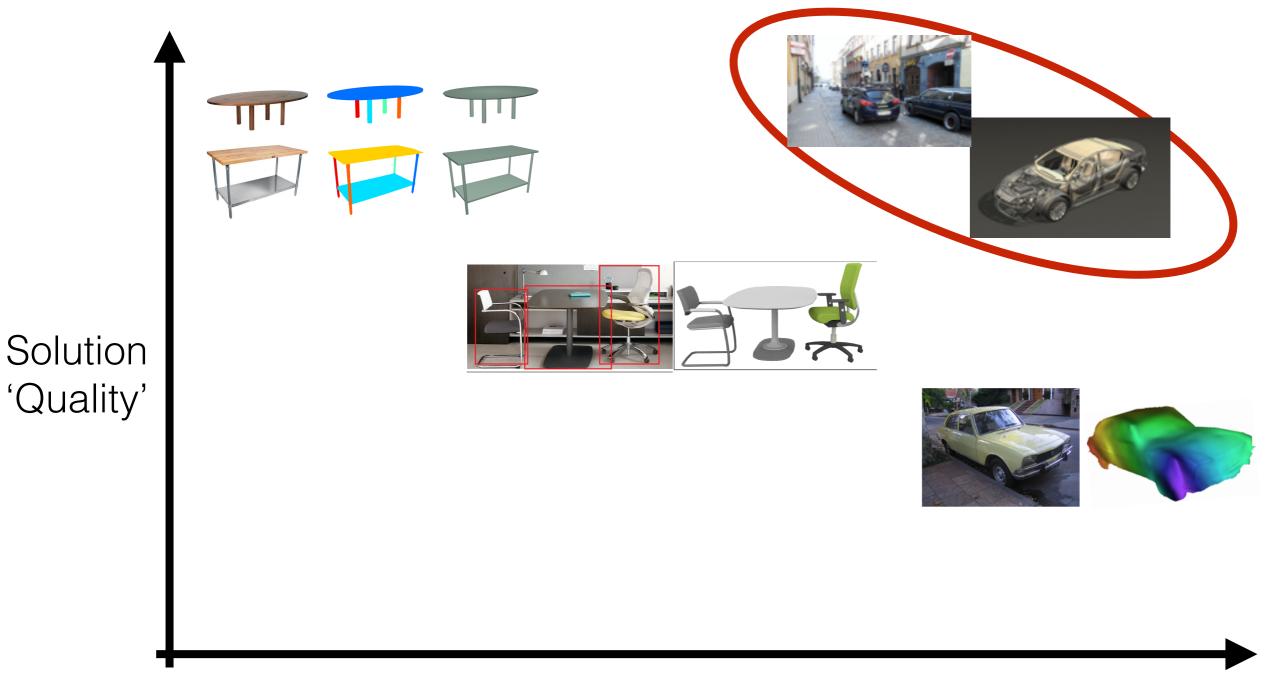


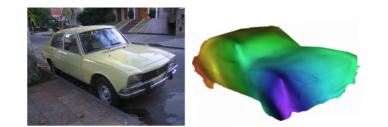


3D Visual Understanding

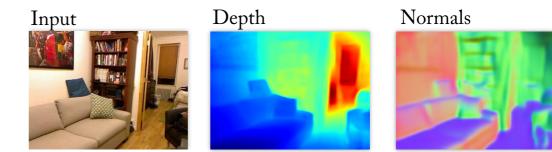
- Background
- Objects in 3D
- Scenes in 3D
- 3D Understanding without Understanding 3D
- Open Problems

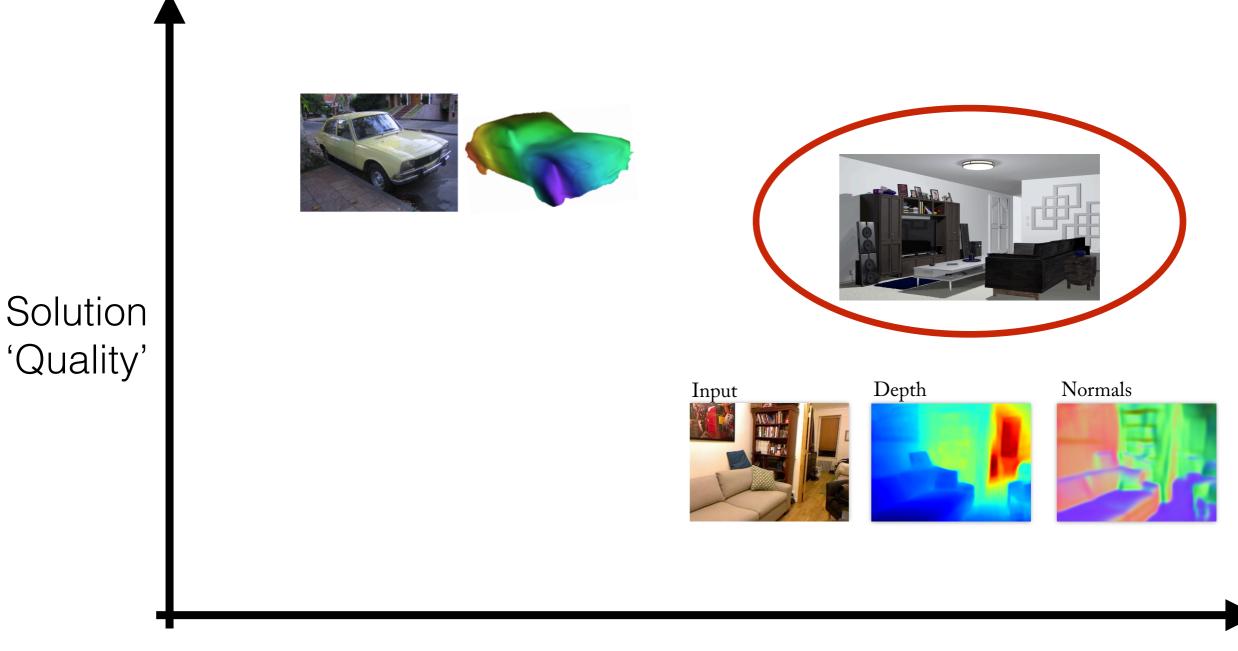


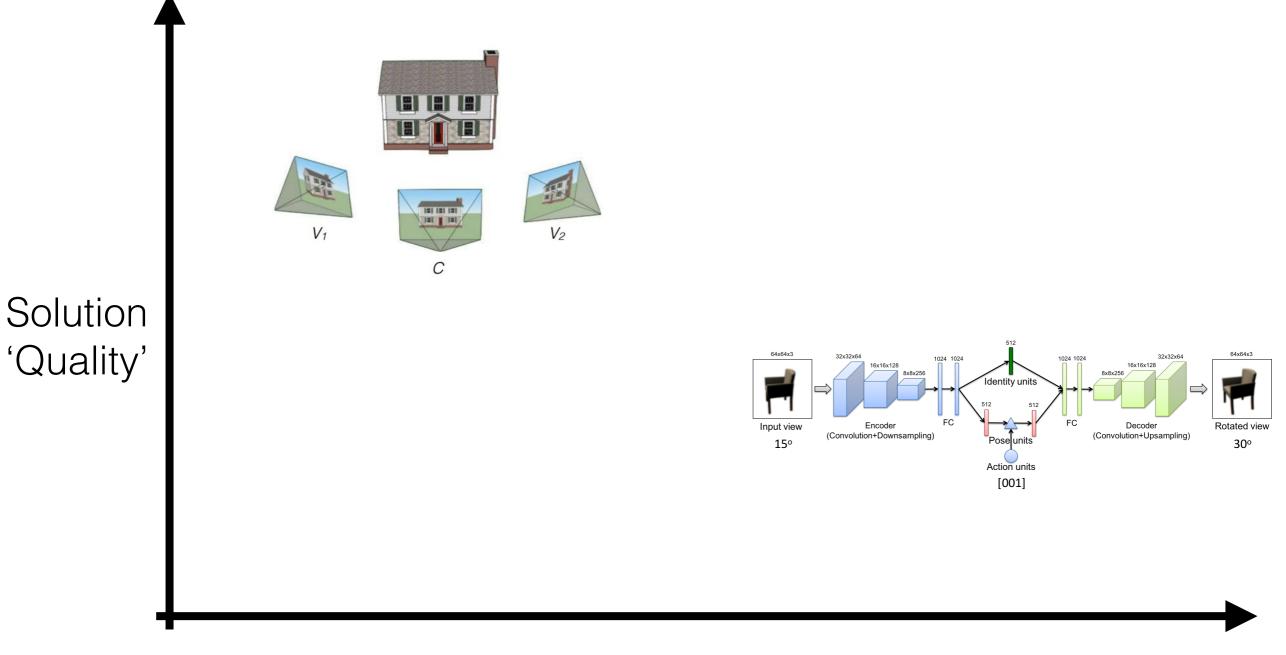


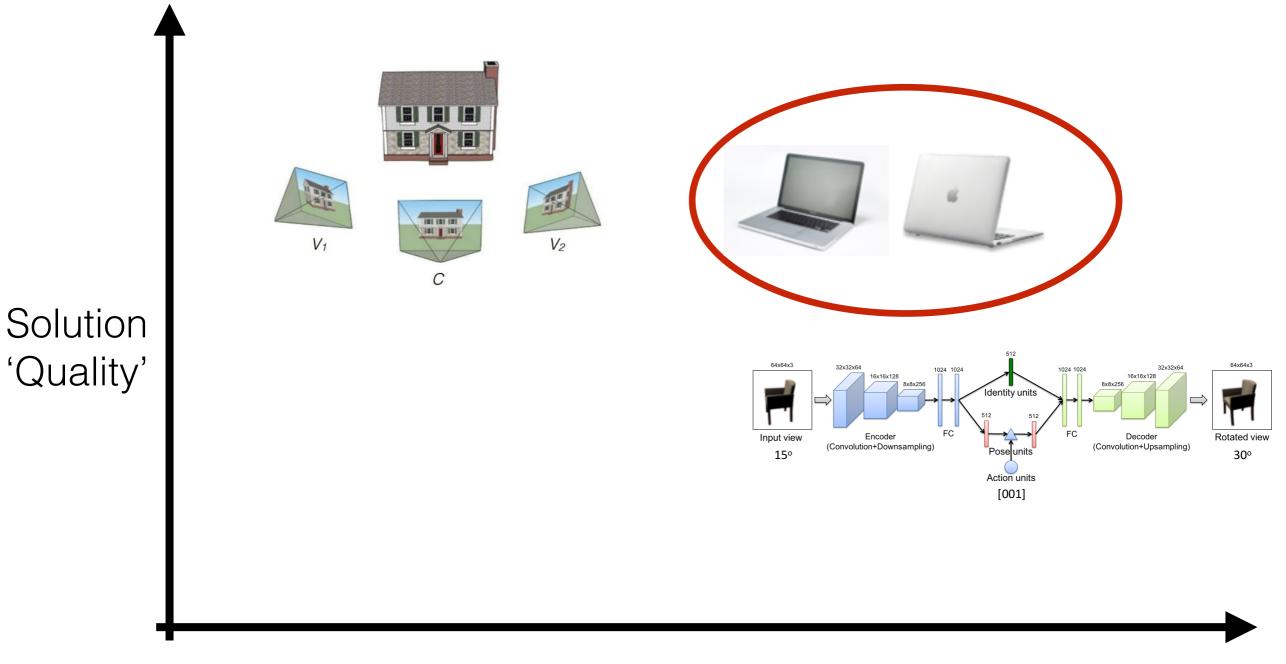


Solution 'Quality'









Open Problems : End-to-End Reconstruction

- All methods presented have hand-coded intermediate representations
- The lessons from recent successes of deep learning indicate we might want to instead learn these

Open Problems : Domain Gap

- We don't have real-image annotations for everything (symmetries, part-labels) but we have 3D models
- How can we ensure CNNs trained on synthetic data work on real images ?

Open Problems : Novel Objects

• There are more than 10,000 object categories. How can we learn to make meaningful predictions even on new objects ?

Thank You