
Criticality Aware Tiered Cache Hierarchy:
A Fundamental Relook at Multi-level Cache Hierarchies

Anant Vithal Nori∗, Jayesh Gaur∗, Siddharth Rai†, Sreenivas Subramoney∗ and Hong Wang∗

∗Microarchitecture Research Lab, Intel
{anant.v.nori, jayesh.gaur, sreenivas.subramoney, hong.wang}@intel.com

†Indian Institute of Technology Kanpur, India
sidrai@cse.iitk.ac.in

Abstract—On-die caches are a popular method to help
hide the main memory latency. However, it is difficult to
build large caches without substantially increasing their access
latency, which in turn hurts performance. To overcome this
difficulty, on-die caches are typically built as a multi-level
cache hierarchy. One such popular hierarchy that has been
adopted by modern microprocessors is the three level cache
hierarchy. Building a three level cache hierarchy enables a low
average hit latency since most requests are serviced from faster
inner level caches. This has motivated recent microprocessors
to deploy large level-2 (L2) caches that can help further reduce
the average hit latency.

In this paper, we do a fundamental analysis of the popular
three level cache hierarchy and understand its performance
delivery using program criticality. Through our detailed anal-
ysis we show that the current trend of increasing L2 cache
sizes to reduce average hit latency is, in fact, an inefficient
design choice. We instead propose Criticality Aware Tiered
Cache Hierarchy (CATCH) that utilizes an accurate detection
of program criticality in hardware and using a novel set of
inter-cache prefetchers ensures that on-die data accesses that
lie on the critical path of execution are served at the latency of
the fastest level-1 (L1) cache. The last level cache (LLC) serves
the purpose of reducing slow memory accesses, thereby making
the large L2 cache redundant for most applications. The area
saved by eliminating the L2 cache can then be used to create
more efficient processor configurations. Our simulation results
show that CATCH outperforms the three level cache hierarchy
with a large 1 MB L2 and exclusive LLC by an average of 8.4%,
and a baseline with 256 KB L2 and inclusive LLC by 10.3%.
We also show that CATCH enables a powerful framework to
explore broad chip-level area, performance and power trade-
offs in cache hierarchy design. Supported by CATCH, we
evaluate radical architecture directions such as eliminating the
L2 altogether and show that such architectures can yield 4.5%
performance gain over the baseline at nearly 30% lesser area
or improve the performance by 7.3% at the same area while
reducing energy consumption by 11%.

Keywords-Criticality, Caching, Prefetching

I. INTRODUCTION

Large on-die caches can help hide the main memory
latency and allow processors to scale the memory wall.

†
The author contributed to the work as an intern with Microarchitecture

Research Lab (MRL), Intel India

However, it is difficult to build large caches that are si-
multaneously fast enough to match the fast processor cycle
time and large enough to effectively hide the slow memory
latency [23]. One popular solution is the three level cache
hierarchy used by many modern microprocessors [11], [12],
[30]. Smaller and faster caches, namely the level-1 (L1)
and level-2 (L2) caches, are private and kept close to the
CPU core, whereas a large last level cache(LLC), shared
across cores, is used to hide the slow main memory accesses.
Latency of a load hit in the large LLC is significantly higher
than the latency of hits in the smaller L1 and L2 caches [10].
However, since most requests are serviced by the faster inner
level caches (L1 and L2), the overall average latency for
a cache hit in this cache hierarchy is still low. This has
motivated the trend towards large L2 caches as is seen in
recent microprocessor offerings [11], [30].

In this paper we do a fundamental analysis of this popular
three level cache hierarchy and show that this trend of
increasing L2 sizes is in fact an inefficient design choice.
We leverage the well known notion that not all load accesses
matter for core performance, and only those load accesses
that lie on the critical path of execution can effect the core
performance [1], [2], [4], [6]. Hence, current cache hierar-
chies that optimize for average load hit latency of all load
accesses are clearly sub-optimal. To gain performance, the
critical loads need to be served at the least possible latency
whereas load accesses that are non-critical can be served
at a slightly higher latency. We hence propose Criticality
Aware Tiered Cache Hierarchy (CATCH) that utilizes an
accurate detection of program criticality in hardware and
using a novel set of inter-cache prefetchers, ensures that data
accesses that lie on the critical path of execution are served
from the L1 cache at the least possible latency. Specifically
we make the following contributions:

1) We first do a detailed analysis of the three level
cache hierarchy and develop an understanding of
the performance delivered from this hierarchy using
program criticality. We show through oracle studies
how criticality can be used as a central consideration



for achieving an efficient on-die cache hierarchy and
how each level of such a cache hierarchy should be
optimized.

2) We propose, and describe in detail, a novel and fast
incremental method to learn the critical path using an
optimized representation of the data dependency graph
first proposed in the seminal work by Fields et al. [1]
in hardware, that takes just 3 KB of area. We use this
to enumerate a small set of critical load instructions.

3) We then propose the Timeliness Aware and Criticality
Triggered (TACT) family of prefetchers for these iden-
tified critical loads. The TACT prefetchers prefetch
data lines accessed by the critical load PCs from
the L2 or the LLC to the L1 cache. TACT utilizes
the association between the address or data of load
instructions in the vicinity of the target critical load
to issue prefetches which bring the data from the
LLC or L2 into L1, just before the actual load access
is issued by the core. TACT also proposes a code
runahead prefetcher that eliminates code stalls because
of code L1 miss. We should note that unlike traditional
prefetchers [21], [39] that target LLC misses, TACT is
a unique inter-cache prefetcher which tries to hide the
latency of L2 and LLC for a select subset of critical
load and code accesses that are otherwise served in
the baseline from the slower outer level caches.

4) With TACT prefetchers incorporated into the design
we demonstrate that most critical load accesses that
would have hit in the outer level caches are served
by the L1 cache. TACT-based critical path accel-
erations fundamentally enable the Criticality Aware
Tiered Cache Hierarchy (CATCH). CATCH represents
a powerful framework to explore broad chip-level area,
performance and power trade-offs in cache hierarchy
design. Supported by CATCH, we explore and analyze
radical directions such as eliminating the L2 altogether
to dramatically reduce area/cost and enable higher-
performing CPUs at similar or lower power.

Our detailed results show that CATCH improves the baseline
three level cache hierarchy of a state-of-the-art Skylake-
like processor [30], that uses a large 1 MB L2 and an
exclusive 1.375 MB LLC per core, by 8.4% for seventy
single thread (ST) applications chosen from a wide category
of workloads. CATCH also improves the performance for
60 4-way multi-programmed (MP) workloads by 8.9%.
Interestingly, a CATCH-based two level cache hierarchy
without the L2 delivers 4.5% higher performance for ST
workloads at 30% lower die area. This die area savings
can be used to increase the overall LLC capacity, yielding
a 7.25% gain over the baseline and at 11% lower energy.
CATCH improves performance of an inclusive LLC baseline
with 256KB L2 by 10.3%. We also show that CATCH
delivers large performance, power and area benefits across

different implementations of the cache hierarchy, and marks
a fundamental shift in our understanding of how on-die
caches should be designed going forward.

II. BACKGROUND

Three level cache hierarchy has been in popular use in
modern processors [11], [12], [30]. For example, the Intel
Skylake client processors use a 32KB L1 instruction cache,
a 32 KB L1 data cache, a 256 KB L2 cache and an
8 MB LLC shared across four cores [12]. The L2 is not
inclusive of L1, with allocations in L2 on L1 misses but no
back-invalidates to L1 on L2 evictions. The LLC is strictly
inclusive, with every cache line present in the L1 or L2
cache also present in the LLC. On an LLC eviction, back-
invalidates will snoop out lines in the L1 and L2 to guarantee
inclusion [16].

Because of its large capacity, the LLC has a significantly
higher access latency than the L1 and L2 caches [10].
However, since most load accesses will be served by the
L1 and L2 caches, the overall average latency will still be
low. This has motivated the trend towards large L2 caches.
Cache hierarchies used by recent AMD processors [11] and
the Skylake Server processors from Intel [30] deploy a large
L2 cache per core. To prevent the problem of duplication
of cache lines in the L2 and the LLC, the LLC is made
exclusive of the L2 and L1. A cache hit or miss in the LLC
is filled in the L2 and an eviction from the L2 is filled in the
LLC. A large L2 helps reduce the overall average latency of
the on-die cache hits. Additionally, it helps applications with
large code footprints and reduces stalls in the core front-end
because of code lines that would need to be read from the
slower LLC [19]. Moreover, the large L2 filters requests that
would need to travel on the interconnect to the LLC, thereby
saving power.

To understand the importance of this design point we
simulate an experiment where the L2 is removed for ST
workloads running on a single core1. The baseline for this
experiment is a three level cache hierarchy, similar to a
state-of-the-art Skylake-like Server processor [30], that has
a 32 KB L1 cache for code, 32 KB L1 cache for data,
1 MB L2 cache and a 1.375 MB exclusive LLC per core,
which is modeled as a 5.5 MB exclusive LLC shared across
four cores. To keep the cache capacity the same for ST
workloads, we increase the LLC by 1 MB when we remove
the L2 cache (“noL2 + 6.5MB LLC configuration”). When
the L2 is removed for each core, it frees up 4 MB of area
for a four core system. Therefore, we also plot an iso-area
configuration where we add 4 MB to the LLC size and
increase it to 9.5 MB. Figure 1 shows the results for these
experiments.

Figure 1 shows a significant 7.8% drop in performance
on removing the L2. Interestingly, the iso-area configuration

1Simulation parameters and workloads are explained in Section V



-6.50%
-7.02%

-4.22%

-14.05%

-6.89%
-7.79%

-3.97%

-6.84%

-3.31%

-9.46%

-2.72%

-5.12%

-15%

-13%

-11%

-9%

-7%

-5%

-3%

-1%

1%

client FSPEC HPC ISPEC server GeoMean

p
e

rf
o

rm
an

ce
 im

p
ac

t 
o

f 
re

m
o

vi
n

g 
L2

NoL2 + 6.5MB LLC

NoL2 + 9.5MB LLC

Figure 1. Performance impact of removing L2

that removes the L2 from all cores and adds it to the
LLC, still loses 5.1% as compared to the baseline. This
demonstrates the superior performance of the three level
cache hierarchy and suggests that growing the L2 capacity,
rather than increasing the LLC size, is more beneficial for
performance. This explains the recent trend towards large
L2 sizes in modern processors [11], [30] .

However, a close examination shows that this hierarchy
is actually inefficient for area and power. For the inclusive
cache hierarchies, cache area is wasted in creating a low
latency L2 cache which is essentially replicating some of the
data already present in the LLC. Making the LLC exclusive,
can help prevent this wastage and hence allow a larger L2
cache. However, as the L2 cache is private to each core,
the overall cache capacity seen by each core (L2 + shared
LLC) is lower than what they would have seen with a large
shared LLC. Having a large shared LLC is beneficial for
single thread applications as well as when applications with
disparate cache footprint requirements are run together [24].

Three level cache hierarchies also often replicate code in
the L2 when symmetric processes run on many cores. Sim-
ilar replication is also done for shared, read-only data [45].
Additionally, moving to an exclusive LLC also requires a
separate snoop filter or coherence directory [25] that also
adds area. All of these lead to large chip area redundancies
making three level cache hierarchies an inefficient design
choice for area and power. However, results in Figure 1 show
that minimizing the average hit latency through a large mid-
level L2 cache gives a significant performance boost. This
significant performance edge - albeit at a large area and
power overhead - is the primary reason for the widespread
prevalence of this hierarchy in modern microprocessors.

A. Program criticality

The performance of the Out of Order (OOO) core is
bound by the critical path of execution. Criticality can be
described with the program’s data dependency graph (DDG)
first proposed in the seminal work by Fields et al. [1]. There
exists one or more paths through the graph with a maximum
weighted length and such a path is called a critical path. Any
instruction that appears in this path (or paths) is critical.

Figure 2 shows an example of a data dependency graph
(DDG) for a sample application. We use the notation used
in [1] to create the DDG. Each instruction in the DDG has
three nodes. The D node denotes allocation into the OOO,
the E node denotes the dispatch of the instruction to the
execution nodes, and the C node denotes the writeback of
the instruction. An E-E edge denotes data dependency, C-C
edges denote in-order commit and D-D nodes are for in-
order allocation into the OOO [1].

D

E

C

D

E

C

D

E

C

D

E

C

D

E

C

D

E

C

D

E

C

L3 missL2 Hit L2 HitL3 Hit

1 2 3 4 5 6 7Load Load Load Load

2 30 200
11 11

2

2

2 11 2

Figure 2. An example Data Dependency Graph (DDG) based on [1]

The critical path of execution for this sample application
has been marked as a dashed line. Instructions 1, 2, 4 and
5 are on the critical path whereas the remaining instructions
are not on the critical path. There are three loads that hit in
the L2 or LLC in this example DDG, namely instructions
2, 3 and 6. Out of these three, only load instruction 2
is on the critical path. As is evident in the graph, if the
latency of the non-critical L2 hits (11 cycles) is increased
to LLC hit latency (30 cycles), the critical path of execution
will remain the same. Likewise, if critical load instruction
2 is made a hit in the L1, the overall performance will
improve as the critical path is shortened. This clearly shows
that the performance benefit of the L2 cache is primarily
coming from the critical loads that are hitting in the L2
cache. However, we should note that criticality is not just
a function of the application being executed, but also of
the underlying hardware that decides the execution latency
of each instruction. For example, if load instruction 6,
which hits in the L2 and is not critical, starts missing the
LLC because of policy changes, the critical path of the
machine may change. Hence it is imperative to determine the
critical path dynamically while the application is executing.
In Section IV-A we will describe a light-weight hardware
mechanism to accurately determine critical instructions on
the fly in hardware.

III. MOTIVATION

In this section we will use program criticality to develop
an understanding of how the three level cache hierarchy
delivers performance. Through this analysis we will motivate
the need for a Criticality Aware Tiered Cache Hierarchy.

A. Latency sensitivity

Figure 3 shows the sensitivity to performance when
adding one, two and three cycles to the L1, L2 and LLC



-2.40%

-4.78%

-7.16%

-0.49%
-0.91%

-1.35%

-0.24% -0.41% -0.58%

-9%

-8%

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

1 cyc 2 cyc 3 cyc 1 cyc 2 cyc 3 cyc 1 cyc 2 cyc 3 cyc

L1 L2 LLC

p
e

rf
 im

p
ac

t

1 cyc

2 cyc

3 cyc

Figure 3. Impact of latency increase in L1, L2 and LLC

of the baseline three level cache hierarchy, that has a 32 KB
L1, 1 MB L2 and a shared 5.5 MB exclusive LLC, similar
to the Skylake processors [30]. Adding three cycles to the
L1 results in a 7.15% loss in performance, with lower
performance sensitivity as we move to outer level caches.

To understand the high L1 sensitivity, we again refer to
the DDG description of Section II-A. The critical path is
the longest path from the D node of the first instruction
to the C node of the last instruction retired. With an OOO
core depth of 224 and a dispatch width of 4 instructions per
cycle, the OOO takes a minimum of 56 cycles to dispatch
all instructions. This path is represented by the D-D chain in
the DDG. Since on-die caches typically have latencies less
than 56 cycles, a single access to any cache cannot create
critical paths. Most critical paths in the OOO are created by
long latency LLC misses (memory accesses), a branch miss-
speculation or by a long chain of dependent instructions
whose latencies add up to a length of path greater than what
the OOO depth can hide. Any instruction that a long latency
LLC miss or a mis-speculating branch is data dependent
on, will lie on the critical path of execution and hence will
impact performance. Since L1 hits are the most frequent,
they tend to also occur frequently on the chain of instructions
that lead to the load miss or branch mis-prediction. This
explains why the sensitivity to L1 latency is higher than the
L2 or L3 latency.

B. Criticality and cache hierarchy

To understand which level in the cache hierarchy is more
amenable to criticality optimizations, we devise a set of
oracle studies. Since the critical path changes dynamically,
we need a method to enumerate critical instructions on the
fly while the application is executing. We hence use our
hardware mechanism, that we will describe in Section IV-A,
to determine dynamically the critical load instructions at a
given level of the cache hierarchy.
Criticality at L1: Figure 4 shows the performance impact
of converting L1 hits to L2 hits. Converting all L1 hits to L2
hits sees a huge 16% drop in performance. Using criticality
information and converting only the non-critical L1 hits to

-16.07%

-4.86%

-7.79%

-0.76%

-7.01%

-1.17%

49.15%

39.63%
33.02%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

ALL NonCritical ALL NonCritical ALL NonCritical

L1 hits to L2 lat. L2 hits to LLC lat. LLC hits to Mem lat.

%
 lo

ad
s 

co
n

ve
rt

e
d

p
e

rf
o

rm
an

ce
 im

p
ac

t

Perf Impact – ALL             Perf Impact – NonCritical
%loads converted

Figure 4. Impact of increasing non-critical load latency

L2 hits helps mitigate the performance loss from 16% to
a still fairly big 4.8% on average. We calculated that an
OOO core with depth of 224 and dispatch width of four
can hide 56 cycles of latency. Let us assume we have a
small chain of dependent instructions which have 8 load
instructions, all of which hit the L1 at a latency of 5 cycles.
The overall length of this dependent chain (40 cycles) is
much smaller than 56 and hence these instructions are not
critical. However, if we increase the latency of just four of
these L1 requests to 13 cycles (the L2 hit latency), this path
will have an overall weight of more than 72 cycles, and will
hence create a new critical path. Such small dependence
chains are very frequent in applications, but a large OOO
depth can easily hide their latency. However, if the latency
of these instructions is increased, new critical paths will be
created dynamically in the OOO. Since L1 hits are the most
frequent (we observed an average 85% L1 hit rate on our
study list), small dependence chains that were non-critical
will now create new critical paths. Hence, criticality based
optimizations at the L1 are very challenging to implement.
Criticality at L2: Figure 4 also shows similar studies for
the L2 cache. Converting all L2 hits to LLC hits results
in a loss of 7.8%. However, converting all non critical L2
hits to LLC hits results in a much smaller 0.76% loss in
performance. Since L2 hits are more infrequent than the L1
hits, increasing their latency has lesser likelihood of creating
new critical paths. Hence we surmise that the L2 cache is a
very good candidate for criticality optimization.
Criticality at the LLC: Finally we evaluate criticality at
the LLC. Figure 4 shows that if we remove the LLC, the
performance drops by a 7%. Our criticality detection mech-
anism flags 33% of all LLC hits as not critical and serving
these at memory latency still loses 1.2% performance on
average. This is roughly a linear scaling from the losses
when all LLC hits (100%) are converted to LLC misses.
This is simply because an LLC miss is served by the long
latency memory (about 200 cycles of latency). This would
mean that an LLC miss will have a very high likelihood of
creating new critical paths and hence it is imperative that
LLC policies be designed to prevent such long latency LLC



misses. A similar observation was put forward by Srinivasan
et al. [5].

To summarize, we see that targeting the L1 or LLC will
create new critical paths and can be detrimental to perfor-
mance. However, the L2 is an ideal candidate for criticality
optimization. This is especially important due to the recent
trend towards large L2 caches [11], [30] which are clearly
inefficient in terms of area as reasoned in Section II-A. The
focus should be on serving critical loads that hit the L2
or LLC, to instead serve from the L1, optimize the L1 for
latency and bandwidth and grow the LLC to further reduce
memory misses. This forms the motivation for Criticality
Aware Tiered Cache Hierarchy (CATCH).

C. CATCH - Performance potential

The goal of CATCH is to convert critical loads that hit
in the on-die L2 or LLC into L1 hits. Speeding up these
on-die loads will speed up the critical path translating into
performance. This can be done through criticality-aware
inter-cache prefetchers.

To understand the headroom for such prefetching, we
design an oracle on-die prefetcher to convert L2/LLC hits to
L1 hits. We use our hardware mechanism, that we describe
in Section IV-A, to dynamically determine the critical load
instructions that often hit in the L2 and LLC. On every
instance of such a load instruction missing the L1, we query
the L2 and the LLC. If the load would hit in the L2 or the
LLC, we do a zero time prefetch for the 64B cacheline and
fill in the L1. Evicted victims of these fill, if dirty, are written
back to the L2. Additionally, all code lines are assumed to
hit in the L1 instruction cache. For these studies, we turn off
the hardware prefetchers, since training them in the presence
of the oracle prefetcher is complicated.

Figure 5 shows the results of this oracle for a 1 MB L2
and 5.5 MB exclusive LLC, for ST workloads. We sweep
the number of tracked critical load instructions in the oracle.
Tracking 32 critical load instruction addresses (also called
program counter or PC), nets a performance gain of 5.5%
while converting just 14% of L1 misses in the baseline to L1
hits. The gains steadily increase with increasing the number
of tracked load PCs. Importantly, we note that tracking
a sufficient number of critical load PCs and accelerating
just a fraction of L1 misses (17%) yields nearly the same
performance as accelerating all load L1 misses from L2
or LLC irrespective of criticality (6.1% vs 6.6%). Under
such an optimization, the L2 cache becomes irrelevant. We
further validate this with one additional design point. From
Section III-A, we saw that the no-L2 configuration loses
8.6% performance. However, with the oracle prefetcher in
play, the last bar in Figure 5 shows the configurations
with L2 or without L2 yield almost the same performance
improvement.

The large L2 cache adds substantial area which can be
eliminated by a two level criticality aware cache hierarchy.

This area can then be used to reduce die cost, increase
LLC or add more cores. This marks a radical shift from
the current trend of increasing L2 sizes for performance.
These oracle results clearly show that instead of growing
the L2, the trend should be to optimize cache hierarchy for
critical instructions and move towards a simplified two level
cache hierarchy where the LLC saves on memory misses
and prevents new critical paths, whereas the L1 serves the
critical loads. Moreover, Figure 5 also shows that only a
small number of tracked critical load PCs (32) can give
most of the gains. Hence it is possible to devise special,
directed prefetchers for this small subset of critical loads.
This forms the motivation for a Criticality Aware Tiered
Cache Hierarchy (CATCH).

We note that since L2 is private and only LLC is shared,
removing L2 shouldn’t effect coherency. Since L2 isn’t
typically inclusive of L1, snoops to core also snoop L1
for correctness, and removing L2 shouldn’t increase L1
snoop traffic. Shared-data will also continue to be handled
as in baseline, through the private L1 and shared LLC.
With CATCH simplifying the cache-hierarchy (fewer levels),
coherency/shared-data handling can be further optimized.
We leave this area of discussion for future work.

5.49% 5.61% 5.76%
6.06% 6.11%

6.58%
6.21%

14.08%
14.86%

15.54%
16.82%

17.04%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

32 PC 64 PC 128 PC 1024 PC 2048 PC All PC NoL2 +
2048 PC

%
 L

1
 lo

ad
s 

co
n

ve
rt

e
d

p
e

rf
o

rm
an

ce
 im

p
ac

t

PerfImpact %loads Converted

Figure 5. Performance impact of criticality aware oracle prefetch

IV. CRITICALITY AWARE TIERED CACHE HIERARCHY
(CATCH)

The goal of CATCH is to ensure that critical loads that
hit in the outer level caches (L2 and LLC) in the baseline
are served at the L1 latency. To enable CATCH, we first
propose an accurate detection of criticality in hardware. We
then propose a family of prefetchers that prefetch cachelines
corresponding to critical load accesses into the L1 cache and
also prefetch code that miss the Code L1 cache and hence
stall the machine’s front end.

A. Criticality Marking

Identifying which loads are critical at runtime is the
cornerstone of CATCH. There have been several proposals
that propose heuristics to find out which load accesses
will be critical [2], [6]. While using heuristics to identify



0

0

0

24

28

0

4

1

1

34

34

49

0

15

10

0

JLE, #label R3 = [R4]

44

44

54

0

10

R5 = [R0]

4

44

54

58

0

4

R0 = R5 + R3

0

10

20

15

10

0

0

0

20

0

20

R0 = [R1] 

0

0

0

20

24

0

4

CMP R0,8

20

1 2 3 4 5 6

D

E

C

Figure 6. An example Data Dependency Graph (DDG) based on [1]

critical load PCs may be simple to implement, they often
flag many more PCs than are truly critical. For instance,
branch mis-predictions that lies in the shadow of a load
miss to memory may still be flagged by heuristics-based
mechanisms as critical. Instead of using heuristics, which
would need to be finely tuned, we create a representation of
the data dependency graph by Fields et al. [1] in hardware
and use that to enumerate the critical path. We use the past
history of the execution of the application to predict future
instances of critical instructions. When instructions retire,
they are added to the graph. When the graph has buffered
instructions at least twice the reorder buffer (ROB) size, we
walk through the critical path in this buffered portion of the
graph and record the Program Counter (PC) of all the loads
that were on the critical path and had hit in the L2 or LLC.
However, there are two main problems with this approach.
Firstly, the area of the graph can be prohibitive. Secondly
enumerating the critical path needs a depth first search in
the graph to find out the longest path. We now describe how
we buffer the graph in hardware while addressing these two
concerns.

Graph Buffering: We use the notation as used in [1] to
create the data dependency graph. Each instruction has three
nodes. The D node denotes the allocation in the OOO, E, the
dispatch to execution units and C node the write-back time.
The D-D edge accounts for in-order allocation, C-C for in-
order retirement and D-E edge denotes the renaming latency.
The E-D edge refers to bad speculation, C-D the depth of
the machine, E-E actual data dependencies and the E-C edge
represents the latency of execution. Each edge of the graph
requires the edge weight and the node number to which it is
connected to. However, many edges of the graph are implicit
(D-E, E-C, D-D, C-C, C-D and D-E) and hence do not need
to store the node number. The OOO core provides both data
and memory dependencies between instructions (E-E), and
information about bad speculation (E-D).

When an instruction retires, it is added to the end of the
graph along with its node weights. The E-C edge (execution
latency) is measured from the time the instruction was
dispatched to the execution units till when it does the write-
back. We quantize this latency (divide by 8) and store it as a
5 bit saturating counter. Once we have buffered X number of

instructions, we can enumerate the critical path and identify
the critical instructions. We found that a value of X that is
equal to twice the reorder-buffer (ROB) size of the OOO is
sufficient in most cases.

Enumerating the Critical Path: The critical path is
the longest path from D node of the first instruction to
the C node of the last instruction in the buffered graph.
We propose an incremental method of finding the critical
path. On allocation to the graph, each node of the retired
instruction checks all its incoming edges to determine the
one it needs to take to maximize its distance from the
beginning of the graph. This distance is stored as the node-
cost and the identified incoming edge as the prev-node. Since
each node cumulatively stores its longest distance, incoming
nodes only need to compare with their immediate edges.
To understand this further, consider the example graph of
Figure 6. When the first instruction is added to the graph,
the node-cost of the D node will be 0. The E node has exactly
one edge (with the D node) whose weight is 0. Therefore,
its node-cost is 0 and its prev-node is 0. The C node’s node-
cost is 20 by virtue of the E-C edge and the prev-node is 1.
Now when the next instruction 2 is added, the D node has
only one edge (D-D) and so its node cost is 0 and prev-node
is 0. The E node of instruction 2 has two incoming edges.
The E node of instruction 1 with a cost of 20 (node-cost
of instruction 1’s E node + E-E edge weight) and the D
node of instruction 2 with a cost of 0. Therefore, its node-
cost will be 20 and prev-node will be 1. This process is
repeated on every addition of a new instruction to the graph.
Once the graph has buffered twice the ROB depth number of
instructions, we simply need to walk through the prev-node
pointers to enumerate all instructions on the critical path.
We should note that we only care for the E nodes on the
critical path, since these are the instructions whose execution
latency impacts the critical path. Further, since we are only
interested in load instructions we optimize the prev-node to
simply store the previous E node of a load on the critical
path.

Recording the Critical Instructions: During the critical
path walk through in the graph, we record the PC of the
load instructions that are on the critical path and hit in
the L2 or LLC in a 32 entry critical load table which is
8-way set-associative and maintained using LRU. We also
maintain a 2 bit saturating confidence counter for each table
entry. The PC is marked critical only if it is in the table
and its confidence counter has saturated. After every 100K
instructions have retired, we reset the confidence counters
of those PCs that have not yet reached saturation and ask
them to re-learn. We should note that walking through the
graph and recording in the critical table will take a finite
number of clock cycles, depending on the length of the E-
chain in the critical path. This should normally be just a
few cycles, because the number of critical instructions on
the critical path tend to be small [1]. However, there are



Edge
Type

Description Bits needed (b)

D-D,
C-C,
D-E,
C-D

In-order Dispatch (D-D),
In-order Commit (C-C),
Dispatch to Execute (D-E),
Depth limitation (C-D)

0 (implicit edges)

E-C Execution latency 5b (quantized)
E-E Data Dependency with a

node
9b * 3 (sources) +
9b (memory dep.) =
32b

E-D Bad speculation 1b (to signify)

Table I
Area calculations for buffering the DDG graph

cases when the path can be long and it may take several
cycles to walk through the graph. In the meantime, the ROB
continues to retire instructions. Therefore, we keep a larger
buffered graph than actually needed, to find out the critical
path. In our paper we keep it to be 2.5 times the ROB size,
but we only walk through the buffered graph corresponding
to twice the ROB size. Once we have walked through the
critical path, we flush out the buffered instructions (this is
done by just resetting the read pointer of the graph structure)
and wait for the next set of instructions to be buffered. In
case the graph overflows, we just discard and start afresh.

Area Calculations: Table IV-A summarizes the area
requirements per instruction in the graph. For a processor
with 224 ROB entries we need 2.3 KB of storage. Note that
each node finally only needs to store the prev-node and node
cost and can discard information on other incoming edges.
Additionally each instruction needs to store the PC address.
We use a 10 b hashed PC address instead of the full address.
This needs about 1 KB additional storage. The total area of
our critical path enumeration solution is about 3 KB.

B. Timeliness Aware and Criticality Triggered Prefetches

Once critical loads have been identified, we need to
prefetch them in the L1 cache so that the critical path
length can be shortened. We should note that this problem
is very different from the memory prefetching problem,
where the goal is to fetch requests from the DRAM memory
and increase the LLC hit rate. Our goal is to do a timely
prefetch of cachelines, which are present in the outer level
caches, into the L1 cache. This means that our prefetches
need to hide a much smaller latency than typical memory
prefetchers. Moreover since the L1 bandwidth and capacity
is small, it is important to direct these prefetches to only
a select list of critical loads that matter for performance.
Overfetching into the L1 can cause L1 thrashing, create new
critical paths and hamper performance. To meet this goal,
we propose a family of Timelness Aware and Criticality
Triggered Prefetchers (TACT) that accurately prefetch data
cachelines from outer level caches into the L1 just in
time before the core would actually need them. TACT also
prefetches L1 code misses to prevent front end stalls. Since
the front end (FE) of modern OOO processors is still in-

order, code misses can stall the entire FE pipeline and are
hence crucial for performance.

1) TACT - Data Prefetching: In modern instruction set
architectures (ISA) [26], [27], the most generic form of
address computation for a load instruction (with Program
Counter (PC) X) is of the form

LdAddress = Data(RegSrcBase)+

Scale ∗Data(RegSrc) +Offset
(1)

Using (1) we can then express prefetching using a tuple
(Target-PC, Trigger-PC, Association). The Target-PC is the
PC of the load that needs a prefetch. For TACT these
loads are dynamic instances of the critical loads that were
identified using the criticality detection in Section IV-A.
The Trigger-PC is the load instruction that will trigger
the prefetch for the Target. Attributes (address or data) of
the Trigger-PC will have a relation to the address of the
Target-PC. This relation needs to be learned by TACT to
successfully issue just in time prefetches for the Target-PC.

On the dispatch or execution of an instance of a Trigger-
PC from the OOO, the address of a subsequent instance of
the Target-PC can be predicted using the relevant attributes
of the Trigger-PC and its relation to the Target-PC. The spe-
cific instance of the Target-PC prefetched by a given instance
of the Trigger PC is the measure of the prefetch distance
and is related to the timeliness of the prefetching [32], [42].
For instance, prefetch distance of p is prefetching the pth

subsequent instance of the Target-PC on a trigger from the
Trigger-PC. We should note that higher prefetching distance
can pollute the small L1 caches, and hence TACT needs to
arrive at an optimal, least possible, distance for each instance
of the Target-PC.

Based on these expressions of prefetching, we propose
three TACT prefetchers. We only do TACT learning and
prefetching for the 32 critical loads learnt by the criticality
marking scheme of Section IV-A. It should be noted that
we evaluate our TACT prefetching on top of aggressive
state-of-the-art prefetching mechanisms, namely the stride
prefetcher in the L1 [41] and the aggressive multi-stream
prefetcher [32], [35] in the L2.

TACT - Cross: Cross trigger address associations typ-
ically arise due to load instructions where the Trigger-PC
and Target-PC have the same RegSrcBase but different
Offsets. They can also arise in other indirect program
behavior when the source registers for the Trigger-PCs and
the Target-PCs are loaded with data values with fixed deltas
between them. To exploit the cross association between
target and trigger in TACT, we first propose a simple
mechanism in hardware to identify the cross Trigger-PCs.

We make the key observation that over 85% of cross
address association delta values are well within 4 KB page.
This means that both the Trigger-PC and the Target-PC are
likely to access the same 4 KB page. To track possible



Trigger-PCs for any target we track the last 64 4 KB pages
seen in a 64 entry 8 way set-associative Trigger Cache, that
is indexed using the 4 KB aligned address. Each entry in the
cache tracks the first four load PCs that touch this 4 KB page
during its residency in the Trigger Cache. Critical Target-PCs
intances, during training, lookup this Trigger Cache with
their 4 KB aligned address and receive a set of four possible
candidates for Trigger-PC. These load PCs may have a cross
association with the target load.

Each Target-PC entry has a single current trigger candi-
date that is initially populated with the oldest of the four
possible Trigger-PCs from the trigger cache and lasts till
sixteen instances of the trigger. If a stable delta between the
trigger and target isn’t found by then, it switches to the next
from the possible candidate Trigger-PCs. We allow wrapping
around of the Trigger-PC candidates from the Trigger Cache
a total of four times before we stop searching for a Cross
Trigger PC. Once a stable Trigger-PC has been identified
for the Target-PC, the TACT-Cross prefetcher will issue a
prefetch whenever the OOO will dispatch the Trigger-PC.
The prefetch address will be the address of the current
instance of the Trigger-PC added with the offset that TACT
has learnt during training.

TACT - Deep Self: The most common address associ-
ation for loads is the one between addresses of successive
instances or iterations of the same load PC. For example,
loads inside a loop may see a stable offset between load
addresses in succsessive iterations fo the loop. We call these
associations as self trigger address associations. This is
commonly used in stride prefetching [41], and is already
employed in our baseline system. However, the baseline
stride prefetcher uses a prefetch distance of one that may not
be timely enough to save all of the L2 or LLC hit latency.
Conversely, an increase in L1 latency due to excessive
loading by too many prefetches would hurt performance.
For these reasons, increasing the prefetch distance of all
load PCs in the baseline stride prefetcher hurts performance.
TACT, therefore, adds increased, deep, prefetch distance
prefetching for only a small subset of critical load PCs. We
cap the maximum distance of prefetches issued to sixteen
to maintain a balance between timeliness and L1 cache
pollution.

Deep distance prefetch addresses are predicted by multi-
plying the learnt stride/offset by the desired distance and
adding to the triggering address. Even PCs that have a
frequently occurring high confidence stride in their addresses
don’t necessarily have only a single stride in their access
pattern. For example with loads in loops, a high frequency
stride occurs for every iteration of the loop but loop exits
followed by a re-enter at a later time will see a different
stride. Therefore, indiscriminately doing prefetches at dis-
tance sixteen for all critical Target-PCs will cause L1 cache
pollution.

TACT learns a safe length of stride seen by the critical
Target-PC. We track the current length of the stride seen by
the Target-PC (capped to 32 with a wraparound), and use
it to update (increase or decrease) the safe length counter
for the Target (again capped to 32). The confidence of this
learnt “safe” length is tracked using a 2 bit safe length
confidence counter. The safe length counter is initialized to
four. TACT issues prefetches for both prefetch distance 1 and
the maximum safe prefetch distance based on current length
and safe length, if the deep distance confidence counter is
saturated.

TACT - Feeder: When address associations don’t exist
for critical loads, TACT attempts data associations. The first
step is to identify the Trigger-PC. Prior published work by
Yu et al. [40] explored heuristics to determine the Trigger-
PC. We propose an alternate simple hardware to track load
to load dependencies and determine the Trigger-PC.

For TACT-Feeder, we are only interested in tracking
the dependencies between load instructions. We do this by
tracking the last load that updates an architectural register.
For every architectural register, we store the PC of the last
load that updated it. A load instruction directly updates
the PC in its destination architectural register. For non-load
instructions, the destination architectural register is updated
with the youngest load PC across all of its source archi-
tecture registers. This mechanism propagates information
on load PCs that directly or indirectly update architectural
registers. The Trigger-PC for a Target-PC is the youngest
load PC to have updated any of the load’s source registers.

The TACT entry for a target increments a 2 bit confidence
counter for the Trigger-PC. When the confidence saturates,
the Trigger-PC is added to a Feeder-PC-Table and TACT
begins to learn whether a linear relationship of the form
Address = Scale∗Data+Base, exists between the Trigger
Data and Target PC address. To eliminate hardware required
for complex division operations, we limit the possible scale
values we use to powers of 2 namely 1,2,4 and 8. We
therefore need at most three shift operations. We use a 2 bit
confidence counter for both the Scale and Base learning.
Once stable and high confidence values for the Scale and
Base are learnt, data from a Trigger-PC can trigger a prefetch
for the Target PC. For timeliness of Target-PC prefetch, we
prefetch upto a prefetch distance of four for the Trigger-
PC. The prefetch for the Trigger-PC, when data is available,
triggers the prefetch for the Target-PC. If the Trigger-PC
doesn’t have a self trigger address association then we
cannot do TACT-Feeder prefetching.

Figure 7 summarizes the three different forms TACT
prefetchers for data through illustrations of a program.

2) TACT - Code Prefetching: An in-order Front End (FE)
in microprocessors fetches instruction bytes of the program
from a Code L1, decodes them, and feeds the decoded
instructions to the OOO [31]. The address of the instruction



LD
Target

A i

LD
Target

A i+1

LD
Target

A i+2

LD
Target

A i+3

LD
Trigger

T o

LD
Target

C o

LD
Trigger

T o+1

LD
Target

C o+1

… … ……… ……

SELF Address: PrefetchDistance1 = δ SELF “Deep” Address: PrefetchDistance2 = 2*δ

CROSS Address: Trigger T to Target C = Δ

LD
Feeder

F i

LD
Feeder

F i+1

LD
Feeder

F i+2

LD
Feeder

F i+3

LD
Target

D i

LD
Target

D i+1

LD
Target

D i+2

LD
Target

D i+3

… … ……… ……

SELF “Deep” Address Prefetch of Feeder F

Feeder Prefetch Data to Prefetch Address of Target D

DATA BASED TACT PREFETCHERS

ADDRESS BASED TACT PREFETCHERS

Figure 7. TACT Data Prefetchers - CROSS, Self Deep and Feeder.

bytes to be fetched, called the Next Instruction Pointer
(NIP), uses the current NIP to predict the next NIP. This
includes detecting branches in the bytes of the current NIP
and predicting the target of the branch. The address pointed
to by the NIP is then looked up in the code L1. An L1
code miss can stall the entire pipeline. During a stall, the
NIP logic and the branch prediction units sit idle. To prevent
code stalls, TACT proposes a code runahead to prefetch code
lines while the FE is stalled serving the code miss.

As depicted in Figure 8 TACT adds a Code Next Prefetch
IP (CNPIP) counter that is used to prefetch code lines. When
the NIP logic is stalled by a code L1 miss, the current NIP is
check-pointed and the NIP logic is queried with the CNPIP
instead. This allows the CNPIP to runahead of the NIP
and prefetch the bytes CNPIP points to into the Code L1.
The branch predictor predicts the next instruction pointer,
whenever a branch is encountered for a given CNPIP. The
CNPIP is reset to the base NIP on a branch mis-prediction
or when the base NIP moves ahead of it. The TACT CNPIP
logic only operates when the base NIP is stalled in the FE.
It adds no extra ports to the NIP query, Code L1 or to the
instruction decode and dispatch logic/queues. The TACT-
Code runahead is similar to decoupled branch predictor by
Reinman et al. [49] and followups by Kaynak et al. [50] and
Kumar et al. [51], as well as the data run-ahead proposed
by Onur et al. [46].

Next
Instruction

Pointer
(NIP)
Logic

…

(Branch 
Prediction 

etc)

Branch 
Mispredict

CodeNextPrefetch
InstructionPointer

NextInstructionPointer Code Load

Code Prefetch

Front End Stall

Figure 8. TACT Code Runahead Prefetcher

3) TACT Hardware Requirements: Figure 9 summarizes
the structures needed for the TACT prefetchers and the area
requirements. The total storage required by TACT for all the
different structures is about 1.2 KB.

32 Critical Target PC
(640 Bytes)

• SELF “Deep” (2 Bytes)

• CROSS Logic (5 Bytes)

• Feeder (10.5 Bytes)

Critical Target PC Table

32 Feeder Load PC
(64 Bytes)

• SELF “Deep” (2 Bytes)

Feeder PC Table

16 Architectural 
Registers
(48 Bytes)

• Youngest Load PC 
affecting register 
contents (3 Bytes)

Feeder Tracking

8 Set 8 Way 
Index by 4KB Page

(384 Bytes)

• 1st 4 Ld PC to touch 
4KB page (6 Bytes)

Trigger Cache

32 CROSS PC 
Candidates

(64 Bytes)

CROSS PC Table

Code Next Prefetch 
Instruction Pointer

(8 Bytes)

Code Prefetcher

Figure 9. Structures introduced by TACT with area calculations

V. EVALUATION METHODOLOGY

For our simulations, we model dynamically scheduled x86
cores using an in-house, cycle-accurate simulator. Each core
is four-wide with 224 ROB entries and clocked at 3.2 GHz.
The core micro-architecture parameters are taken from the
Intel Skylake processor [12]. Each core has 32 KB, 8-way L1
instruction and data caches with latency of five cycles and a
private 1 MB 16-way L2 cache with a round-trip latency of
fifteen cycles. The cores share a 5.5 MB, 11 way exclusive
LLC with data round-trip latency of forty cycles. These
cache parameters are taken from the latest Intel Skylake
server processors [30]. Each core is equipped with an ag-
gressive state-of-the-art multi-stream prefetcher prefetching
into the L2 and LLC. The L1 cache is equipped with a PC
based stride prefetcher. The main memory DRAM model
includes two DDR4-2400 channels, two ranks per channel,
eight banks per rank, and a data bus width per channel of
64 bits. Each bank has a 2 KB row buffer with 15-15-15-
39 (tCAS-tRCD-tRP-tRAS) timing parameters. Writes are
scheduled in batches to reduce channel turn-arounds.

We selected 70 diverse applications from the SPEC CPU
2006, HPC, Server and Client category of workloads, that
are summarized in Table II. We use all 29 SPEC CPU
2006 benchmarks in this study and call out the average
category gains for integer SPEC (ISPEC) and floating point
SPEC (FSPEC). Apart from these 70 ST workloads, we also
created 60 four way multi-programmed traces, half of which
are RATE-4 style (four copies of the application run on four
cores) and the remaining are random mixes from our ST
applications. We simulate 100 million dynamic instructions
and use instructions per cycle (IPC) to measure performance
in ST workloads and weighted speedup in MP workloads.

VI. SIMULATION RESULTS

We first evaluate CATCH on single thread workloads in
Section VI-A. The contributions of each TACT component
is analyzed in Section VI-B followed by the results for
workloads with all four cores active in Section VI-C. We
show the sensitivity of CATCH to various system param-
eters in Section VI-D and do a detailed power analysis in



Benchmarks Category
perlbench, bzip2, gcc, mcf, gobmk, hm-
mer, sjeng, libquantum, h264ref, om-
netpp, astar, xalancbmk

SPEC INT 2006

bwaves, gamess, milc, zeusmp so-
plex, povray, calculix, gemsfdtd, tonto,
lbm, wrf, sphinx3 gromacs, cactusADM,
leslie3D, namd, deall,

SPEC FP 2006

blackscholes, bioinformatics, hplinpack,
hpc applications

HPC

tpce, tpcc, oracle, specjbb, specjenter-
prise, hadoop, specpower

SERVER

Sysmark-excel, Face detection, h264 en-
coder

CLIENT

Table II
SUMMARIZED LIST OF APPLICATIONS USED IN THIS STUDY.

Section VI-E. In Section VI-F we will also evaluate CATCH
on an inclusive baseline.

A. Large L2, Exclusive LLC, ST workloads

Figure 10 summarizes the performance impact of CATCH
on the baseline with 1 MB L2 and a 5.5 MB of shared,
exclusive LLC, averaged over 70 ST workloads. Removing
the L2 while keeping the overall cache per core constant
(NoL2 + 6.5MB LLC) results in a large 7.8% drop in
performance. If we move to a two level hierarchy and
remove the 1 MB L2 from each core, the LLC can be
grown to 9.5 MB at the same area (NoL2 + 9.5 MB LLC).
For ST workloads this increases the effective cache capacity
but the configuration still suffers a 5.1% average loss in
performance.

CATCH applied on the NoL2 configuration recovers the
7.8% loss incurred by removing the L2 and yields an im-
pressive 4.55% gain. This configuration, based on estimates
from the die plots of recent microprocessor offerings [30],
is about 30% lower area than the baseline. The area savings
can be used to grow the LLC and CATCH on the two
level hierarchy with increased LLC (NoL2 + 9.5 MB LLC)
yields 7.23% performance gain. Figure 10 also shows that
CATCH optimization applied on the baseline gives an 8.4%
average performance gain. These results clearly demonstrate
the benefit of CATCH. Firstly criticality awareness in the
baseline cache hierarchy itself improves performance gain
by 8.4%. Secondly CATCH reduces the sensitivity to large
L2 sizes since it ensures that critical loads, that were a hit
in L2 or LLC, are served at L1 latency. This is seen in the
results where CATCH on a two level hierarchy (NoL2 +
9.5 MB LLC) is close in performance to CATCH on a three
level hierarchy, with both configurations having the same
area. This result can be then be used to study interesting
trade-offs for power which we will discuss in Section VI-E.

Figure 11 shows TACT prefetchers primarily target
timely inter-cache prefetching, with 88% of critical TACT
prefetches served by the LLC and over 85% of these
prefetches saving more than 80% of LLC latency for subse-
quent critical loads. Prefetch fills into L1 increase by only

9% on average, tying back to the premise in Section III-C
that only a small percentage of critical loads need to be
accelerated.

-7.79%

-5.12%

4.55%

7.23%
8.41%

-15%

-10%

-5%

0%

5%

10%

15%

client FSPEC HPC ISPEC server GeoMean

p
e

rf
. i

m
p

ac
t 

w
.r

.t
. 

1
M

B
 L

2
 , 

5
.5

M
B

 L
LC

NoL2 + 6.5MB LLC NoL2 + 9.5MB LLC NoL2 + 6.5MB LLC
 + CATCH

NoL2 + 9.5MB LLC
+ CATCH

CATCH

Figure 10. Performance gain on large L2, exclusive LLC baseline

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

client FSPEC HPC ISPEC server GeoMean

Ti
m

e
lin

e
ss

: 
%

 L
LC

 la
te

n
cy

 s
av

e
d

%
 T

A
C

T 
p

re
fe

tc
h

e
s 

se
rv

e
d

 f
ro

m
 L

LC
 

< 10% LLC lat. saved > 10%  LLC lat. saved < 80%

> 80%  LLC lat. saved % TACT Prefetches hit in LLC

Figure 11. Timeliness of inter-cache TACT prefetching

Figure 12 shows the performance for each of our 70
workloads. CATCH recovers the losses on several workloads
that lose significantly without an L2. For example hmmer
loses nearly 40% performance, but with the CATCH hier-
archy the loss is less than 5%. TACT Feeder prefetches lift
mcf from a 30% loss to a 55% gain in performance. We
note that while the two level CATCH hierarchy outperforms
the baseline on average and for majority of the workloads,
there are some workloads where we don’t fully recover the
loss in performance from removing the large L2. Workloads
like namd and gromacs have some load PCs that are not
amenable to prefetching and hence CATCH gains are limited
for them. Povray suffers from a large number of critical load
PCs and as a result 32 critical load PC table is insufficient
to track all such loads. Targeted prefetching and better
critical load table management can help these workloads
significantly and we leave such investigations for future
work.

B. Analysis of CATCH Components

Figure 13 summarizes the contribution of the various
TACT prefetchers in a two level cache hierarchy with L2
removed (NoL2 + 6.5 MB LLC). TACT-Code prefetching
boosts average performance by 0.75%. Server category of
workloads tend to have large code footprints and they benefit



0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

p
e

rf
o

rm
an

ce
 r

at
io

Traces

NoL2 +6.5MB LLC
NoL2 + 9.5MB LLC + CATCH
CATCH

hmmer

povray
namd gromacs

mcf

Figure 12. Per workload performance impact

the most with this prefetcher. The TACT-Cross prefetcher
further boosts performance by 3.6% with SPEC 2006 and
HPC workloads benefiting the most. TACT Deep SELF
prefetchers provide 5.9% additional performance. Finally,
the TACT Feeder prefetcher adds a 2.7% average increase
in performance with the ISPEC category being the biggest
beneficiary. Overall, the different TACT prefetchers together
result in a performance gain of 13% on top of a NoL2
baseline.

0.75%

3.67%

5.89%

2.70%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

client FSPEC HPC ISPEC server GeoMean

p
e

rf
 im

p
ac

t 
o

f 
TA

C
T 

C
o

m
p

o
n

e
n

ts
 

o
ve

r 
n

o
 L

2
 b

as
e

lin
e

 

Code +CROSS +Deep +Feeder

Figure 13. Performance gain from each component of TACT

C. Performance on MP Workloads

Figure 14 summarizes the performance on the four way
MP workloads. A three level CATCH-optimized hierarchy
outperforms the baseline by 8.95%. The two level CATCH-
based hierarchy matches the three level hierarchy perfor-
mance, outperforming the baseline by 8.45%. These gains
are similar to what we see on ST workloads.

D. Sensitivity Studies

In this section we evaluate the robustness of our proposal
to different system parameters.

1) Effect of LLC Latency : Higher LLC latency may
be warranted in server processors with longer interconnects.
Figure 15 shows the performance of CATCH with increasing
LLC latency. Each six cycle addition to LLC latency reduces
the performance of the NoL2 and the corresponding CATCH
configuration by about 2%. This is expected since the TACT

prefetchers may not be able to fully hide the higher LLC
latency.

-4.05%

8.45%
8.95%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

No L2 No L2 + CATCH CATCH

p
e

rf
. i

m
p

ac
t 

o
n

 4
 w

ay
 M

P
 w

o
rk

lo
ad

s

Figure 14. Performance impact on multi-programmed workloads

-7.79%
-9.71%

-11.50%

7.23%
5.42%

3.71%

-14%
-12%
-10%

-8%
-6%
-4%
-2%
0%
2%
4%
6%
8%

10%

L3 L3+6cyc L3+12cyc L3 L3+6cyc L3+12cyc

noL2 + 6.5MB LLC NoL2 + 9.5MB LLC
+ CATCH

p
e

rf
 im

p
ac

t 
o

f 
in

cr
e

as
e

in
g 

LL
C

 la
te

n
cy

Baseline L3 Latency
L3 Latency + 6cyc
L3 Latency + 12cyc

Figure 15. Sensitivity to LLC hit latency

2) Effect of Critical Load Table Size : For our evalua-
tions, we use a 32 entry critical load table. While tracking
more critical load PCs helps a few benchmarks, the overall
performance gain was found to be minimal. This was
because some of the loads tracked by larger tables had
only a few instances when they were critical. As a result
prefetching these loads caused more L1 thrashing. A smaller
load table in fact helped weed away loads that were not
critical frequently enough.

E. Power Analysis
Our results in Section VI-A showed that a two level

cache hierarchy with CATCH optimization (NoL2 + 9.5 MB



LLC) outperformed the baseline, at the same area. However,
we also showed that CATCH can also be applied on the
baseline three level hierarchy and that also yields similar
performance. Since performance delivered is similar, in this
section we analyze the two level CATCH and the three level
CATCH for power.

The baseline three level hierarchy with an exclusive LLC
incurs both cache and interconnect overhead of moving
victim data (clean as well as dirty victims) from the L2 to the
LLC, on a fill into the L2. Single use blocks (that see few hits
in the L2) make several trips between the L2 and the LLC.
Each trip of such blocks costs L2 and LLC read and write
power, since exclusive LLC needs to de-allocate the line on
a hit. Additionally L2 stream prefetchers are often allocated
early in to the L2, because of which they get victimized and
move to the LLC without seeing a hit in the L2. This results
in extra cache and interconnect traffic. However, L2 cache
also filters away significant amount of LLC and interconnect
traffic, especially for L1 write-backs that are merged in the
L2, thereby saving costly writebacks to the LLC. Removing
the L2 in a two level CATCH optimized hierarchy would
lose this L2 filtering and add increased interconnect power
to the system,. However, with the removal of the L2, we
can use the L2 area to increase the LLC capacity visible to
a core. This in turn reduces traffic to the off-die memory.
Moreover not having L2 also helps reduces overall cache
traffic.

To understand the above we take a simple example of 100
L1 misses that lookup the L2. Let’s assume 80 of these hit
in the L2. The 20 L2 misses will travel the interconnect and
read the LLC (assuming LLC hit rate is 100%). The LLC
reads will fill the L2 and the L2 victims will fill into the
LLC. Overall the L2 will see a cache traffic (read + write)
of 120 and the LLC will see 40 accesses. Therefore, the total
cache traffic is 160 and the interconnect traffic is 40. Without
the L2 all 100 accesses will be sent to the LLC. Therefore,
the two level hierarchy will have 40% lower cache traffic
(100/160), but will have 2.5X more interconnect traffic. In
summary, a two level CATCH will have lower cache and
off-die memory traffic (because of increased LLC capacity),
but will have higher on-die interconnect traffic.

To study the power impact of CATCH, we model the
cache power using CACTI [29], estimate the interconnect
power using Orion [43], [44] and model memory power
using Micron DRAM power calculator [28]. For a 4-core
system (that we evaluate in our studies) and a ring intercon-
nect, we see on average 11% energy savings over the three
level cache hierarchy baseline as shown in Figure 16. The
two level CATCH has 37% lower cache traffic (L2 + LLC),
22% lower memory traffic but nearly 500% more intercon-
nect traffic. For small interconnects, used by low core count
processors, the savings in off-die DRAM memory power and
on-die cache activity outweigh the substantial increase in the
on-die interconnect power. However, this would not be true

for large core count processors that would use a complex
MESH as an interconnect. For such hierarchies optimized by
CATCH, an L2 may still be needed for primarily reducing
the interconnect traffic and not necessarily for increasing
performance. However, instead of a large L2, which is used
today primarily for performance, a smaller L2 maybe able
to reduce the interconnect power significantly.

To summarize, CATCH represents a powerful framework
to explore broad chip-level area, performance and power
trade-offs in cache hierarchy design. Supported by CATCH,
radical architecture directions such as eliminating the L2
altogether to dramatically reduce power or cost can be
explored to create high performance CPUs.

19.01%

14.36%

5.88%

10.15% 10.62% 10.87%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

client FSPEC HPC ISPEC server GeoMean

e
n

e
ry

gy
 s

av
in

gs
 w

ih
 t

w
o

 le
ve

l C
A

TC
H

 
h

ie
ra

rc
h

y 
(N

o
 L

2
 +

 9
.5

M
B

 L
LC

)

Figure 16. Energy Savings from CATCH on two level hierarchy

F. Small L2, Inclusive LLC

We also evaluate CATCH on a traditional inclusive LLC
hierarchy with a 256KB L2 and a 8MB LLC, similar to [12].
Figure 17 summarizes the performance impact of CATCH on
this configuration. Removing the L2 results in a 5.7% drop
in performance. The two level CATCH hierarchy swings this
to a 6.4% gain in performance over the three level baseline.
Since we are removing the L2, this 6.4% gain is achieved
with a significant saving in core area. Adding the L2 area
(1 MB across four cores) boosts gains of the two level
CATCH hierarchy to 7.2%. Finally, CATCH on the three
level cache hierarchy baseline yields a 10.3% average gain
in performance.

-5.74%

6.43%

7.22%

10.29%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

client FSPEC HPC ISPEC server GeoMean

P
e

rf
. i

m
p

ac
t 

w
.r

.t
. 

2
5

6
K

B
_L

2
, 8

M
B

_L
LC

noL2 noL2+CATCH noL2+CATCH+9MB_L3 CATCH

Figure 17. Performance gain on inclusive LLC baseline



VII. RELATED WORK

Using program criticality to improve the performance of
processors has been explored extensively in the past. The
data dependence graph used in this work was described
by Fields et al. [1] which also proposed a token passing
based heuristic to determine the critical instructions on the
fly. Several other works have described heuristics that can
be used to determine critical instructions [2], [3], [6], [13].
CATCH uses an accurate and novel light weight detection
of criticality via the data dependency graph but doesn’t
preclude the use of other finely tuned heuristics to determine
critical instructions.

Criticality and caching were explored by Srinivasan et
al. [5] where the conclusion was that LLC replacement
policies should be based on locality and not criticality. This
matches our findings and analysis in Section III-B with
respect to the LLC. Misses in the LLC create new critical
paths because of high memory latency, and hence using
criticality to maintain the LLC is counter productive. How-
ever, managing on-die cache latency for critical instructions
using our proposal, while maintaining same overall memory
accesses, will only serve to shorten the critical path without
creating new critical paths.

Criticality has also been explored in other areas of the
processor. Ghose et al. [7] proposed techinques to prioritize
critical loads in the memory controller. Subramniam et al. [6]
proposed techniques using criticality to reduce the L1 load
ports. Criticality has also been used to design energy efficient
cores and caches by Balasubramonian et al. [20] and Seng
et al. [3].

Recent research studies in the area of on-die caching have
primarily focused on improving cache replacement in the
LLC [8], [9], [14], [16]–[18], [22]. These techniques are
applicable to the proposed criticality aware hierarchy as well.
A comparison of exclusive to inclusive LLC by Jaleel et
al. [19] and Gaur et al. [16] showed that large L2 caches
and an exclusive LLC can give substantial performance. A
replacement policy in the LLC using hints from lower level
cache hierarchies was explored by Chaudhari et al. [8].

There have been several proposals for prefetching from
memory into the LLC that exploit non-uniform but repeating
spatial access patterns in a 4KB page [21], [33], [36]–
[39]. We observe that the most of these non-uniform but
repeating spatial access patterns of cachelines are due to
stable address deltas between a series of IPs. It is this series
of IPs that repeat during the course of the program. The cited
prefetchers aim to reduce memory stalls by fetching a large
number of cachelines in a page into the large LLC. On the
other hand the TACT prefetchers learn complex associations
specifically for doing accurate, just in time prefetching of
critical loads from the L2 and LLC into the L1. Code
prefetching techniques have been proposed in [47], [48].

To summarize, most of the prior work has focused on

either improving the on-die cache hit rates through prefetch-
ing and better cache management or has used criticality as
a local metric to improve latency in a certain part of the
processor. To the best of our knowledge, this is the first work
that uses program criticality to fundamentally understand
how and why multi-level caches give performance gain.
Through a holistic analysis of the trade-offs in a multi-
level cache hierarchy, this work motivates the move towards
simplified program criticality aware cache hierarchies and
enable radical high-performance area-optimized designs.

VIII. SUMMARY

In this paper we have presented CATCH, a fundamentally
new way of designing multi-level cache hierarchies. Through
sophisticated prefetch algorithms that are guided by an accu-
rate criticality detection mechanism, a CATCH based on-die
cache hierarchy outperforms the traditional three level cache
hierarchy for single thread workloads by 10.3% for a 256KB
L2, inclusive LLC baseline and by 8.4% for a baseline
with an exclusive LLC and a large 1MB L2 cache. We
also showed that CATCH enables a framework for exploring
interesting trade-offs between area, power and performance
and marks a fundamental shift in our understanding of how
on-die caches should be designed going forward.

IX. ACKNOWLEDGMENT

The authors thank their colleagues at MRL, Pooja Roy,
Shankar Balachandran and Harpreet Singh for their help with
the work. We also thank the anonymous reviewers for their
insightful comments and suggestions.

REFERENCES

[1] B. Fields, S. Rubin, and R. Bodk. Focusing processor policies
via critical-path prediction, in ISCA ’01

[2] E. Tune, D. Tullsen, and B. Calder. Quantifying Instruction
Criticality, in PACT ’02

[3] J. Seng, E. Tune, and Dean M. Tullsen. Reducing power with
dynamic critical path information, in MICRO ’01

[4] S. Srinivasan and A. Lebeck. Load latency tolerance in dy-
namically scheduled processors, in MICRO ’98

[5] R. Ju, A. Lebeck, and C. Wilkerson. Locality vs. criticality, in
ISCA ’01.

[6] S. Subramaniam, A. Bracy, H. Wang, and G. Loh. Criticality-
based optimizations for efficient load processing, in HPCA ’09

[7] S. Ghose, H. Lee, and J. Martnez. Improving memory schedul-
ing via processor-side load criticality information, in ISCA ’13

[8] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, and J.
Nuzman. Introducing Hierarchy-awareness in Replacement and
Bypass Algorithms for Last-level Caches, in PACT ’12

[9] A. Jain and C. Lin. Back to the future: Leveraging Belady’s
algorithm for improved cache replacement, in ISCA ’16

[10] I. Cutress. The Intel 6th Gen Skylake Review: Core
i7-6700K and i5-6600K Tested. August 2015. Available
at http://www.anandtech.com/show/9483/intel-skylake-review-
6700k-6600k-ddr4-ddr3-ipc-6th-generation/9.

[11] The AMD Zen and Ryzen Review. Available on
https://www.anandtech.com/show/11170/the-amd-zen-and-
ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700/9



[12] I. Cutress. The Intel Skylake Mobile and Desktop Launch,
with Architecture Analysis. September 2015. Available
at http://www.anandtech.com/show/9582/intel-skylake-mobile-
desktop-launch-architecture-analysis/5.

[13] B. Fields, R. Bodk, M. Hill, and C. Newburn. Using In-
teraction Costs for Microarchitectural Bottleneck Analysis, in
MICRO ’03

[14] H. Gao and C. Wilkerson. A Dueling Segmented LRU Re-
placement Algorithm with Adaptive Bypassing, in the 1st JILP
Workshop on Computer Architecture Competitions: Cache Re-
placement Championship, June 2010.

[15] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D.
Lavery, and J. Shen. Speculative precomputation: long-range
prefetching of delinquent load, in ISCA ’01

[16] J. Gaur, M. Chaudhuri and S. Subramoney. Bypass and
insertion algorithms for exclusive last-level caches, in ISCA
’11

[17] J. Gaur, R. Srinivasan, S. Subramoney, and M. Chaudhuri. Ef-
ficient management of last-level caches in graphics processors
for 3D scene rendering workloads, in MICRO ’13

[18] A. Jaleel, K. Theobald, S. Steely, Jr., and J. Emer. High
performance cache replacement using re-reference interval
prediction (RRIP), in ISCA ’10

[19] A. Jaleel, J. Nuzman, A. Moga, S. Steely, and J. Emer. High
Performing Cache Hierarchies for Server Workloads – Relax-
ing Inclusion to Capture the Latency Benefits of Exclusive
Caches, in HPCA ’15

[20] R. Balasubramonian, V. Srinivasan, S. Dwarkadas, A. Buyuk-
tosunoglu. Hot-and-Cold: Using Criticality in the Design of
Energy-Efficient Caches, in PACS ’03

[21] L. Peled, S. Mannor, U. Weiser, and Y. Etsion. Semantic
locality and context-based prefetching using reinforcement
learning, in ISCA ’15

[22] S. Khan, Y. Tian, and D. Jimenez. Sampling Dead Block
Prediction for Last-Level Caches, in MICRO ’10

[23] S. Przybylski, M. Horowitz, and J. Hennessy. Characteristics
of performance-optimal multi-level cache hierarchies, in ISCA
’89

[24] M. Qureshi and Y. Patt. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to
Partition Shared Caches, in MICRO ’06

[25] S. Shukla and M. Chaudhuri. Tiny Directory: Efficient Shared
Memory in Many-core Systems with Ultra-low-overhead Co-
herence Tracking, in HPCA ’17

[26] x86 Architecture Overview.
http://cs.lmu.edu/ ray/notes/x86overview/

[27] Arm Devloper Manual at
https://developer.arm.com/products/architecture

[28] Micron Technology Inc. Calculating Memory System
Power for DDR3. Micron Technical Note TN-41-01.
http://www.micron.com/products/support/power-calc.

[29] N. Muralimanohar, R. Balasubramonian, and N. Jouppi.
CACTI 6.0: A Tool to Model Large Caches. HP Labs Technical
Report HPL-2009-85, HP Laboratories, 2009

[30] Drilling Down Into The Xeon Skylake
Architecture.https://www.nextplatform.com/2017/08/04/drilling-
xeonskylakearchitecture/

[31] Intel Haswell CPU micro-architecture.
https://www.realworldtech.com/haswell-cpu/

[32] S. Srinath, O. Mutlu, H. Kim, and Y. Patt. 2007. Feed-
back Directed Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers, in HPCA ’07

[33] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilker-
son, S. Pugsley, and Z. Chishti. Efficiently prefetching complex
address patterns, in MICRO ’15

[34] S. Pugsley, Z. Chishti, C. Wilkerson, T. Chuang, R. Scott,
A. Jaleel, S. Lu, K. Chow, and R. Balasubramonian, Sand-
box Prefetching: Safe, Run-Time Evaluation of Aggressive
Prefetchers, in HPCA ’14

[35] F. Dahlgren , P. Stenstrm. Evaluation of Hardware-Based
Stride and Sequential Prefetching in Shared-Memory Multi-
processors, in IEEE Transactions on Parallel and Distributed
Systems, v.7 n.4, p.385-398, April 1996

[36] A. Jain, C. Lin. Linearizing irregular memory accesses for
improved correlated prefetching, in MICRO ’13

[37] S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and A.
Moshovos. Spatial Memory Streaming, in ISCA ’06

[38] Y. Ishii, M. Inaba, and K. Hiraki. Access map pattern match-
ing for data cache prefetch, in ICS ’09

[39] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson,
and Z. Chishti. Path confidence based lookahead prefetching,
in MICRO ’16

[40] X. Yu, C. Hughes, N. Satish, and S. Devadas. IMP: indirect
memory prefetcher, in MICRO ’15

[41] J. Fu, J. Patel, and B. Janssens. Stride directed prefetching in
scalar processors, in MICRO ’92

[42] P. Emma, A. Hartstein, T. Puzak, and V. Srinivasan, Exploring
the limits of prefetching, IBM J. R&D, vol. 49, no. 1, pp. 127-
144, January 2005

[43] A. Kahng, B. Li, L-S. Peh, and K. Samadi. ORION 2.0: a
fast and accurate NoC power and area model for early-stage
design space exploration, in DATE ’09

[44] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar.
A 5-GHz Mesh Interconnect for a Teraflops Processor, IEEE
Micro, v.27 n.5, p.51-61, September 2007

[45] S. Shukla and M. Chaudhuri.Sharing-aware Efficient Private
Caching in Many-core Server Processors, in ICCD ’17

[46] O. Mutlu, J. Stark, C. Wilkerson, and Y. Patt. Runahead
Execution: An Alternative to Very Large Instruction Windows
for Out-of-Order Processors, in HPCA ’03

[47] V. Srinivasan, E. Davidson, G. Tyson, M. Charney, and
T. Puzak. Branch History Guided Instruction Prefetching, in
HPCA ’01

[48] Y. Zhang, S. Haga, and R. Barua. Execution history guided
instruction prefetching, in ICS ’02

[49] G. Reinman, B. Calder, T. Austin. Fetch directed instruction
prefetching, in MICRO ’99

[50] C. Kaynak, B. Grot, and B. Falsafi. Confluence: Unified
Instruction Supply for Scale-Out Servers, in MICRO ’15

[51] R. Kumar, C-C. Huang, B. Grot, V. Nagarajan. Boomerang:
A Metadata-Free Architecture for Control Flow Delivery, in
HPCA ’17.


