GRUPD : A Scalable Update Mechanism for Distributed Hash-table Based

Indexes in Computation Grid

Siddharth Rai!

Department of Computer Science and Engineering
Indian Inststiture of Technology Kanpur
Kanpur, India
sidrai @cse.iitk.ac.in

Abstract—Aggregated computing platforms, such as,
computation-grid require dynamic discovery of re-
sources satisfying a given query criteria accurately and
efficiently. To simplify the task, these systems gener-
ally employ a Distributed Hash Table (DHT) index
storing up-to-date attribute values of currently active
resources. Nonetheless, frequent changes in attributes,
like, current CPU load, available main memory, job
queue length, and available network bandwidth require
regular updates to DHT index and thus make efficient
resource discovery a challenging task. If the resource
attributes are not updated timely, already indexed
values become stale and negatively influence scheduling
decisions. On the other hand, updating attribute values
regularly results in huge amount of network traffic and
thus hamper the quality of query responses.

To overcome these two challenges, in this paper,
we present a novel mechanism to update the attribute
values in a DHT index. Our proposal, named, gradual
update (GRUPD), dynamically identifies computation
nodes generating frequent updates. Unlike conven-
tional update mechanism, in our proposal, these nodes
send an update only if it is needed for an up-to-date
scheduling decision. At the time of job scheduling,
job scheduler approximates the current attribute value
using an analytical model. If approximate and indexed
values make different scheduling decision, the node is
explicitly asked for an update otherwise node doesn’t
update the indexed value. Simulation based study
shows that, on average our proposal is able to reduce
the query response time by 11X and improve the
throughput by 36X.

Keywords-Grid-computing;
DHT; distributed hash-table;
CHORD

computational-grid;
resource discovery,

I. INTRODUCTION

The fundamental idea of grid computing is to ag-
gregate computing resources and make them acces-
sible universally through standard interfaces [15].

[1] This work was done under the supervision of Prof. Diganta
Goswami while the author was a masters student at Indian
Institute of Technology Guwahati, India

A grid information service plays a central role to
achieve this goal. It keeps track of current resource
attribute values (i.e., current CPU load, available
memory capacity, current network bandwidth etc.)
in a distributed data structure (i.e., distributed hash
table) and exposes a simple interface to dynamically
locate the resources satisfying a given query crite-
ria. Nonetheless, massive scale of these computing
platforms make the task of accurately tracking and
efficiently locating these resources very challenging.
If attribute values are frequently updated, it generates
a huge amount of traffic and delays query responses.
Where as, if attribute values are not updated timely,
it effects quality of a query response and negatively
influence scheduling decisions.

DHT INDEX

4==)| BROKER ¢ms

-0

0-0-0-0-0

RESOURCES

Fig. 1. Building Blocks of a Typical Computation Grid

Figure 1 shows a detailed diagram of one such
system studied in this work. The system is made of
four components, namely, a DHT index (also known
as grid information service), computing resources,
administrator (referred as admin node and helps in

organizing the nodes in the system), and broker (acts
as a job scheduler for grid users). The participating
nodes dynamically arrange themselves in the system
with the help of the admin node. Nodes part of
the DHT index are responsible for tracking resource
attribute values as a key:value pair. To access the
index, these nodes provide a SQL like interface sup-
porting addition and deletion operations. On the other
hand, the nodes acting as a computation resources are
dedicated for executing jobs submitted to the system.
Whether a newly joined node will be a part of the
DHT index or act as computation resource is dynam-
ically decided by the admin node. Finally, the broker
makes the system accessible to the outside world
through a job submission interface. It accepts jobs
from grid users and periodically schedules them to
appropriate resources to maximize system utilization
while meeting the job requirements.

Whenever a new node wants to join the system,
it sends a join message to the admin node. Admin
node assigns a role (either a DHT node or a com-
putation resource) and sends back all the necessary
information required for joining. A node serving as
a DHT node can execute local job along with acting
as DHT node. Whereas, a computation resource
exclusively executes local or remote computation job.
To remotely submit a job, grid user sends the job
specification to the broker. Broker’s responsibility is
to find and schedule the job at an appropriate comput-
ing resource. To this end, broker periodically queries
the DHT index and keeps tracks of nodes available
for scheduling. As soon as enough resources become
available, broker generates a schedule as per a pre-
configured scheduling policy and sends the jobs to
the nodes for execution. Submission and completion
of jobs at a node might alter current state of resource
attribute values. If the attribute value changes on job
submission or completion, the new value is updated
in the DHT index. In this way, DHT index is kept
up-to-date of current system state. However, our
experiment shows that as number of nodes in the
system increases, update traffic starts interfering with
the other requests (i.e., resource query by the broker)
and delays their responses. Eventually, delayed query
response starts effecting system utilization.

Figure 2 shows change in query time and number
of scheduled jobs as system is scaled from 16 to 256
nodes. In each of these configurations, nodes joining
the system remain active throughout the simulation.
Out of all joined nodes, first six nodes (in temporal
ordering) are given the responsibility of a DTH
node and the remaining nodes act as a computation

417.79
271.77

368.96 350
200 177.87 300

250
150 25301 240.43

200

Query time in cycles

155.88 200.00
100 150

100
54.35
29.67

16 32 64 128 256
Node count

Query time Scheduled jobs

Fig. 2. Variation in query time and scheduled job count with
increase in node count

resource. Broker receives remote jobs drawn from the
LCG trace, whereas, computation resources execute
local jobs drawn from DAS?2 trace provided with The
Grid Workload Archive (GWA) [23].

Broker’s scheduling queue has 512 entries. In each
iteration, broker schedules 48 jobs in FIFO order
from this queue. To find resources to schedule these
jobs, broker sends a query (i.e., cpu — load >=
0.0 and cpu — load <= .50) to the DTH index
and waits for the query response to come back. The
time it takes for the query response to arrive depends
on current load in the system. Since, increase in
number of nodes require processing more queries
and updates at each DHT node, load on DHT index
increases as more and more nodes are added in the
system and thus effects query response time. As
figure 2 shows, query time increases gradually from
30 cycles to 272 cycles as node count increases
from 16 to 256. Once, broker accumulates enough
computation resources, pending jobs are sent to them
for execution. For a given simulation time, count of
scheduled jobs depend on both query time as well
as number of available resources. If query response
takes longer, resource are scheduled less often. How-
ever, by scheduling more resources in each iteration,
more jobs can be scheduled in the system, thus
balancing the loss due to delayed responses. This
trend can be seen in the figure 2, as node count
changes from 16 to 32, job count improves despite
the fact that query time increases from 30 cycles
to 54 cycles. However, beyond 32 nodes, job count
keeps degrading as node count increases. Eventually,
with 256 node system, job count reduces by 84%
compared to what is achieved with a 16 node system.
These results indicate that system designed to update
resources frequently may not always scale as node
count is increased.

In this paper, we propose a novel update mech-

E]
-

&

anism for the DHT index. Our proposal identifies
nodes frequently generating update values using
query responses seen by the broker. For such nodes,
our proposal uses an analytical model to approximate
their current attribute values. If scheduling decisions
due to indexed and approximate values are not the
same, resources are asked to generate an update.

Rest of the paper is organized as follows. Sec-
tion II presents various grid information system mod-
els proposed in the literature and reviews some of
the previous works that tackle scalable resource dis-
covery problem. A motivational study demonstrating
potential of controlling update traffic in improving
query latency and job scheduling performance is
presented in section III. In section IV, we present
our proposal Gradual Update Mechanism. Finally,
evaluation and conclusion is presented in section VI
and VII respectively.

II. BACKGROUND AND RELATED WORK

Over the years, grid research community have ex-
plored various design alternatives for grid infor-
mation service architecture. These alternatives were
motivated by diverse design and sharing requirements
of these systems and spanned from centalized to
P2P approaches. Centralized model was a popular
design choice in the beginning, since, it suited small
scale organizations collaborating for a scientific prob-
lem [25]. However, as these systems were scaled to
much diverse set of sharing patterns, limited scalabil-
ity of centralized system became apparent and thus
focus was shifted to hierarchical models [5], [16],
[17]. Eventually, P2P approaches were adopted to
support flexible resource management, higher scala-
bility, and improved fault tolerance [1], [2], [4], [10]-
[12], [21], [22].

A. Hierarchical Models

Hierarchical models were suitable for the systems
confined to small research community solving large
scale problems in a collaborative environment. These
systems manage local resources at Virtual Organiza-
tion (VO) level [5], [16], [17]. Various such VOs
connect in a hierarchical fashion to enable collab-
oration among VOs at different levels. Although,
these systems provide better throughput and response
time than centralized systems, yet, they scale only if
the data they serve can be cached long enough to
enjoy more hits [24], [26]. Since, dynamic resource
attribute values can’t be cached for a long time, these
systems are limited in terms of desired scalability and
response time for such dynamic environments.

B. Peer to Peer Models

P2P models address the scalability and dynamism
problems faced by the centralized and hierarchical
designs. These systems treat all participating nodes
equally and arrange them in an overlay network
(a higher level grouping of nodes). In an overlay
network, participating nodes may or may not have
any semantic information about the other peers. If
nodes have no semantic information about the neigh-
bours except their liveness state, the overlay is called
unstructured P2P overlay. On the other hand, if nodes
connect in a well defined structure (i.e., key space
managed by a neighbouring node is known), they
form a structured P2P overlay. Both structured and
unstructured P2P systems support higher scalability
and flexibility in joining and leaving the system,
however, they differ in terms of guarantee given for
query lookup time and employ different protocols to
locate and distribute the information among partici-
pants.

1) Structured P2P Systems: Structured P2P sys-
tems use a DHT index for storing keys [4], [12],
[22]. Nodes and attribute values are mapped using
the same hash function onto a key space. A fixed
structure, such as a ring, is used to organize nodes
based on their node id. Most structured P2P systems
support exact match queries in O(log N) and range
queries in O(N) hops (where, N is the size of the
key space). Chord [22] is an earliest example of
one such structured P2P system. Nodes in Chord
are organized in an one-dimensional circle according
to an m-bit hash value of their node-id. Each node
in Chord stores the index of all keys which fall in
the range between the node and its predecessor’s
key. Looking up a key takes O(log N) hops and
messages. The arrival or departure of a node effects
at most log(N) other nodes of the index. When a
new node joins the index, it takes responsibility of
certain keys previously assigned to its successor.
Whenever a node leaves the index, its successor
takes the responsibility of all its keys. In short, with
high probability, Chord ensures that each node is
responsible for approximately equal number of keys
and thus achieves load balancing across index nodes.

2) Unstructured P2P Systems: Unlike structured
P2P system (described in subsection II-B1), an un-
structured P2P systems loosely connect nodes (node
can join at nay location) to form an overlay net-
work [1], [2], [10], [11]. Gnutella and KaZaA are
considered two of the most popular unstructured
systems. Due to the lack of an underlying struc-
ture in those systems, prevailing resource location

method is flooding. A node looking for any content,
broadcasts a query into the network. All matching
query responses are sent back to the originating node
following the reverse path. Clearly, flooding is not
scalable as it creates a large volume of unnecessary
traffic in the network. To tackle this problem, each
message is tagged with a Time-To-Live (TTL) field.
The TTL indicates the number of hops a query can
propagate. However, with this approach a query may
fail to locate resource even though they are present
in the system. An alternative approach to limit the
amount of traffic produced due to flooding is to use
dynamic query approach. In dynamic query, node
initially sends a query to a subset of neighbours
with a small TTL. If this attempt does not produce
a sufficient number of results, node broadcasts the
query again to a different set of neighbours with
increased TTL. This process is repeated until a
satisfactory amount of results is received, or all the
neighbours are exhausted.

In summary, unstructured P2P systems are more
flexible in terms of organization, but, require flood-
ing of message to find and update current resource
attribute values. Where as, structured P2P system are
more rigid in their organization, but, provide guaran-
teed query lookup and update time. In the rest of this
section, we review some of the previously proposed
resource discovery algorithms for both structured and
unstructured P2P systems and qualitatively compare
their approaches put our contribution in perspective.

Grid information service proposals using struc-
tured P2P model take advantage of scalable query
routing supported by DHT indexes. Moreover, to
enable multi-attribute range queries, they make use of
multiple indices (i.e., using CAN [12] and Chord [22]
together) and track different attributes and their sub-
range in separate indices. When a multi-attribute
query arrives, all indexes are looked up in parallel
and responses are generated by intersecting their
results. In [3] Andrzejak et al. proposed an extension
of DHT based CAN system. Nodes are organized
on the basis of attribute type in either a DHT or
in an extended-CAN. If an attribute has limited
value, a DHT is used, otherwise an extended-CAN
is used. This architecture allowed supporting range
queries while leveraging benefits of DHT index. In
[4], Cai et al. addressed the problem of supporting
multi-attribute range queries using a DHT alone.
They proposed an extension of Chord [22] protocol.
Multiple Chord rings are used and attributes are
mapped on the ring using a locality preserving hash
function. Queries are resolved in parallel on all

the rings and results are intersected at the origi-
nator. Similar to [4], Spence et al. [6] proposed
an extension of Pastry [14] indexing and routing
scheme to resolve multi-attribute queries. To deal
with dynamic attribute values, clients contact to the
resources obtained to confirm their values. In a
subsequent proposal, Schmidt et al. [11] presented a
single DHT based approach to resolve multi-attribute
query. Space-filling curves were used to map all
possible dimensions to the single dimension. These
transformed values are then stored in a DHT index
for fast retrieval. Ratnasamy et al. [13] proposed a
trie based approach to extend DHT with range search
operation. Each node in trie is assigned a value range,
all nodes with value in this range index value there.
Each trie node is given an id corresponding to the
range which are mapped to a DHT for search.

Compared to structured P2P systems, unstructured
P2P systems offer a better alternative in the presence
of high churn. However, due to absence of any under-
lying structure among nodes, these systems require
more sophisticated search and update mechanism
than simple lookup operation. lamnitchi et al. [1]
investigated set of request forwarding strategies for
a fully decentralized unstructured P2P based grid
resource discovery system. They observed that such
an architecture is a good choice, if resource can be
located in limited number of hops (specifically, 20
hops, considering 20ms end-to-end latency). More-
over, evaluation of different routing strategies have
shown a satisfactory performance for a general dis-
tribution of resources. Another unstructured model
presented in [2] proposed a two layer architecture,
where the lower layer is a hierarchy of index services
that publishes per-node information, and the upper
layer is a P2P network to collect and distribute this
information across upper layer nodes. An extension
of Gnutella protocol is adopted to exchange discov-
ery messages between nodes of the upper layer. Ex-
periments have shown that with appropriate message
buffering and merging this approach can significantly
improve the search performance. To address message
flooding problem in unstructured P2P systems, Pup-
pin et al. [21] proposed a hop count based routing
indices (RI). Whenever a new set of nodes join the
system, their resource information is populated to
their neighbours and Rls are updated. Although, Rls
help improving search complexity, keeping them up-
to-date generate huge amount of traffic and imposes
another challenge in such design. To enable scalable
routing and attribute update, Marzolla et al. [10] pro-
posed a novel tree vector organization of nodes and

bit-indices based routing mechanism. Their proposal
takes advantage of low-diameter tree network and
sparse routing indices to efficiently route resource
discovery messages. Empirical studies show that
query radius grows as O(log(V)), while incurring
constant number of updates. However, query still
spans as O(N). Moreover, for bit-indices may not
be able to adapt with resource diversity.

III. MOTIVATION

In this section, we motivate our proposal by showing
that delaying updates indeed reduces the amount of
contention in the DHT index. However, at the same
time, delaying update values increases the job to
node mismatch due to stale attribute values present
in the index. This mismatch causes more jobs to wait
at the node before start of their execution and thus
negatively influences system utilization.

0 13,055.37 14000

12000
16 17.26

1 10000

8,429.79
9,100.35

8,522.48 8000

£
> s 6000
3 7.82
& 327680 6.10 4000
4
2 335 e 2000
0 0
16 32 64 128 256
Node count
Query time Scheduled jobs
Fig. 3. Variation in query time and scheduled job count with

increase in node count when updates are not sent to DHT index

Figure 3 shows the number of scheduled jobs and
resultant query latency when attribute updates are
delayed. As can be seen in the figure, reduction in
update traffic improves the query latency by more
than 15X; resulting in 45X improvement in sched-
uled job count.

However, when update messages are delayed,
scheduling decisions are made out of stale attribute
values. As a result, jobs may not be scheduled on
the most adequate resources. Figure 4 shows the
number of jobs that had to wait at the node before
commencing their execution. As the figure shows,
with reduction in update traffic, jobs waiting for
resource to become available starts increasing. This
delay degrades overall system utilization compared
to when jobs are distributed across all available
resources.

These results indicate that to be effectively, up-
dates should be controlled such that scheduling de-
cisions are not negatively effected.

Scheduled job count

Il
wn

N

1.57

Delayed jobs
o oy
wn [S wn

o

16 32 64 128
Node count

256 GEOMEAN

STD UPDATE PERIODIC-UPDATE

Fig. 4. Count of waiting jobs when updates are delayed

One way to achieve this goal would be to provide
the scheduler access of the attribute values required
to make an optimal scheduling decision. While, the
updates that may not effect the scheduling decision
can be delayed to reduce the update traffic. These two
objectives form the basis of our proposal presented
in section IV.

IV. GRADUAL UPDATE MECHANISM

In this section we present our proposed gradual
update mechanism for updating a DHT index.
Our proposal identifies a set of nodes updating
their attribute values frequently. These nodes are
explicitly asked to send the update only when the
update can alter current scheduling decision. There
are three components in our design. 1) A mechanism
to identify nodes generating large number of updates
2) An analytical model to approximate resource
attribute values to decide if the indexed value needs
to be updated 3) Mechanism to request an update
from the resource. In the rest of the section we will
present each of these component in more detail.

Identifying Nodes Generating Frequent Updates:
The DHT index in our system is updated by the
participating nodes in a P2P fashion as a result
nodes can not determine whether or not a new
update will influence the scheduling decision. To
overcome this shortcoming our proposal track the
last seen attribute values for each node at the broker.
We take advantage of the fact that the broker queries
the index before making a scheduling decision.
We track the current attribute values in an update
tracking table shown in table I.

For each type of attribute for a node, we track
four pieces of information: ID, RANGE, LAST
VALUE, and GRUPD. Where the ID stores per-node
resource id, RANGE is a sub-range of attribute
values seen so far, VALUE is the last seen attribute

value, and the GRUPD is a flag that is set if update
is to be explicitly asked. Out of these, RANGE
and LAST VALUE together determine the changes
happening to an attribute value. RANGE is update
on receiving a query response as follows. If attribute
value obtained in the query is not the same as the
LAST VALUE, the range is increased to include
the new value. On the other hand, if the value is
same as that of the LAST VALUE, the range is
halved such that the new value still remains with
in the range. Periodically the value if RANGE field
is checked and if it contains more than one value,
GRUPD bit is set to 1 and resource is notified for
on-demand update.

Approximating Attribute Values: The GRUPD bit
only identifies the nodes that frequently generate an
update. However, to be able to reduce the count of
updates from these nodes, we approximate attribute
values using a queuing model. As a result we
eliminate the need for and update if approximate
value can be used to make scheduling decision.
As soon as it is identified that the approximate
and indexed value may lead to different scheduling
decisions, approximation for the resource is
terminated.

Pending Jobs = JOB RATEX LATENCY (1)

PENDING JOBS
pu— 2
Current Value BANDWIDTH 2)

Equation 1 and 2 show the model used to obtain the
approximate values. The model depends on three
input parameters. First, the job arrival rate for a
resource, second, average job completion time, and
finally, the node bandwidth. Broker keeps track of
the rate at which jobs are scheduled at a node and
the average time to complete a job. Node bandwidth
is a static parameter and known in advance. These
parameters are substituted in equation 1 and 2 and
approximate values are obtained.

Requesting Attribute Update: Figure 5 presents the
algorithm for requesting explicit attribute updates.
As shown in the figure, for a resource if GRUPD

TABLE I
UPDATE TRACKING TABLE

ID | RANGE | LAST VALUE | GRUPD
1 | (Al, BI) Al 1
2 | (A2, B2) B2 0

flag is found to be set and as per approximate
attribute value job should not be scheduled on that
resource, update is requested and resource is purged
from the update tracking table.

(JOB, RIEJ'SOURCE)

JOB NOT
SCHEDULED

GRUPD is TRUE

DO
NOTHING

NO
SCHEDULE THE JOB ‘ | ASK NODE TO UPDATE THE INDEX |

]

| PURGE ENTRY FROM RESOURCE TABLE |

Fig. 5. Algorithm to request update of current resource value

V. SIMULATION ENVIRONMENT

We evaluated our design using an in-house java
based discrete-event simulator. Our simulator models
a computation grid system similar to the one shown
in figure 1. We use SimJava [9] discrete event simu-
lation library for scheduling and processing events
while the grid resources are modelled using the
GridSim [8] grid simulation library. Each node in our
system can be dynamically configured to act either
as a computation or a DHT index node. There are
two special nodes in our system. The first node is
the admin node which helps in organizing the rest
of the nodes of the system. The second node is the
broker node whose job is to schedule remote jobs
on an appropriate compute resource. Each of these
nodes run a stub routine to carry out the task it is
configured to execute. For example, a node acting as
a DHT index node executes a stub routine to index an
attribute value and to perform a query over the DHT
index. When a new event is received, corresponding
stub routine is invoked to process the event and if
required, a new response event is sent back to the
requester. In this way, all participating nodes interact
with each other to accomplish their tasks.

Each node in our system has four quad-core CPUs,
4 GB RAM, and a 1 Gbps network link. All nodes
execute job traces drawn from the Grid Workload
Archive [23] for both local and remote jobs. Table V
provide a detailed system configuration and the list
of workloads used for the evaluation. Local jobs at a
node are executed as and when they arrive. Where as
the remote jobs are submitted by the grid users and
are scheduled on the resources by the broker. Broker

TABLE II
SYSTEM CONFIGURATION

System configuration
Resource
Configuration
No of sites 16-256
CPU per site 4
CPU cores 4
Resource type uniform
Attributes
CPU speed 4GHz
Network bandwidth 1 Gbps
Dynamic attribute load
Workload
Remote jobs LCG [23]
Local jobs DAS-2 [23]
Simulation time Until the completion of trace
Scheduling algorithm | Best-Fit with 512 entry job queue

tracks all ready to schedule jobs in a 512 entry job
queue. As soon as pending job count exceeds 48 or
a scheduling period expires, broker queries the DHT
index to find the currently available resources and
schedules the jobs on to the best matching resource.

VI. EVALUATION

In this section we present the evaluation of our
proposed solution in terms of achieved throughput,
resultant query latency and the count of jobs wait-
ing before commencing their execution. We have
compared our results with two existing proposals.
The first proposal is our baseline (labelled as STD
UPDATE in figures), where the updates are generated
with change in attribute values. Where as, the second
solution (labelled as PERIODIC UPDATE in figures)
sends an update periodically and thus reduces the
number of updates in the system. Our proposal is
labelled as GRUPD in figures.

14000 1310
12000
10000
S 8000 771
o
8
§ 6000
4000 3,505 3,598
1,845
2000 922
30 54 126 178 272 100
0
16 32 64 128 256 GEOMEAN
Node count
STD UPDATE GRUPD
Fig. 6. Improvement in job count as nodes are scaled from 16

to 256

Figure 6 shows the improvement in scheduled
job count for both the baseline and GRUPD. Since,

in the baseline, an attribute value is updated as
and when it changes; it results in huge amount of
update traffic. The x-axis and y-axis in figures show
the node count and the number of jobs scheduled
corresponding to each node count for each of the
proposals. As the figure shows, GRUPD is able
to improve the scheduled job count by 36X, on
average. Moreover, as the number of nodes in the
system is increased, scheduled jobs are able to scale
proportionally achieving 48X improvement for a 256
node system.

300 271.77

200 177.87

125.88
99.62

Query time
=
w
o

54.35

50 29.67 s17s
3.86 5.98 10.07 8.89 8.52
0
16 32 64 128 256 GEOMEAN

Node count

STD UPDATE GRUPD

Fig. 7. Improvement in query time compared to standard update
mechanism

One of the primary reason for our proposal to
achieve a better scalability with increase in node
count is the reduction in query response time. Fig-
ure 7 shows the query time as node count is scaled
from 16 to 256 for the baseline and our proposal.
On average, we are able to improve query time by
11X with the maximum improvement of 20X for a
128 node system. It is interesting to note here that a
256 node system achieves about 12X improvement,
which is approximately half of what is achieved by
a 128 node system. Nevertheless, a 256 node system

25
2 5
w g -
Qo —
15
kel
% 1
K]
o
0.5
0
16 32 64 128 256 GEOMEAN
Node count
STD UPDATE GRUPD PERIODIC-UPDATE
Fig. 8. Change is waiting jobs at the scheduled node as nodes

are scaled from 16 to 256

is able to achieve much better scalability. This result

reinforces the observation made in section I that
reducing query response time is necessary along with
increase in node count for a scalable DHT index.

However, as we have shown in section III, another
important factor effecting overall system utilization
is the reduction in job to node mismatch. Figure 8
shows the increase in waiting jobs as number of
nodes are scaled up to 256. As the figure shows,
on average, we are able to reduce such jobs by 8%
compared to a system where attributes are updated
as per PERIODIC-UPDATE policy. However, this
improvement is much lower than what we expected
and we are investigating this further in our future
work.

VII. CONCLUSION

In this paper, we have presented a novel update
mechanism for DHT based indexes. Our proposal
dynamically identifies the nodes generating bulk of
update values. These nodes are informed to update
the attributes only if the update can influence the
scheduling decision. As a result, we are able to
significantly reduce the amount of update traffic. On
systems with 16 to 256 compute nodes, on average,
we are able to improve the system utilization and
query response time by 36X and 11X, respectively.
Moreover, compared to a setup with periodic attribute
updates, we are able to reduce the average waiting
job count by 8%.

REFERENCES

[1] A.lamnitchi, I.T.Foster, A Peer-to-Peer approach to resource
location in Grid environments, J.Weglarz, J.Nabrzyski,
J.Schopf, M.Stroinski (Eds.) Grid Resource Manage-
ment,Kluwer,2003.

[2] D.Talia, P.Trunfio, Towards a synergy between P2P and
Grids,IEEE Internet Computing 7(4),2003 ,pp. 94-96

[3] A.Andrzejak, Z.Xu., Scalable efficient range queries for Grid
information services, in Proc.2nd international Conference
on Peer-to-Peer Computing,P2P 2002, pp.33-40.

[4] M.Cai, M.Frank, J.Chen, P.Szekely, MANN:A multi-
attribute addressable network for Grid information services,
in:Proc. 4th Int. Workshop on Grid Computing, GRID 2003,
pp-184-191.

[5] C.Mastroianni, D.Talia, O.Verta, A super-peer model for
resource discovery services in large scale Grids, Future
Generation Computer systems21(2005), pp.1235-1248.

[6] D.Spence, T.Harris, XenoSearch:Distribued resource dis-
covery in XenoServer open platform. in: Proc.Twelfth
IEEE Int. Symposium on High Performance Distributed
Computing. HPDC-12, 2003, pp.216-225.

[71 A.R. Bharambe, M.Agrawal, S.Seshan, Mercury:Supporting
scalable multiattribute range request,in: Proc ACM SIG-
COMM 2004 conf. on Applications.Technologies, Archi-
tectures and Protocols for Computer communications, 2004
pp-353-366.

[8] Buyya, R., Murshed, M.M. (2002). GridSim: A Toolkit for
the Modeling and Simulation of Distributed Resource Man-
agement and Scheduling for Grid Computing. Concurrency
and Computation: Practice and Experience, 14, 1175-1220.

[9] Fread Howell, R. McNab, Simjava: A Discrete Event Sim-
ulation Library For Java. (1998).

[10] M.Marzolla, M.Mordacchini, S.Orlando, Peer-to-Peer Sys-
tems for discovering resources in a dynamic grid, Parallel
Computing 33(2007) 339-358.

[11] C.Schimidt, M.PArashar, Flexible information discovery in
decentralized distributed systems,in:Proc 12th Int. Symp.on
High-Performance Distributed computin, HPDC-12 2003,pp.
226-235.

[12] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. 2001. A scalable content-
addressable network. In Proceedings of the 2001 conference
on Applications, technologies, architectures, and protocols
for computer communications (SIGCOMM °01). ACM, New
York, NY, USA, 161-172.

[13] S.Ratnasamy, J.M. Hellerstein, S.Shenker, Range queries
over DHTs IRB-TR-03-009,Inel Corporation,2003.

[14] Rowstron A., Druschel P. (2001) Pastry: Scalable, Decen-
tralized Object Location, and Routing for Large-Scale Peer-
to-Peer Systems. In: Guerraoui R. (eds) Middleware 2001.
Middleware 2001. Lecture Notes in Computer Science, vol
2218. Springer, Berlin, Heidelberg.

[15] Ian Foster, Carl Kesselman, Steve Tuecke, The Anatomy of
the Grid, Intel journal of supercomputing applications,2001

[16] Hélene N. Lim Choi Keung, Justin R. D. Dyson, Stephen
A. Jarvis, and Graham R. Nudd. 2003. Predicting the Perfor-
mance of Globus Monitoring and Discovery Service (MDS-
2) Queries. In Proceedings of the 4th International Workshop
on Grid Computing (GRID ’03). IEEE Computer Society,
Washington, DC, USA, 176-.

[17] K. Czajkowski, S. Fitzgerald, 1. Foster and C. Kesselman,
”Grid information services for distributed resource sharing,”
Proceedings 10th IEEE International Symposium on High
Performance Distributed Computing, San Francisco, CA,
USA, 2001, pp. 181-194. doi: 10.1109/HPDC.2001.945188

[18] Warren smith, Abdul waheed, Davis Meyers, Jerry yen An
evaluation of alternative design of grid information service,
IEEE Internet computing 2003

[19] Rajkumar buyaa, Mazoor mursheed, GridSim:toolkit for
modeling and simulation of distributed resource manage-
ment and scheduling for grid computing, concurrency co-
mutat:pract. Exper. 2002, pp.1175-1220

[20] P.Trunfio, D.Talia,H.Papadakis, P.Fragopolulou,
M.Pennanen, K.Popov, V.Vlassov, S.Haridi, Peer-to-
Peer resource discovery in Grids:Models and systems,
Future generation computer systems 23(2007), pp.864-878

[21] D.Puppin, S.Moncelli, R.Baraglia, N.Tonelotto, E.silvestri,
A Grid information service based on Peer-to-Peer, in
Proc. 11th Euro-Par conf.EuroPar 2005 in:LNCS vol.3684
Springer, 2005, pp.454-464.

[22] IL.Stoica, R.Morris, D.R. Arger, M.Frans Kaashock, H. Bal-
akrishnan, Chord:A scalable Peer-to-Peer lookup service for
internet applications,in Proc:ACM SIGCOMM 2001 Conf
on Applications, Technologies,Architecture,and Protocols
for Computer Communication, 2001, pp.149-160

[23] Alexandru losup, Hui Li, Mathieu Jan, Shanny Anoep,
Catalin Dumitrescu, Lex Wolters, Dick H.J. Epema, The
Grid Workloads Archive, Future Generation Computer Sys-
tems, Volume 24, Issue 7, 2008, Pages 672-686, ISSN 0167-
739X, https://doi.org/10.1016/j.future.2008.02.003.

[24] Zoltan Balaton, Gdbor Gombas, Zsolt Németh, 2002, A
Novel Architecture for Grid Information Systems, In Pro-
ceedings of the 2nd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGRID ’02). IEEE
Computer Society, Washington, DC, USA

[25] Litzkow M., M. Livny, and M. Mutka, “Condor - A
Hunter of Idle Workstations”. In Proceedings of the 8th
International Conference of Distributed Computing Systems,
pages 104-111, June 1988.

[26] Xuechai Zhang, J. L. Freschl and J. M. Schopf, A per-
formance study of monitoring and information services for
distributed systems,” High Performance Distributed Com-
puting, 2003. Proceedings. 12th IEEE International Sym-
posium on, Seattle, WA, USA, 2003, pp. 270-281. doi:
10.1109/HPDC.2003.1210036

