Online learning and prediction: just play along!

A pre-Antaragni talk on online learning!

SIGML
Special Interest Group in Machine Learning

Purushottam Kar
Department of CSE
IIT Kanpur
Learning Problems

• Portfolio selection:

• Branch prediction:

• Click prediction:

```c
if (num > 0) {
    printf("%d is a positive
  if (num % 2 == 0)
    printf("%d is an even
  else
    printf("%d is an odd
  else
    printf("%d is a negative
```
Supervised Learning
Passive Supervised Learning
Online Supervised Learning

Corpus = \(<p_1,r_1> * <p_2,r_2> * \ldots * <p_T,r_T>\)
Online Supervised Learning
Active Supervised Learning

```c
if (num > 0) {
    printf("%d is a positive\n", num);
    if (num % 2 == 0)
        printf("%d is an even\n", num);
    else
        printf("%d is an odd\n", num);
} else
    printf("%d is a negative\n", num);
```
The Online Learning Model

How we assess Online Learning Algorithms
The Online Learning Model

• An attempt to model an interactive and adaptive environment
 • We have a set of actions \mathcal{A}
 • Environment has a set of loss functions $\mathcal{L} = \{\ell : \mathcal{A} \rightarrow \mathbb{R}_+\}$

• In each round t
 • We play some action $a_t \in \mathcal{A}$
 • Environment responds with a loss function $\ell_t \in \mathcal{L}$
 • We are forced to incur a loss $\ell_t(a_t)$
 • Environment can adapt to our actions (or even be adversarial)

• Our goal: minimize cumulative loss $\sum_{t=1}^{T} \ell_t(a_t)$
 • Can cumulative loss be brought down to zero: mostly no!
 • More reasonable measure of performance: single best action in hindsight
 • Regret: $R_T := \sum_{t=1}^{T} \ell_t(a_t) - \min_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell_t(a)$
 • Why is this a suitable notion of performance?
Making it big in the stock market

• Learning investment profiles
 • Set of actions is the d-dimensional simplex $\mathcal{A} = \{ p \in \mathbb{R}^d, p \geq 0, \|p\|_1 = 1 \}$
 • Reward received at t^{th} step is $\langle p^t, r^t \rangle$ where r^t is the return given by market
 • Total reward (assume w.l.o.g. initial corpus is $D = 1$)
 \[
 \prod_{t=1}^{T} \langle p_t, r_t \rangle = \exp \left(\sum_{t=1}^{T} \log \langle p_t, r_t \rangle \right)
 \]
 • Returns affected by investment, other market factors (adaptive, adversarial)
 • Can think of $\ell(p, r) = -\log \langle p, r \rangle$ as a negative reward or a loss
 \[
 \ell_t(p_t) = -\log \langle p_t, r_t \rangle
 \]
 • Regret (equivalently) given by
 \[
 R_T = \sum_{t=1}^{T} \ell(p_t, r_t) - \min_{p \in \mathcal{A}} \sum_{t=1}^{T} \ell(p, r_t)
 \]
 • Goal: make as much profit as the single best investment profile in hindsight
Simple Online Algorithms

What makes online learning click?
Online Linear Classification

- Perceptron Algorithm

1. Start with $w_0 = 0$
2. Classify o_t as $\text{sign}(w_{t-1}^T x_{o_t})$
3. If correct classification i.e. $y_t = \text{sign}(w_t^T x_{o_t})$, then let $w_t = w_{t-1}$
4. Else $w_t = w_{t-1} + y_t x_{o_t}$

- Loss function $\ell_{0/1}(w, o) = \mathbb{I}\{y_o w^T x_o < 0\}$ i.e. 1 iff w misclassifies o
- If there exists a perfect linear separator w^* such that $y_t w^*^T x_{o_t} \geq \gamma$,
 $$\mathcal{R}_T = \sum \ell_{0/1}(w_t, o_t) - \sum \ell_{0/1}(w^*, o_t) \leq \frac{1}{\gamma^2}$$
- If there exists an imperfect separator w^* such that $y_t w^*^T x_{o_t} \geq \gamma - \xi_t$,
 $$\mathcal{R}_T = \sum \ell_{0/1}(w_t, o_t) - \sum \ell_{0/1}(w^*, o_t) \leq \frac{1}{\gamma^2} + \frac{1}{\gamma} \sum \xi_t$$
The Perceptron Algorithm in action
Online Regression

- The Perceptron Algorithm was (almost) a gradient descent algorithm
- Consider the loss function
 \[\ell_{\text{hinge}}(w, x) = \max\{1 - yw^T x, 0\} \]
- \(\tilde{\ell} \) is a convex surrogate to the mistake function \(\ell_{0/1}(w, x) = \mathbb{I}\{yw^T x < 0\} \)
 \[\ell_{\text{hinge}}(w, x) \geq \ell_{0/1}(w, x) \]

- When perceptron makes a mistake i.e. \(\ell_{0/1}(w, x) = 1 \), we have
 \[\nabla_w \ell_{\text{hinge}}(w, x) = -yx \]
- Thus the perceptron update step \(w_t = w_{t-1} + y_t x_{o_t} \) is a gradient step!
Online Regression via Online Gradient Descent

Suppose we are taking actions \(a_t \in \mathcal{A} \) and receiving losses \(\ell_t \in \mathcal{L} \)

- Assume that all loss function \(\ell_t : \mathcal{A} \rightarrow \mathbb{R}_+ \) are convex and Lipchitz
- Examples \(\ell_t(a) = (a^\top x_t - y_t)^2 \), \(\ell_t(a) = -\log(a^\top x_t) \), \(\ell_t(a) = [1 - y_t a^\top x_t]_+ \)

Online Gradient Descent (for linear predictions problems)

1. Start with \(a_0 = 0 \)
2. Receive object \(x_t \) and predict value \(a_{t-1}^\top x_t \) for object \(x_t \)
3. Receive loss function \(\ell_t \) and update \(a_t = a_{t-1} - \frac{1}{\sqrt{t}} \nabla_a \ell_t(a_{t-1}) \)
 - Some more work needed to ensure that \(a_t \in \mathcal{A} \) as well

- We can ensure that

\[
R_T = \sum_{t=1}^{T} \ell_t(a_t) - \min_{a \in \mathcal{A}} \sum_{t=1}^{T} \ell_t(a) \leq O(\sqrt{T})
\]