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Applications

Re0.B:0.T. Comics

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Robot Path Planning



Applications

Object Manipulation
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Affordance Reasoning
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Image Based Graphics
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Neural Networks

Perceptrons. Rosenblatt, 1957



Neural Networks
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Neural Networks
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Convolutional Neural Networks

(= ‘J: "m Fj "rsI mgk\
Fukushima, 1980 LeCun et al, 1989 Krizhevsky et al, 2012

J CNNs are Neural Networks with Convolutional layers — each
output unit depends (via a spatially invariant linear function) on a
set of neighbouring input units

 Particularly relevant for input domains with spatial structure (e.g.
images)



CNNs in Computer Vision

Semantic
Segmentation
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Forward Opfics

shape / depth

Slide Courtesy : Jon Barron



Forward Optics

L

shape / depth illumination

Slide Courtesy : Jon Barron



Forward Optics

S(Z, L) L

shape / depth log-shading image of Z and L illumination

Slide Courtesy : Jon Barron



Forward Optics
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Forward Optics
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shape / depth log-shading image of Z and L illumination
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Physics of Image Formation
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The Workshop Metaphor

(a) an image

E. Adelson and A. Pentland, “The perception of shading and
reflectance,” Perception as Bayesian inference, 1996.



The Workshop Metaphor

(a) an image (b) a likely explanation

E. Adelson and A. Pentland, “The perception of shading and
reflectance,” Perception as Bayesian inference, 1996.



The Workshop Metaphor

(a) an image (b) a likely explanation
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(c) painter’s explanation

E. Adelson and A. Pentland, “The perception of shading and
reflectance,” Perception as Bayesian inference, 1996.



The Workshop Metaphor

(a) an image (b) a likely explanation

=

(c) painter’s explanation (d) sculptor’s explanation

E. Adelson and A. Pentland, “The perception of shading and
reflectance,” Perception as Bayesian inference, 1996.



The Workshop Metaphor

(c) painter’s explanation (d) sculptor’s explanation (e) gaffer’s explanation

E. Adelson and A. Pentland, “The perception of shading and
reflectance,” Perception as Bayesian inference, 1996.
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Shape Collections for 3D Understanding
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Shape Collections for 3D Understanding

3D Viewpoint Estimation

& in-plane rotation
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azimuth

Render for CNN: Viewpoint Estimation in Images Using CNNs
Trained with Rendered 3D Model Views
Su, Qi, Li, Guibas



Shape Collections for 3D Understanding
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Render for CNN: Viewpoint Estimation in Images Using CNNs
Trained with Rendered 3D Model Views
Su, Qi, Li, Guibas



Shape Collections for 3D Understanding

Render for CNN: Viewpoint Estimation in Images Using CNNs
Trained with Rendered 3D Model Views
Su, Qi, Li, Guibas
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Shape Representations

mesh

3D ShapeNets: A Deep Representation for Volumetric Shapes
/. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao



Shape Representations

binary voxel

mesh

3D ShapeNets: A Deep Representation for Volumetric Shapes

/. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao



Shape Representations
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3D ShapeNets: A Deep Representation for Volumetric Shapes
/. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao



Shape Representations
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3D shape model
rendered with
different virtual cameras
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Multi-view Convolutional Neural Networks for 3D Shape
Recognition

Su, Maji, Kalogerakis, Learned-Miller



Shape Representations

Training Config. Test Config. Classification Retrieval
Method (Accuracy) (mAP)
Pre-train Fine-tune #Views #Views y

(1) SPH [16] - - - - 68.2% 33.3%
(2) LFD [5] - - - - 75.5% 40.9%
(3) 3D ShapeNets [37] ModelNet40 ModelNet40 - - 77.3% 49.2%
(4) FV - ModelNet40 12 1 78.8% 37.5%
(5) FV, 12x - ModelNet40 12 12 84.8% 43.9%
(6) CNN ImageNet1K - - 1 83.0% 44.1%
(7) CNN, f.t. ImageNetl1K ModelNet40 12 1 85.1% 61.7%
(8) CNN, 12x ImageNet1K - - 12 87.5% 49.6%
(9) CNN, f.t.,12x ImageNetl1 K ModelNet40 12 12 88.6% 62.8%
(10) MVCNN, 12x ImageNet1K - - 12 88.1% 49.4%
(11) MVCNN, f.t., 12X ImageNetl K ModelNet40 12 12 89.9% 70.1%
(12) MVCNN, f.t.4metric, 12x ImageNetlK ModelNet40 12 12 89.5% 80.2%
(13) MVCNN, 80x ImageNet1 K - 80 80 84.3% 36.8%
(14) MVCNN, f.t., 80 x ImageNet1 K ModelNet40 80 80 90.1% 70.4%
(15) MVCNN, f.t.+metric, 80x ImageNetlK ModelNet40 80 80 90.1% 79.5%

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

Multi-view Convolutional Neural Networks for 3D Shape
Recognition

Su, Maji, Kalogerakis, Learned-Miller



Shape Representations

3D shape model
rendered with
different virtual cameras

mesh

Do we represent shapes as features in image space or
mesh space ?
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Object Reconstruction
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(c) Corresponden (d) Segmentation  (e) Reconstruction

Single-View Reconstruction via Joint Analysis of Image and
Shape Collections
Huang, Wang, Koltun




Object Reconstruction
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Input Image Pose Estimation

Single-View Reconstruction via Joint Analysis of Image and
Shape Collections
Huang, Wang, Koltun




Object Reconstruction

Similar Models and

Pose Estimation
Correspondences

Single-View Reconstruction via Joint Analysis of Image and
Shape Collections
Huang, Wang, Koltun




Object Reconstruction

I. <V |
Similar Models and Part Segmentation
Correspondences and Reconstruction

Single-View Reconstruction via Joint Analysis of Image and
Shape Collections
Huang, Wang, Koltun




Object Reconstruction

» FITIPIT

Figure 8: Results on four datasets. From left to right in each column: Web image, computed segmentation, 3D model reconstructed by our
approach (two views, green), and closest pre-existing model, shown for reference (blue).

Results

Single-View Reconstruction via Joint Analysis of Image and
Shape Collections
Huang, Wang, Koltun
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Reconstruction in the ‘Wild’

Joint Embeddings of Shapes and Images via CNN Image Purification
Li, Su, QI, Fish, Cohen-Or, Guibas



Reconstruction in the ‘Wild’

« Learn an embedding of shapes

Embedding Space

Shape Collection

sl

Joint Embeddings of Shapes and Images via CNN Image Purification
Li, Su, QI, Fish, Cohen-Or, Guibas



Reconstruction in the ‘Wild’

« Learn an embedding of shapes

Embedding Space
Shape/Collection

. Populate images in embedding space

[ Embedding Spacc_/_///T/.
/ Convolutional Neural Network

—

Synthesized Training Data ‘
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Joint Embeddings of Shapes and Images via CNN Image Purification
Li, Su, QI, Fish, Cohen-Or, Guibas




Reconstruction in the ‘Wild’

3D Model
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Joint Embeddings of Shapes and Images via CNN Image Purification
Li, Su, QI, Fish, Cohen-Or, Guibas




Reconstruction in the ‘Wild’
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Joint Embeddings of Shapes and Images via CNN Image Purification
Li, Su, Qi, Fish, Cohen-Or, Guibas




Reconstruction in the ‘Wild’

Joint Embeddings of Shapes and Images via CNN Image Purification

ish, Cohen-Or, Guibas

Li, Su, QI



Reconstruction in the ‘Wild’

Joint Embeddings of Shapes and Images via CNN Image Purification
Li, Su, Qi, Fish, Cohen-Or, Guibas



Reconstruction in the ‘Wild’

Category-Specific Object Reconstruction from a Single Image
Kar, Tulsiani, Carreira, Malik



Reconstruction in the ‘Wild’

» Learn category specific 3D models from 2D images of objects

Category-Specitic Object Reconstruction from a Single Image
Kar, Tulsiani, Carreira, Malik



Reconstruction in the ‘Wild’

» Learn category specific 3D models from 2D images of objects

Category-Specific Object Reconstruction from a Single Image
Kar, Tulsiani, Carreira, Malik



Reconstruction in the ‘Wild’

Image

Category-Specific Object Reconstruction from a Single Image
Kar, Tulsiani, Carreira, Malik



Reconstruction in the ‘Wild’

Object Detection anc
Instance Seementation

VLRI P

Image

Category-Specific Object Reconstruction from a Single Image
Kar, Tulsiani, Carreira, Malik



Reconstruction in the ‘Wild’

Object Detection anc | | o
Image Instance Sesmentation Viewpoint Estimation
N [ Gy | -

Category-Specific Object Reconstruction from a Single Image
Kar, Tulsiani, Carreira, Malik



Reconstruction in the ‘Wild’

Object Detection anc | | o
Image Instance Sesmentation Viewpoint Estimation
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3D Reconstruction

Category-Specific Object Reconstruction from a Single Image
Kar, Tulsiani, Carreira, Malik



Reconstruction in the ‘Wild’

Object Detection anc | | | |
Instance Segmentation Viewpoint Estimation |
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Image

Deformable

Category Specific
3D Reconstruction

Category-Specific Object Reconstruction from a Single Image
Kar, Tulsiani, Carreira, Malik



Reconstruction in the ‘Wild’

Object Detection anc | | o
Image Instance Sesmentation Viewpoint Estimation
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Deformable

High Frequency Category Specific
Depth Map 3D Reconstruction

Category-Specific Object Reconstruction from a Single Image
Kar, Tulsiani, Carreira, Malik
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Depth and Normal Estimation



Scenes in 3D

Depth

Normals

Dataset
(NYU Depth Dataset)

Predicting Depth, Surface Normals and Semantic Labels with
a Common Multi-Scale Convolutional Architecture

Eigen, Fergus



Scene Reconstruction

Predicting Depth, Surface Normals and Semantic Labels with
a Common Multi-Scale Convolutional Architecture

Eigen, Fergus
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‘Quality’

Problem Generality
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View Synthesis

Given two views, we want the image corresponding to the middle view

DHD“[
:»..—..»g” II:-L-;E'

Deepstereo: Learning to Predict New Views from the World's Imagery
Flynn, Neulander, Philbin, Snavely



View Synthesis

Images it all pixels were
at same depth

Vi C V2

Deepstereo: Learning to Predict New Views from the World's Imagery
Flynn, Neulander, Philbin, Snavely



View Synthesis

WReprojected
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Deepstereo: Learning to Predict New Views from the World's Imagery
Flynn, Neulander, Philbin, Snavely



View Synthesis
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Deepstereo: Learning to Predict New Views from the World's Imagery
Flynn, Neulander, Philbin, Snavely
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View Synthesis

How does the object look from a different view ?

Weakly-supervised Disentangling with Recurrent Transformations for
3D View Synthesis
Yang, Reed, Yang, Lee



View Synthesis
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Weakly-supervised Disentangling with Recurrent Transformations for
3D View Synthesis
Yang, Reed, Yang, Lee



View Synthesis

Training Data Training

Decoder
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Weakly-supervised Disentangling with Recurrent Transformations for
3D View Synthesis
Yang, Reed, Yang, Lee



View Synthesis

Curriculum Learning
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RNN1 RNN2 RNN4

Weakly-supervised Disentangling with Recurrent Transformations for
3D View Synthesis
Yang, Reed, Yang, Lee



View Synthesis
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Weakly-supervised Disentangling with Recurrent Transformations for
3D View Synthesis
Yang, Reed, Yang, Lee
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Problems :

Reconstruction

. All methods presented have hand-coded
intermediate representations

. The lessons from recent successes of deep learning
indicate we might want to instead learn these



Open Problems : Domain Gap

-
HEaad

. We don’t have real-image annotations for everything
(symmetries, part-labels) but we have 3D models

+ How can we ensure CNNs trained on synthetic data
work on real images ?



Problems : Novel Objects

- There are more than 10,000 object categories. How
can we learn to make meaningful predictions even on
new objects ?




Thank You



