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Polynomial-Time Algorithms for Prime Factorization

L a tt i C e - b a S e d C ry p t O g ra p h y and Discrete Logarithms on a Quantum Computer”

Peter W. Shor'

* Post-quantum candidate.

* Worst-case to average-case reductions (in asymptotic sense) .
e Advanced cryptographic primitives (like FHE).

NIST standardized lattice-based algorithms for quantum-resistant
cryptography (July, 2022).

More details, please visit:

https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-
resistant-cryptographic-algorithms

The availability of a quantum computer is altogether a different question ©



https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms

Lattice-based assumptions

Cryptography relies on the assumptions of computationally hard
problems.

Lattice-based assumptions: The best known way to solve it is by
lattice methods through a transformation to a lattice problem.

Talk overview: This doesn’t always guarantee hardness (by
counterexamples).



Lattice Backgrouna

A full rank matrix B € Z™*" generates a Lattice L = L(B) = {Bz:z € Z"}
* This lattice has dim = n and Vol = |det(B) |




Algorithmic problem related to lattices

e Shortest (non-zero) vector problem (SVP)
* Minkowski’s theorem: Let v be the SVP solution, then

1
| v[| < +vnVoln

* In practice, we use lattice reduction algorithms to find approximate

solutions.
n 1

LLL: Finds a lattice vector of norm < 2z Voln in polynomial time in the
size of its input.
n 1

Blé(zﬁ\)/vith block size B: Finds a lattice vector of norm < B8Voln in time
2 :



Cryptanalysis of the Finite Field [somorphism
problem

Based on the work: D. Das, A. Joux. On the Hardness of the Finite Field Isomorphism
Problem. EUROCRYPT’23



Reminders from Finite field theory

Finite field with g elements : F; , where q is prime.
Finite field with g™ elements (n degree extension of Fy): Fgn

Isomorphic representations of Fyn using irreducible polynomials of degree
n over kg,

F[x1/f () = By yl/F ) ~ ..

To find an explicit isomorphism, it is enough to know the roots of one
polynomial in F;n in terms of the other representation



Finite Field Isomorphism (FFI) Distribution

Uniform Sparse ternary minimal polynomial of x: Uniform minimal polynomial of y: F(y)
f) = x™+ g(x), deg(g) <3

Pick an Isomorphism: ¢

Sample - bounded linear combinations of powers of  A;(y) = ¢(a;(x))
x:a;(x)

Good

Representation in Bad

Representation in
polynomial
y —basis

polynomial
x —basis




FFI problem [DHP+'18, HSWZ’20]

Given q,F(y),A{(y),A,(y), ..., A; (y) decide if A;(y) is from the FFI
distribution or the uniform distribution.

This is the Decisional FFI (DFFI) problem.

[DHP+'18]: Y. Doroz, J. Hoffstein, J. Pipher, J. Silverman, B. Sunar, W. Whyte, and Z. Zhang.
Fully homomorphic encryption from the finite field isomorphism problem. PKC’18.

[HSWZ’20]: J. Hoffstein, J. Silverman, W. Whyte, Z. Zhang. A signature scheme from the
finite field isomorphism problem. JoMC’20.



Toy example

n=16
q=32771

fi(x)=%16 + N7 + %5 =xM3 = %2 =x + 1

F(y)=y"16 + 4152*y~15 + 2594*y~14 + 26843*y~13 + 27498*y~12 + 31444*y~11
+ 15956*y~10 + 7616*y"~9 + 30326*y~8 + 26729*y~7 + 8558*y~6 + 4785*y"~5 +
27721*%y~4 + 1198*y~3 + 14942*y~2 + 14544*y + 11277

\phi= 28228*y~15 + 13643*y~14 + 21168*y~13 + 4900*y~12 + 25475*y~11 +
21646*y~10 + 23297*y~9 + 19665*y~8 + 5019%y~7 + 1677*y~6 + 6823*y~5 +
15399%y~4 + 23882*y~3 + 242*%y~2 + 18578*y + 31824

x—-basis representataions
y—basis representations

014 4 2edl2 o %PLO  ROO + HOB —=xAT) —x0G ~xnfD =sdhd =xM3 —x

28795*y"~15 + 757*y”~14 + 4649*y~13 + 30560*y~12 + 21773*y~11l + 19702*y~10
+ 14924*y~9 + 22488*y~8 + 29775*y~7 + 7212*y~6 + 5478*y~5 + 4488*y~4 +
9598*y~3 + 3290*y”2 + 19954*y + 25737

WA =gevd D¢ S0 SIS o N SR NS TR o SRS SaReeg = 4 1

22173*y~15 + 15726*y~14 + 3731*y~13 + 2685*y~12 + 29516*y~11 + 30642*y~10
+ 9001*y”9 + 12333*y~8 + 8722%*y~7 + 3340*y~6 + 28353*y~5 + 9853%y~4 +
32035*y~3 + 25337*y~2 + 19076*y + 29241

=RS15 b wAl2 =mell =0l ¥ RAG =t 6 =RAE =whd =gy =wgp =]

25606*y~15 + 24744*y~14 + 20203*y~13 + 1563*y~12 + 10690*y~11 +
20096*y~10 + 22744*y~9 + 30083*y~8 + 16058*y~7 + 10331*y~6 + 30479*y~5 +
27544*%y~4 + 19920*y~3 + 3869*y~2 + 6833*y + 2377



Previous attack on Decisional FFI problem
DHP+'18,HSWZ’20]

Lattice attack

Find unusually short lattice vectors of the lattice L € Z* spanned by the columns

For FFI samples, there
are unusually short
vectors.

For uniform samples,
highly unlikely!

mod q




FHE from FFI problem (oversimplified) [DHP+'18]

*letp =2

*m,,my € {0,1}

* Enc(mg) = Cq = pC(y) + my, Enc(myp) = Cp = pC'(y) + my,
* Dec(C,) = (pc(x) + my) mod p = m,

e Dec(Cy+Cp) =(pclx)+pc'(x)+my+my )modp =m, +my, The sparse
2 / / ternary choice
* Dec(C,.Cp) = (p*c(x)c’'(x) + pc(x)my + pc’'(x)m, + my.mp) mod p = o

Meg. My bounds the

* Correctness: Choose q sufficiently large to avoid modular reductions in x-basis ”°‘Sefg"°""th
representations atter

ultiplications
* Whenq = 2"6, 0 € (0,1), the Encryption scheme is FHE [DHP+18]



Trace of finite field

* Let @ € Fyn, trace is defined by

n-—1

Tr(a)=a+a?+--+a?  €F,
* Trace is linear.
* Trace computation is polynomial time.

* Trace is invariant under basis representations.



Symmetric polynomials

* Roots of f(x) in Fn(in terms of polynomial x-basis):
n—1

{ag =x,a1 =x1,...,a,_1 =x1 '}

* Define Symmetric polynomials

o1(a;) = —Ya;,05(a;) = Yyaaj, ..., 0q(a;) = (—1)"[]a;



Trace of polynomial x-basis

f(x) =x"+0,x" ! + .-+ g, where g; = 0 for 1Sd£§—1
adE{O,il}forSSdSn
Then
Tr(x?)| = nmod q ford =0
= 0 mod q for1£d£§—1
= d mod q forngSn—land o # 0

= 0 mod q o4 =0



Trace of polynomial x-basis

f(x)=x"+ox" ! +--4+ 0, whereg; = 0for 1< d Sg— 1

a4 € {O,il}forgs d<n
e Thenforl < d Sg—l
° O-d — O
* Tr(x%) = 0 mod q rr(x) d
= (=1)4d Z (rp+7ry+ -1y —1)! H(—Gj)rj

! r,!
ri €Ny +21r5+---+drg=d 172 d

Using Newton-Girard formula:




Trace of polynomial x-basis

— n
=x"+ox" + et ooy d= Sdsg—
f(x) =x™+ gx™ 1 o Where gy = 0fori<d <->-—1
0d6{0,+1}for§SdSn

n
'ThenforES d<n-—1
Only one solution for r;: 1y + 21, + -+ + dry = d that contributes in the sum:
(r1r=01r,=0,.,1;,=1)

d\| — Using Newton-Girard formula:
|Tr(x )| d mod g whenag; # 0 rr(x)

(ry +r g — 1)! T
NSy S B ﬂ(—q)

ri€ENr  +21r5+--+drg=d

= 0mod qwheno; =0




Trace of FFl samples

* Let a;(x) is a f-linear combinations of x-basis.
Then |Tr(a;(x))| = |Tr(4:;())| < Bn?



Polynomial-time attack on DFFI problem

* Let g > 4fn?

e let 4;(y),A,(y), ..., A;(y) be the given samples.

Compute the trace of the samples.

N

If the absolute value of traces < fn?,
output FFI distribution.

Otherise, output uniform
distribution.

 Advantage: 1 — zik

Trace is uniformly
distributed in F; for uniform

samples.




Polynomial-time semantic attack on the FHE

*C, =pC(y) + m, wherem € {0,1}
* Tr(C,) = pTr(c(x)) + Tr(m) is small.

Tr(C,)mod p = 0,Returnm =0
=1, Returnm=1



Polynomial-time semantic attack on the FHE

*C, =pC(y) +m,wherem € {0,1}
* Pick any FFl sample C™ such that p is not a divisor of Tr(C™)
e Tr(C,.C*) = pTr(c*(x).c(x)) + m Tr(c*(x)) is still small.

The choice of f(x) makes sure the coefficients of the product in x-basis are small.

Tr(C,C*)mod p = 0, Returnm = 0
= 1,Returnm =1

* The large g makes sure there is no modular reduction!



Cryptanalysis of the Partial Vandermonde
Knapsack Problem

Based on the work: D. Das, A. Joux. Key Recovery Attack on the Partial Vandermonde
Knapsack Problem. In submission



Partial Vandermonde (PV) Knapsack Problem

Let R, = F;[x]/g(x) be a quotient polynomial ring, where
e g(x) = x™— 1 for primen

= x™ 4+ 1 for power of two n
* Prime q such that g(x) splits linearly over F,

When nis prime, g = 1 mod n
When n is power-of-two, g = 1 mod 2n

(): The set of all the primitive roots of g(x) over F;



PV Knapsack Problem
HPSSW’14,HS’15,DHSS 20, LZA'18,BSS’22]

* (;: Uniformly random subset of Q2 with t distinct elements.
* f(x) € R,: Coefficients are sampled uniformly at random from the set {—1,0,1}.

PV Knapsack problem:
Given R, O, and f(w) for w € Q find f(x) whent =

Initially PV Knapsack problem was called the partial Fourier recovery problem.

NS

[HPSSW’14]: J. Hoffstein, J. Pipher, J. Schanck, J. Silverman, and W. Whyte. Practical signatures from the partial Fourier recovery problem.
ACNS’14.

[HS’15]: J. Hoffstein and J. Silverman. Pass-encrypt: a public key cryptosystem based on partial evaluation of polynomials. DCC’15.

[LZA’18]: X. Lu, Z. Zhang, and M. Au. Practical signatures from the partial Fourier recovery problem revisited: A provably-secure and
Gaussian-distributed construction. ACISP’18.

[DHSS’20]: Y. Dor6z, J. Hoffstein, J. Silverman, and B. Sunar. MMSAT: A scheme for multimessage multiuser signature aggregation. Eprint’20.

[BSS’22]: K. Boudgoust, A. Sakzad, and R. Steinfeld. Vandermonde meets Regev: public key encryption schemes based on partial
Vandermonde problems. DCC’22.



Previous attack (Direct primal attack)[HPSSW’14]

for w € Q; A

mod q




Previous attack (Direct primal attack)[HPSSW’14]

* PV Knapsack problem: Find the uSVP solution (f, —1) on the Kernel
lattice

={x € Z"*1:Vx = 0mod q}
With Dim=n+1 Vol = q*

|| (f,—-1D) || = \/7wh|ch is unusually short in the lattice L'.



Previous attack (Dual attack)[BGP’22]

* Distinguishing attack
* Doesn’t affect the hardness of recovering f.

“We note however that this does not fully invalidate the claim made in [LZA18],
since the 128 bit-security is claimed against search attackers, and not distinguishing
attackers.” [BGP’22]

* The attack exploits specific Ideal structure of the problem to map to
an SVP instance of smaller dimension.

[BGP’22]: K. Boudgoust, E. Gachon, and A. Pellet-Mary. Some easy instances of Ideal-SVP and
implications on the partial Vandermonde Knapsack problem. Crypto’22.



Attack on the PV Knapsack problem
* Forany f(x) € R, we can interpret f G) € R,

= x™""! € R; when n is prime.

Rk XIP

= —x""! € R, when n is power-of-two.



Attack on the PV Knapsack problem

* Consider Oy, = {w € Qp: (w, 0™ € QI EQrWith0 <ty < ng
* We know the evaluations f(w) and f(w™1)
* We can compute f(w) + f(w™") for w € Qy,

This gives t; evaluationsof P (x) = f(x) £ f G) at w € Oy,

Idea: Find ¥4 (x) using lattice of smaller dimensions and do linear algebra to
recover f (x). Finding each of 1. (x) can be performed in parallel.



Attack on the PV Knapsack problem

* The mapping
xt > xt+1/xtfor0 <i < [ZJ is well defined.

By linearity, Y, (x) = f(x) + f (;) can be generated by the basis (of order [g])

2 7))
2, x+—,X+—2 ;---)x2+ n

X X xlfJH
Similarly, Y_(x) = f(x) — f( )can be generated by the basis (of order [ 1)

{(x-%) (-3~

* If f(x) has uniformly random coefficients in {—1,0,1}, ¥, (x) has coefficients in {—2,—1,0,1,2} and
b+ |l =

4 H




Attack on the PV Knapsack problem

forw € Qy;,

mod q




New Primal Attack on the PV Knapsack

problem

PV Knapsack problem reduced to finding the uSVP solution on the
Kernel lattice

n
Lﬁ,Jr ={x € ZH LW, x = 0mod q}
With Dim = [2] +1 Vol = ght

42
(W4, —1) || = [3?] which is also unusually short in the lattice Lﬁ,Jr.




Analysis of the attack

* uSVP cost depends on the root Hermite factor 6 = y
uniqueness gap [GN’08].
* The attack gets faster as t; increases.

Probability distribution of the number of pairs tl)
t—2t4

A
()

m1(ty) =

[GN’08]: N. Gama and P. Nguyen. Predicting lattice reduction. Eurocrypt’08.

1/dim
V4

Ay
—/1—1|sthe

m,(t;) forn =512,t = 256



Effect of the attack on the concrete parameters

All the parameters from the literature contain a non-negligible fraction of weak keys, which are
easily identified and extremely susceptible to our attack.

Example: We recovered the secret key of a parameter set from [LZA’18] for a fraction of

e 2715 of the public keys in about 117 hours (= 2°° bits operation)
« 2719 of the public keys in about 30 hours (= 2*8 bits operation)
2723 of the public keys in about 10 hours (= 2%° bits operation)

2730 of the public keys in about 8 hours (= 2*° bits operation)

It was initially claimed to have a 128-bit security against key recovery attack [LZA18], which was reduced to 87-bit
security using the distinguishing attack from [BGP’22].



Conclusion

“40 years Advances in Cryptology: How will future judge Us?”

Crypto’20 Rump talk by Yvo Desmedt available at https://www.youtube.com/watch?v=MTafCIFZOi8&list=PLeeS-3 M-
ropZMjRn2bNhb1FU-JOLMjRU&index=36&t=4650s

* Lattice-based assumptions are “relatively” NEW.

* CRYPTANALYSIS challenges our assumptions.


https://www.youtube.com/watch?v=MTafClFZOi8&list=PLeeS-3Ml-rppZMjRn2bNhb1FU-JOLMjRU&index=36&t=4650s
https://www.youtube.com/watch?v=MTafClFZOi8&list=PLeeS-3Ml-rppZMjRn2bNhb1FU-JOLMjRU&index=36&t=4650s
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