
1

Using Criticality of GPU Accesses in Memory Management
for CPU-GPU Heterogeneous Multi-core Processors

SIDDHARTH RAI, Indian Institute of Technology Kanpur

MAINAK CHAUDHURI, Indian Institute of Technology Kanpur

Heterogeneous chip-multiprocessors with CPU and GPU integrated on the same die allow sharing
of critical memory system resources among the CPU and GPU applications. Such architectures give
rise to challenging resource scheduling problems. In this paper, we explore memory access scheduling
algorithms driven by criticality of GPU accesses in such systems. Different GPU access streams
originate from different parts of the GPU rendering pipeline, which behaves very differently from the
typical CPU pipeline requiring new techniques for GPU access criticality estimation. We propose a
novel queuing network model to estimate the performance-criticality of the GPU access streams. If
a GPU application performs below the quality of service requirement (e.g., frame rate in 3D scene
rendering), the memory access scheduler uses the estimated criticality information to accelerate
the critical GPU accesses. Detailed simulations done on a heterogeneous chip-multiprocessor model
with one GPU and four CPU cores running heterogeneous mixes of DirectX, OpenGL, and CPU
applications show that our proposal improves the GPU performance by 15% on average without
degrading the CPU performance much. Extensions proposed for the mixes containing GPGPU
applications, which do not have any quality of service requirement, improve the performance by 7%
on average for these mixes.

CCS Concepts: � Computer systems organization � Heterogeneous (hybrid) systems;

Additional Key Words and Phrases: CPU-GPU heterogeneous multi-core, GPU access criticality,

DRAM access scheduling, 3D rendering, GPGPU

ACM Reference format:

Siddharth Rai and Mainak Chaudhuri. 2017. Using Criticality of GPU Accesses in Memory Man-
agement for CPU-GPU Heterogeneous Multi-core Processors. ACM Trans. Embedd. Comput. Syst.
16, 6, Article 1 (October 2017), 24 pages.

https://doi.org/0000001.0000001

This article was presented in the International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems (CASES) 2017 and appears as part of the ESWEEK-TECS special issue.
Authors’ addresses: S. Rai and M. Chaudhuri, Department of Computer Science and Engineering, Indian

Institute of Technology Kanpur, Uttar Pradesh 208016, India.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights for components of this work

owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

1539-9087/2017/10-ART1 $15.00
https://doi.org/0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 S. Rai and M. Chaudhuri

1 INTRODUCTION

A heterogeneous chip-multiprocessor (CMP) makes simultaneous use of both CPU and GPU
cores. Such architectures include AMD’s accelerated processing unit (APU) family [3, 26, 65]
and Intel’s Sandy Bridge, Ivy Bridge, Haswell, Broadwell, and Skylake processors [8, 14, 24, 25,
48, 66]. In this study, we explore heterogeneous CMPs that allow the CPU cores and the GPU
to share the on-die interconnect, the last-level cache (LLC), the memory controllers, and the
DRAM banks, as found in the Intel’s product line of integrated GPUs. The GPU workloads
are of two types: massively parallel computation exercising only the shader cores (GPGPU or
GPU computing) and multi-frame 3D animation utilizing the entire rendering pipeline of the
GPU. Each of these two types of GPU workloads can be co-executed with general-purpose
CPU workloads in a heterogeneous CMP. These heterogeneous computational scenarios
are seen in embedded, desktop, workstation, and high-end computing platforms employing
CPU-GPU MPSoCs. In this paper, we model such heterogeneous computational scenarios by
simultaneously scheduling SPEC CPU workloads on the CPU cores and 3D scene rendering
or GPGPU applications on the GPU of a heterogeneous CMP. In these computational
scenarios, the working sets of the jobs co-scheduled on the CPU and the GPU cores contend
for the shared LLC capacity and the DRAM bandwidth causing destructive interference.

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

1C1G 2C1G 4C1G

41
0,
45
0,
46
2,
48
2

42
9,
43
7,
46
2,
47
3

43
7,
45
0

42
9,
46
2

41
0.
bw
av
es

42
9.
m
cf

43
7.
le
sl
ie
3d

45
0.
so
pl
ex

46
2.
lib
qu
an
tu
m

47
3.
as
ta
r

48
2.
sp
hi
nx
3

GPU workload = Parboil LBM (OpenCL) CPU GPU

Fig. 1. Performance of heterogeneous mixes relative to standalone performance on Core i7-4770.

To understand the extent of the CPU-GPU interference, we conduct a set of experiments
on an Intel Core i7-4770 processor (Haswell)-based platform. This heterogeneous processor
has four CPU cores and an integrated HD 4600 GPU sharing an 8 MB LLC and a dual-
channel DDR3-1600 16 GB DRAM (25.6 GB/s peak DRAM bandwidth) [17]. We prepare
eleven heterogeneous mixes for these experiments. Every mix has LBM from the Parboil
OpenCL suite [58] as the GPU workload using the long input (3000 time-steps). LBM serves
as a representative for memory-intensive GPU workloads.1 Seven out of the eleven mixes
exercise one CPU core, two mixes exercise two CPU cores, and the remaining two mixes
exercise all four CPU cores. In all mixes, the GPU workload co-executes with the CPU
application(s) drawn from the SPEC CPU 2006 suite. All SPEC CPU 2006 applications
use the ref inputs. A mix that exercises 𝑛 CPU cores and the GPU will be referred to as
an nC1G mix. Figure 1 shows, for each mix (identified by the constituent CPU workload
on the x-axis), the performance of the CPU and the GPU workloads separately relative to
the standalone performance of these workloads. For example, for the first 4C1G mix using
four CPU cores and the GPU, the standalone CPU performance is the average turn-around
time of the four CPU applications started together, while the GPU is idle. Similarly, the
standalone GPU performance is the time taken to complete the Parboil LBM application
on the integrated GPU. When these workloads run together, they contend for the shared
memory system resources leading to severe performance degradation, As Figure 1 shows,

1 Experiments done with a larger set of memory-intensive GPU workloads show similar trends.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:3

the loss in CPU performance varies from 8% (410.bwaves in the 1C1G group) to 28% (the
first mix in the 4C1G group). The GPU performance degradation ranges from 1% (the first
mix in the 1C1G group) to 26% (the first mix in the 4C1G group). The GPU workload
degrades more with the increasing number of active CPU cores. Similar levels of interference
have been reported in simulation-based studies [2, 20, 27, 36, 39, 45, 49, 56, 57, 64]. In this
paper, we attempt to recover some portion of the lost GPU performance by proposing a
novel memory access scheduler driven by GPU performance feedback.

Prior proposals have studied specialized memory access schedulers for heterogeneous
systems [2, 20, 45, 57, 64]. These proposals modulate the priority of all GPU or all CPU
requests in bulk depending on the latency-, bandwidth-, and deadline-sensitivity of the
current phase of the CPU and the GPU workloads. In this paper, we propose a new
mechanism to dynamically identify a subset of GPU requests as critical and accelerate them
by exercising fine-grain control over allocation of memory system resources. Our proposal
is motivated by the key observation that the performance impact of accelerating different
GPU accesses is not the same (Section 3). Since a GPU workload can exercise not only the
programmable shader cores, but also numerous fixed function units such as texture samplers,
early and late depth test units, color blenders, blitters, etc. with complex inter-dependence,
dynamic identification of critical accesses in the GPUs requires novel insights and techniques
compared to the existing criticality estimation techniques for CPU load instructions [12, 59].
For identifying the bottleneck GPU accesses, we model the information flow through the
rendering pipeline of the GPU using a queuing network. We observe that the accesses to
the memory system originating from the GPU shader cores and the fixed function units
have complex inter-dependence, which is not addressed by the existing CPU load criticality
estimation techniques. To the best of our knowledge, our proposal is the first to incorporate
criticality information of fine-grain GPU accesses in the design of memory access schedulers
for heterogeneous CMPs. While we focus on the criticality of GPU accesses only in this
study, we note that it may be possible to incorporate the existing CPU criticality-based
policies [12, 59] on top of our proposal to further improve the CPU performance.

3D animation is an important GPU workload. For these workloads, it is sufficient to deliver
a minimum acceptable frame rate (usually thirty frames per second) due to the persistence
of human vision; it is a wastage of resources to improve the GPU performance beyond the
required level. Our proposal includes a highly accurate architecture-independent technique
to estimate the frame rate of a 3D rendering job at run-time. This estimation algorithm does
not require any profile pass and does not assume anything about the supported rendering
algorithm. It works for immediate-mode rendering (IMR) supported by most high-end
GPUs as well as tile-based deferred rendering (TBDR) supported by most mobile GPUs.
We use the estimated frame rate to identify the 3D scene rendering applications that fail
to meet the target performance level. Our proposal employs the criticality information to
speed up the GPU workload only if the estimated frame rate is below the target level. We
suitably extend our proposal for the GPGPU applications, which do not have any minimum
performance requirement. Section 4 discusses our proposal. We summarize our contributions
in the following.

∙ We present a novel technique for identifying the critical memory accesses sourced by
the GPU rendering pipeline.

∙ We present mechanisms based on accurate frame rate estimation to identify the critical
phases of 3D animation.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:4 S. Rai and M. Chaudhuri

∙ We propose DRAM access scheduling mechanisms to partition the DRAM bandwidth
between the critical GPU accesses, non-critical GPU accesses, and CPU accesses.

Simulations done with a detailed model of a heterogeneous CMP (Section 5) having
one GPU and four CPU cores running mixes of DirectX, OpenGL, and CPU applications
show that our proposal successfully identifies and accelerates the performance-critical GPU
accesses. It improves the GPU performance by 15% on average without degrading the
CPU performance much (Section 6). For mixes of CUDA and CPU applications, system
performance improves by 7% on average.

2 RELATED WORK

Memory access scheduling has been explored for CPU platforms, discrete GPU parts, and
heterogeneous CMPs. The studies targeting the CPU platforms have attempted to improve
the throughput as well as fairness of the threads that share the DRAM system [7, 10–
12, 16, 18, 29, 31, 43, 44, 46, 52, 60–62]. Profile-guided assignment of DRAM channels to
application groups has also been proposed [41]. Criticality estimation of load instructions [59]
and criticality-driven memory access schedulers [12] for CPUs have been explored.

The memory access scheduling studies for the discrete GPU parts focus on the shader
cores only and do not consider the rest of the GPU rendering pipeline. These studies have
explored ways to minimize the latency variance among the threads within a warp [4], to
accelerate the critical shader cores that do not have enough short-latency warps [23], and to
design an appropriate mix of shortest-job-first and FR-FCFS with the goal of accelerating
the less latency-tolerant shader cores [33]. There have been studies on warp and thread block
schedulers for improving the memory system performance [1, 21, 22, 28, 34, 35]. In contrast,
our proposal addresses the criticality of accesses sourced by not only the shader core load
instructions, but also numerous fixed function units in the GPU rendering pipeline.

Several studies have explored specialized memory access schedulers for heterogeneous
systems [2, 20, 45, 57, 64]. The staged memory scheduler (SMS) clubs the memory requests
from each source (CPU or GPU) into source-specific batches based on DRAM row locality [2].
Each batch is next scheduled with a probabilistic mix of shortest-batch-first (favoring latency-
sensitive jobs) and round-robin (enforcing fairness among bandwidth-sensitive jobs). The
dynamic priority scheduler [20] proposed for mobile heterogeneous platforms employs dynamic
progress estimation of tile-based deferred rendering (TBDR) [47, 51] and offers the GPU
accesses equal priority as the CPU accesses if the GPU lags behind the target frame rendering
time. Also, during the last 10% of the left time to render a frame, the GPU accesses are
given higher priority than the CPU accesses. The progress estimation algorithm is designed
specifically for the GPUs employing TBDR, typically supported only in mobile GPUs
such as ARM Mali [47], Kyro, Kyro II, and PowerVR from Imagination Technologies, and
Imageon 2380, Xenos, Z430, and Z460 from AMD [51]. The dynamic priority scheduler study,
however, shows the inefficiency of a previously proposed static priority scheduler that always
offers higher priority to the CPU accesses [57]. The subsequently proposed deadline-aware
memory scheduler for heterogeneous systems (DASH) further improves the dynamic priority
scheme by incorporating three optimizations: (i) always offering higher priority to a GPU
application that lags behind the target, (ii) offering the highest priority to short-deadline
applications, and (iii) distinguishing between latency-sensitive and bandwidth-sensitive CPU
workloads [64]. To estimate the dynamic progress of a GPU workload, the DASH proposal
requires a priori knowledge about the number of memory requests that the workload would

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:5

generate. Obtaining such information would typically require a profile pass. The option of
statically partitioning the physical address space between the CPU and GPU datasets and
assigning two independent memory controllers to handle accesses to the two datasets has
been explored [45]. Although such a proposal has the advantage of striping the two datasets
differently across the banks of the two memory controllers, a subsequent study has shown
that such static partitioning of memory resources can be sub-optimal [27]. Our proposal,
in contrast, employs fine-grain criticality information regarding GPU accesses to design
memory access management mechanisms.

Insertion and replacement policies to manage the shared LLC in the heterogeneous CMPs
have been explored [36, 49]. Selective LLC bypass policies for GPU misses arising from
latency-tolerant shader cores have been proposed with the goal of freeing up shared LLC space
for CPU workloads and the non-bypassed (possibly critical) GPU shader core accesses [39].

3 MOTIVATION

Different types of data are accessed by the programmable and the fixed function units in a
GPU rendering pipeline. Examples of such data include vertex data, vertex index data, pixel
color data, texture sampler data, pixel depth data, hierarchical depth data [13], shader cores’
instruction and data, blitter data, etc.. An access from a data stream looks up the internal
cache hierarchy of the GPU dedicated to that stream and, on a miss, looks up the LLC
shared between the GPU and CPU cores. The LLC misses are served by the DRAM. In this
section, we demonstrate that the sensitivity of different types of GPU access streams toward
memory system optimization is not uniform necessitating a stream-wise criticality measure.

Figure 2 shows the distribution of DRAM read accesses across different stream types coming
from the GPU for fourteen DirectX and OpenGL workloads. Each workload renders a multi-
frame segment of a popular PC game. These data are collected on a simulated heterogeneous
CMP.2 We consider the following stream categories: color (C), texture sampler (T), depth (Z),
blitter (B), and everything else clubbed into the “other” (O) category. 3 Figure 2 shows
that, in general, the color, texture, and depth streams constitute the larger share of the
DRAM accesses from the GPU; the actual distribution varies widely across applications.

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o

n
 o

f
G

P
U

 a
c
c
e

s
s
e

s
 t

o
 D

R
A

M

3D
M
ar
k0
6G

T
1

3D
M
ar
k0
6G

T
2

3D
M
ar
k0
6H
D
R
1

3D
M
ar
k0
6H
D
R
2

C
O
D
2

C
R
Y
S
IS

D
O
O
M
3

H
L
2

L
4D

N
F
S

Q
U
A
K
E
4

C
O
R

U
T
20
04

U
T
3

C T Z B O

Fig. 2. Distribution of DRAM accesses from 3D scene rendering workloads.

2 Our simulation infra-structure is discussed in Section 5.
3 The blitter unit is not used by all applications. This is a special fixed function unit used to copy color data

from render target of DirectX or renderbuffer of OpenGL to a separate memory region and process the copied
data before it can be sampled by the texture sampler. This is one possible way of doing “render-to-texture”
or dynamic texturing, a well-known technique for generating photo-realistic dynamic texture maps [15].
Render-to-texture can be implemented without blitting as well [37].

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:6 S. Rai and M. Chaudhuri

1

1.1

1.2

1.3

1.4

1

1.1

1.2

1.3

1.4
G

P
U

 p
e

rf
o

rm
a

n
ce

 s
p

e
e

d
u

p

1.64 1.50 1.57

1.47 1.913D
M
ar
k0
6G
T
1

3D
M
ar
k0
6G
T
2

3D
M
ar
k0
6H
D
R
1

3D
M
ar
k0
6H
D
R
2

C
O
D
2

C
R
Y
S
IS

D
O
O
M
3

H
L
2

L
4D

N
F
S

Q
U
A
K
E
4

C
O
R

U
T
20
04

U
T
3

C

T

Z

B

O

Fig. 3. Speedup achieved when each individual stream is made to behave ideally.

Figure 3 evaluates the performance-criticality of each stream by making all accesses from
that stream behave ideally in the memory system. More specifically, a stream is made to
behave ideally by treating all its non-compulsory LLC misses as hits. This only means that
instead of charging the miss latency for a non-compulsory miss to this stream, we charge
the hit latency, do not send the request to DRAM, but execute the LLC replacement policy,
as usual. Also, the treatment to all accesses from other streams is left unchanged. Figure 3
quantifies the speedup achieved by accelerating each stream in this way. The speedup is
measured as the ratio of frame rates with and without this optimization. For different
applications, each stream shows different levels of performance-sensitivity. Different streams
exploit the latency hiding capability of the GPU by different amounts leading to varying
impacts on the critical path through the application. A comparison of Figures 2 and 3 shows
that the performance-sensitivity of the streams is not always in proportion to the volumes
of DRAM accesses of the streams within an application. For example, in COD2, the depth
accesses are more in number than the color accesses (Figure 2), but accelerating the color
stream brings much higher speedup compared to accelerating the depth stream (Figure 3).
In L4D, accelerating the color stream brings most benefits, but color accesses are much
less in number compared to the texture accesses. In NFS, accelerating the texture accesses
brings much bigger benefit than accelerating the depth accesses, although the access counts
of these two streams are nearly equal.

Figure 4 quantifies the performance-criticality of a set of streams by treating all their
non-compulsory LLC misses as hits. While several possible groupings of the streams are
possible, we focus on only a few sets for acceleration, namely, CT (set of color and texture),
CTZ, CTZB, and CTZBO. The left bar (“COMBINED”) for each application shows the
stacked speedup as a new stream is added to the accelerated set starting from CT. For
comparison, we also show the accumulated speedup when each stream in a set is individually
accelerated in the bar “INDIVIDUAL”. For example, the CT segment of the “INDIVIDUAL”
bar shows the speedup of accelerating the color stream alone plus the speedup of accelerating
the texture stream alone. On the other hand, the CT segment of the “COMBINED” bar
shows the speedup of accelerating the color and the texture streams simultaneously. We
observe that the combined speedup is much higher than the accumulated individual speedup
in several applications. In some of the applications (e.g., 3DMark06GT1, 3DMark06GT2,
COD2, CRYSIS, L4D, NFS, COR, and UT3), the gap between the heights of the two bars
is significant. This indicates that there are certain inter-stream performance-dependencies
that must be accelerated together. Some of these dependencies arise from known semantic
data-flow rules, while others arise from the structure of the 3D rendering pipeline. For
example, a semantic dependence arises from the fact that the color and depth data may
be consumed by the texture sampler for generating dynamic texture maps and shadow
maps, respectively [15, 37]. On the other hand, accelerating the color stream without

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:7

improving a bottlenecked texture stream may not be helpful because color blending is
typically implemented after shading and texturing. We need to discover this inter-dependent
critical group of streams at run-time.

1

1.5

2

2.5

3

1

1.5

2

2.5

3

G
P

U
 p

e
rf

o
rm

a
n
ce

 s
p
e
e
d
u
p

3D
M
ar
k0
6G
T
1

3D
M
ar
k0
6G
T
2

3D
M
ar
k0
6H
D
R
1

3D
M
ar
k0
6H
D
R
2

C
O
D
2

C
R
Y
S
IS

D
O
O
M
3

H
L
2

L
4D

N
F
S

Q
U
A
K
E
4

C
O
R

U
T
20
04

U
T
3

C
O
M
B
IN

E
D

IN
D
IV
ID

U
A
L CT CTZ CTZB CTZBO

Fig. 4. Speedup achieved when a set of streams is made to behave ideally.

For the GPGPU applications, the shader accesses constitute the dominant stream. To better
understand the performance-sensitivity of the shader accesses in these applications, we further
partition the shader data stream. In this paper, each static load/store shader instruction
defines a distinct shader access stream. We adopt well-known stall-based techniques used in
the CPU space for identifying the critical shader access streams [32, 38, 42]. More specifically,
in each shader core we maintain a fully-associative stall table with least-recently-used (LRU)
replacement. Each entry of the table records the program counter (PC) of a shader instruction.
If a shader instruction 𝐼 stalls at dispatch time due to a pending operand, the parent shader
instruction 𝑃 that produces the operand is inserted into the stall table, provided 𝑃 is a load
instruction that has missed in the shader core’s private cache. Subsequently, the accumulated
stall cycle count introduced by 𝑃 is tracked in its entry. The left panel of Figure 5 shows
the distribution of the DRAM accesses sourced by the shader instructions sorted by stall
cycle count for six GPGPU workloads. “TnPC” denotes the top 𝑛 shader instructions in this
sorted list, while “All” denotes all load/store shader instructions. These data are collected
on a simulated heterogeneous CMP with one CPU core and one GPU. Top four shader
instructions can cover almost all DRAM accesses except for LBM and CFD. Only LBM and
CFD require a larger number of shader instructions to have a reasonable coverage of the
DRAM accesses.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

F
ra

ct
io

n
 o

f
G

P
U

 a
cc

e
ss

e
s

to
 D

R
A

M

L
B
M

C
F
D

B
F
S

F
A
S
T
W
A
L
S
H

B
L
A
C
K
S
C
H
O
L
E
S

R
E
D
U
C
T
IO
N

1

1.5

2

2.5

3

G
P

U
 p

e
rf

o
rm

a
n

ce
 s

p
e

e
d

u
p

L
B
M

C
F
D

B
F
S

F
A
S
T
W
A
L
S
H

B
L
A
C
K
S
C
H
O
L
E
S

R
E
D
U
C
T
IO
N

T1PC T2PC T4PC T8PC T16PC All

Fig. 5. Left: distribution of DRAM accesses from GPGPU workloads. Right: speedup achieved when the
top 𝑛 PC streams are made to behave ideally.

The right panel of Figure 5 shows the speedup achieved when the load/store accesses
sourced by the top 𝑛 shader instructions are treated ideally in the LLC. We observe that
the speedup data correlate well with the DRAM access distribution indicating that pipeline
stall-based critical shader stream identification is a fruitful direction to pursue. Except BFS,
all applications improve by more than 10% when all shader accesses are treated ideally.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:8 S. Rai and M. Chaudhuri

4 GPU ACCESS CRITICALITY

In this section, we present our proposal on identifying and managing critical GPU accesses
in heterogeneous CMPs. Section 4.1 discusses the mechanism for identifying the critical
GPU access streams. The mechanism for estimating the projected frame rate of 3D scene
rendering applications is discussed in Section 4.2. The DRAM access scheduler presented in
Section 4.3 finally shapes the priorities assigned to the CPU and GPU memory accesses.

4.1 Identifying Critical GPU Accesses

In the following, we present the mechanisms for selecting the critical accesses in 3D rendering
and GPGPU workloads.

4.1.1 3D Scene Rendering Workloads. We represent the 3D rendering pipeline as an
abstract queuing network of five units, namely, front-end (FE), depth/stencil test units (ZS),
shader cores (SH), color blenders and writers (CW), and blitters (BT). The texture samplers
are attached to the shader cores. The front-end loads vertex indices and vertex attributes,
generates the geometry primitives, and produces the rasterized fragment quads.4 The ZS
unit removes the hidden surfaces based on a depth/stencil test on the fragments. The shader
cores run a user-defined parallel shader program on each of the fragments received from the
ZS unit. The shaded fragment quads are passed on to the CW unit for computing the final
pixel color. One ZS unit and one CW unit constitute one render output pipeline (ROP).
The ZS and the CW units differ in the type of the processed data and the ALU functions.
If the depth/stencil test is done before pixel shading, it is known as early-Z. In certain
situations, the ZS unit may have to be invoked after SH and before CW. This is known as
late-Z. Our proposal periodically classifies each unit as having high/low request rate and
high/low throughput. This classification is used to identify the critical streams.

In the following, we first present a queuing network model for the 3D scene rendering
pipeline. Our model captures all inter-unit interactions that take place when the GPU
executes a 3D scene rendering job. This model is used by the critical stream selection
algorithm to decide the order in which the units are considered for obtaining the criticality
information. Next, we outline the per-unit thresholds used for high/low request rate and
throughput classification. Finally, we present the algorithm used for selecting the critical
GPU streams.

Queuing Model for Rendering Pipeline. We model the inter-dependence between the
3D rendering pipeline units using a queuing network shown in Figure 6. The model has
2𝑛+ 3 queues, where 𝑛 is the number of ROPs. The FE, SH, and BT units have one queue
each. Each of the 𝑛 ZS and CW units has one queue. Processing in the pipeline model can
begin at FE or BT. In the first case, information flows through FE, ZS, SH, and CW in that
order leading to the output. This path gets activated during a draw operation when the
input geometry is rendered to a target buffer (assuming early-Z). The second path, which
connects BT to the output, gets activated during the blitting process. In this path, each
request goes through multiple read/write operations before reaching the output.

Request Flow Monitoring. We monitor the request arrival and completion rates at each
of the units to first identify the bottleneck units. Identification of the bottleneck unit in

4 A fragment quad is made of four fragments, each with complete information to render a pixel in the render

buffer.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:9

FE

ZS0

...
ZSn

SH

CW0

...
CWn

BT

Fig. 6. Queuing network for GPU pipeline.

the 3D scene rendering pipeline is important for the selection of the critical GPU access
streams. To find the bottleneck unit of the pipeline, we measure the request arrival and
completion rates at each of the units shown in the model. For this purpose, we associate
two up-down saturating counters 𝐶𝑖𝑛[𝑖] and 𝐶𝑜𝑢𝑡[𝑖] of width 𝑤 bits to each unit 𝑖, where 𝑤
is a configuration parameter (our evaluations use 𝑤 = 8).5 All counters are initialized to
the mid-point i.e., 2𝑤−1. At the end of a cycle, 𝐶𝑖𝑛[𝑖] is incremented if unit 𝑖 is found to
have pending requests the count of which is above a threshold 𝑡ℎ𝑖𝑛[𝑖]; otherwise 𝐶𝑖𝑛[𝑖] is
decremented. Similarly, 𝐶𝑜𝑢𝑡[𝑖] is incremented, if unit 𝑖 has completed more than a threshold,
𝑡ℎ𝑜𝑢𝑡[𝑖], number of requests; otherwise 𝐶𝑜𝑢𝑡[𝑖] is decremented. The peak input bandwidths
of FE, ROP, and BT are used as 𝑡ℎ𝑖𝑛[𝐹𝐸], 𝑡ℎ𝑖𝑛[𝑅𝑂𝑃], and 𝑡ℎ𝑖𝑛[𝐵𝑇], respectively. Similarly,
the peak output bandwidths determine 𝑡ℎ𝑜𝑢𝑡[𝐹𝐸], 𝑡ℎ𝑜𝑢𝑡[𝑅𝑂𝑃], and 𝑡ℎ𝑜𝑢𝑡[𝐵𝑇]. We use the
shader’s peak input bandwidth divided by a constant6 as 𝑡ℎ𝑖𝑛[𝑆𝐻] as well as 𝑡ℎ𝑜𝑢𝑡[𝑆𝐻].

Critical Stream Selection Algorithm. Using the values of 𝐶𝑖𝑛[𝑖] and 𝐶𝑜𝑢𝑡[𝑖], we first
generate three bits for each unit 𝑖: 𝐼𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑖], 𝐴𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑖], and 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑖].
𝐼𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑖] is 1 iff 𝐶𝑖𝑛[𝑖] of any instance of unit 𝑖 is more than 2𝑤−1. 𝐴𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑖] is 1
iff 𝐶𝑖𝑛[𝑖] for all instances of unit 𝑖 are more than 2𝑤−1. 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑖] is 1 iff 𝐶𝑜𝑢𝑡[𝑖] for all
instances of unit 𝑖 are more than 2𝑤−1. In general, if 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑖] is 0 and 𝐼𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑖]
is 1, the unit 𝑖 is classified as bottlenecked and all accesses originating from it are classified
as critical. For example, if SH is bottlenecked, all shader and texture sampler accesses
would be marked critical. For SH to be bottlenecked, 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡[𝑆𝐻] must be 0 and
𝐴𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑆𝐻] must be 1 meaning that throughput is low even though all shader units have
enough work to do. If a unit 𝑖 has multiple instances, e.g., ZS, SH, CW, and 𝐴𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦[𝑖]
is 0, we identify the unit 𝑖 as underloaded. To identify the bottleneck unit(s), we periodically
execute Algorithm 1. First, this algorithm determines if CW and BT are bottlenecked. Next,
it traverses the path FE-ZS-SH-CW (if early-Z is enabled) or the path FE-SH-ZS-CW (if
early-Z is disabled) from back to front. During this back-to-front traversal, if the algorithm
encounters an underloaded unit 𝑈 , it examines the unit 𝑉 in front of 𝑈 and finds out whether
𝑈 is underloaded because 𝑉 is bottlenecked.

4.1.2 GPGPU Workloads. For the GPGPU workloads, we employ a two-level algorithm
invoked periodically for identifying the critical accesses. These workloads exercise only the
shader cores of the GPU pipeline. The first level of the algorithm identifies the bottlenecked
shader cores. For each shader core, we maintain two saturating counters named 𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙
and 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙, each of width 𝑤 bits (𝑤 = 8 in our implementation) and initialized to the
mid-point i.e., 2𝑤−1. In a cycle, if the front-end of a shader core 𝑖 fails to dispatch any warp
due to pending source operands, the 𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙[𝑖] counter is incremented by one; otherwise

5 All algorithm parameters are tuned meticulously.
6 The constant represents the number of cycles the shader program takes to process a fragment.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:10 S. Rai and M. Chaudhuri

Algorithm 1 Algorithm to find bottleneck units

Inputs: IOccupancy (IO), AOccupancy (AO),
Throughput (TH) vectors

Returns: Bottleneck vector

Initialize Bottleneck vector to zero.

if TH[CW] == 0 and IO[CW] == 1 then
Bottleneck[CW] = 1

end if
if TH[BT] == 0 and IO[BT] == 1 then

Bottleneck[BT] = 1
end if

◁ Back to front traversal
if CW is underloaded then

if early-Z enabled then
if TH[SH] == 0 and AO[SH] == 1 then

Bottleneck[SH] = 1
end if
if SH is underloaded then

if TH[ZS] == 0 and IO[ZS] == 1 then
Bottleneck[ZS] = 1

end if
if ZS is underloaded then

Check FE state using Algorithm 2
end if

end if
else

if TH[ZS] == 0 and IO[ZS] == 1 then
Bottleneck[ZS] = 1

end if
if ZS is underloaded then

if TH[SH] == 0 and AO[SH] == 1 then
Bottleneck[SH] = 1

end if
if SH is underloaded then

Check FE state using Algorithm 2
end if

end if
end if

end if

Algorithm 2 Module to check FE bottleneck

if TH[FE] == 0 and IO[FE] == 1 then
Bottleneck[FE] = Bottleneck[SH] = Bottleneck[ZS] = 1

end if

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:11

it is decremented by one. Similarly, in a cycle, if the back-end of the shader core 𝑖 fails to
commit any shader instruction, the 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙[𝑖] counter is incremented by one; otherwise
it is decremented by one. For a shader core 𝑖, if both 𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙[𝑖] and 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙[𝑖] are
found to be above 2𝑤−1, the core is classified as bottlenecked. The second level of the
algorithm employs the stall table introduced in Section 3 to identify the critical accesses
from the bottlenecked cores. We use a sixteen-entry fully-associative LRU stall table per
shader core. Among the instruction PC’s captured by this table, the top few PC’s covering
up to 90% of the total stall cycles are considered to be generating critical accesses to the
memory sub-system. If a load/store instruction misses in a bottlenecked shader core’s private
cache and is among the top few critical instructions captured by the stall table, the miss
request sent to the LLC is marked critical. If such a shader instruction is not found in the
stall table of a bottlenecked core, the request to the LLC is still marked critical, provided
the LLC miss rate of GPU accesses is at most 80%. In all other cases, the GPU access
is marked non-critical. The non-critical shader accesses that miss in the LLC bypass the
LLC freeing up space for other blocks. HeLM, a mechanism for managing the shared LLC
for heterogeneous processors, bypasses LLC misses from the latency-tolerant shader cores
employing a complex algorithm for estimating the latency-tolerance of the cores [39]. In
Section 6, we compare our proposal against the HeLM proposal.

4.2 Estimating Projected Frame Rate

The critical GPU accesses in a 3D scene rendering application are marked critical by our
proposal only if the projected frame rate is below the target. Such projections need to
be generated early in a frame to avoid losing opportunity of improving performance. This
requires online estimation of the projected frame rate of such applications. We present a
completely dynamic architecture-independent mechanism for estimating the projected frame
rate at any point in time during a frame.

Our frame rate estimation scheme operates in two modes, namely, learning and prediction
modes. The learning mode lasts for one full frame. It measures the amount of work in
the frame and the rendering time of the frame. In the prediction mode, our scheme starts
producing frame rate projections and continuously compares the learning mode data with the
data from the newly completed frames. If the newly observed values differ from the learned
values by more than a threshold, the hardware discards the learned values and switches
back to the learning mode. Unlike prior proposals for estimating GPU progress [20, 64], our
proposal does not assume tile-based deferred rendering and does not require any profile
information.

4.2.1 Learning Mode. The purpose of using a part of rendering as the learning phase
is to quantify the amount of work in a frame and the time needed to render a frame at
a given rendering speed. Rendering of a frame involves generating the color values of all
pixels into a buffer commonly known as the render target (RT). A single pixel in the RT
can get overdrawn multiple times depending on the arrival order and depth of the geometry
primitives. This complicates the estimation of the amount of work involved in rendering a
frame. We divide the RT into equal sized 𝑡 × 𝑡 render target tiles (RTT). We divide the
rendering of a frame into render target planes (RTP). As shown in Figure 7, each RTP
represents a batch of updates that cover all tiles of the RT.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:12 S. Rai and M. Chaudhuri

Y

X

Render-Target tile

Render-Target plane

Fig. 7. Render-target plane and tile

We maintain a 64-entry RTP information table in the GPU. For a frame, each entry of
this table records three pieces of information about a distinct RTP: (i) total number of
updates to the RTP, (ii) the number of cycles to finish the RTP, and (iii) the number of
RTTs in the RTP. Our implementation assumes each of the three fields to be four bytes in
size. We use the number of updates to the RTP and the RTT count during the prediction
mode of the algorithm to determine the amount of work left in a frame. The number of
cycles needed by an RTP is used to obtain the average number of cycles per RTP. This is
used to compute the expected frame rate. If the number of RTPs in a frame exceeds 64, the
last entry of the table is used to accumulate the data for all subsequent RTPs.

4.2.2 Prediction Mode. Our frame rate prediction model uses the RTP count and cycles
per RTP recorded during the learning phase to predict the current number of cycles per
frame. If the number of RTPs in a frame 𝑖 is 𝑁 𝑖

𝑟𝑡𝑝 and the average number of cycles per

RTP is 𝐶𝑖
𝑟𝑡𝑝, then the number of estimated cycles 𝐹𝑖 required to render frame 𝑖 is given

by 𝐹𝑖 = 𝐶𝑖
𝑟𝑡𝑝 ×𝑁 𝑖

𝑟𝑡𝑝. We obtain 𝑁 𝑖
𝑟𝑡𝑝 directly from the data collected in the learning mode

assuming that it doesn’t change for the current frame 𝑖. To compute 𝐶𝑖
𝑟𝑡𝑝 for the frame

being rendered currently, let the fraction of the frame that has been rendered so far be 𝜆,
the average number of cycle per RTP seen in the current frame be 𝐶𝑖

𝑐𝑢𝑟, and the average
number of cycles per RTP recorded in the learning mode be 𝐶𝑎𝑣𝑔. Therefore, 𝐶

𝑖
𝑟𝑡𝑝 can be

computed as 𝐶𝑖
𝑟𝑡𝑝 = 𝜆× 𝐶𝑖

𝑐𝑢𝑟 + (1− 𝜆)× 𝐶𝑎𝑣𝑔.

4.3 Scheduling DRAM Accesses

The CPU and GPU requests that miss in the shared LLC access the DRAM. Every DRAM
access coming from the GPU carries a bit set by our criticality estimation hardware specifying
if the access is critical. If the GPU is running a 3D scene rendering workload and the predicted
frame rate meets the target, no GPU access is marked critical. Our DRAM scheduling policy
uses the criticality information to appropriately share the DRAM access bandwidth between
the CPU and the GPU. We propose two DRAM scheduling policies, namely, the GPU-
favoring policy and the interference mitigation policy (IM policy). In the GPU-favoring
policy, among the requests to the currently open row in a bank, the critical GPU accesses
are served before considering the rest. When a new row needs to be activated in a bank,
the oldest critical GPU access is given priority over the global oldest access. The GPU-
favoring policy leads to two performance problems. First, the GPU fills arrive at a faster
rate to the LLC causing the CPU blocks to get replaced at a faster rate than the baseline.
Second, the CPU requests may starve due to a long burst of critical GPU requests. The
IM policy, designed to mitigate these problems, has two components, one to mitigate CPU

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:13

starvation in the scheduler (IM-SCHED) and another to handle LLC interference (IM-LLC).
While IM-SCHED is the default policy, a switch to IM-LLC takes place on detecting LLC
interference.

The IM-SCHED component prioritizes CPU accesses over critical GPU accesses with a
certain probability. The probability is obtained as follows. The execution is divided into
equal intervals and at the end of each interval, the fraction of CPU requests de-prioritized
by younger critical GPU requests during the interval is computed. This is used as the CPU
prioritization probability for the next interval. Effectively, the CPU prioritization probability
in an interval is same as the observed probability that a given CPU access is de-prioritized
by a younger critical GPU access in the last interval. If this probability is more than half,
it is capped to half. This probability exceeds half only in the GPGPU applications during
2-6% of all intervals. In an interval, a CPU request is prioritized over a pending critical GPU
request with this probability.

For detecting LLC interference, the execution is divided into equal intervals and within
an interval, the CPU applications are classified into high (H), medium (M), and low (L)
intensities based on their LLC miss rates. H category has more than 70% miss rate, M
category has miss rate between 10% and 70%, and L category has miss rate at most 10%. In
two consecutive intervals, if an application’s state is found to change from L to M or L to H
which can be due to possible LLC interference, the application enters an emergency mode.
The IM-LLC component is activated if there is at least one emergency mode application. It
schedules requests from emergency mode applications as often as critical GPU accesses. The
remaining accesses are assigned lower priority. At the end of an interval, if an emergency
mode application is found to go back to the L state, this indicates that the application
benefits from IM-LLC; it continues to stay in the emergency mode. On the other hand,
at the end of an interval, if an emergency mode application is still in M or H state, the
application exits the emergency mode because it is not helpful for this application.

The CPU accesses are given higher priority than the non-critical GPU accesses except in
one situation. In certain phases of the GPGPU workloads, the GPU becomes very sensitive
to memory system performance depending on the control-flow, cache-friendliness, DRAM
bandwidth utilization, and the synchronization primitives used (e.g., intra-block barriers and
atomics) during a phase. This is observed particularly in kernels with irregular access patterns.
In these phases, it is possible to improve the GPU performance by sacrificing an equal
amount of CPU performance and vice-versa. We decide to maintain the GPU performance
in these phases by prioritizing all GPU accesses over the CPU accesses. To identify such
phases, we periodically give the highest priority to all GPU accesses in the DRAM scheduler
over a small time-window of 100K GPU cycles. If the GPGPU performance (measured in
terms of shader instructions retired per cycle) improves during this window compared to the
last window, the scheduler continues to offer higher priority to all GPU accesses. This mode
continues until the GPU performance in the current window becomes equal to the previous
window signifying no additional advantage of staying in this mode.

5 SIMULATION ENVIRONMENT

We use a modified version of the Multi2Sim simulator [63] to model the CPU cores of the
simulated heterogeneous CMP. Each dynamically scheduled out-of-order issue x86 core is
clocked at 4 GHz. We use two GPU simulators, one to execute the 3D rendering jobs and
the other to execute the CUDA applications. The 3D rendering GPU is modeled with an

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:14 S. Rai and M. Chaudhuri

upgraded version of the Attila GPU simulator [40]. The simulator has enough details to
capture all the phases of the entire rendering pipeline. The simulated GPU uses a unified
shader model where the same set of shader cores is used to carry out vertex shading as well
as pixel (or fragment) shading. The shader throughput of the GPU is one tera-FLOPS (single
precision). The GPU model used for CUDA applications is borrowed from the MacSim
infra-structure [30]. Since the CUDA applications make use of the shader cores only, the
GPU simulator contains a detailed model of the shader core island. The shader throughput
of this GPU is 512 GFLOPS (single precision). Depending on the type of the GPU workload,
one of the two GPU models gets attached to the rest of the CMP. The DRAM modules are
modeled using DRAMSim2 [53]. Table 1 presents the detailed configuration.

The heterogeneous workloads are prepared by mixing the SPEC CPU 2006 applications
with 3D scene rendering jobs drawn from fourteen popular DirectX 9 and OpenGL game titles
as well as six CUDA applications. The DirectX and OpenGL API traces are obtained from
the Attila simulator distribution and the 3DMark06 suite [67]. The simulated multi-frame
game regions are selected after skipping over the initial sequence. We select thirteen SPEC
CPU 2006 applications and partition them into two groups based on the LLC misses per
kilo instructions (MPKI). The high MPKI group (H-group) contains bwaves, lbm, leslie3d,
libquantum, mcf, milc, and soplex. The low MPKI group (L-group) contains bzip2, gcc,
omnetpp, sphinx3, wrf, and zeusmp. Each of the twenty GPU workloads (fourteen 3D
rendering and six GPGPU) is co-executed with three different four-way multi-programmed
CPU workload mixes. To do this, we use the applications from the H-group to prepare
twenty four-way H mixes. Similarly, we prepare twenty four-way L mixes from the L-group.
We also prepare twenty four-way HL mixes, each of which has two H-group and two L-group
applications. Each of the twenty GPU workloads is mixed with one CPU mix each from the
H, L, and HL sets. We evaluate our proposal on these sixty different heterogeneous mixes
executed on a CMP with four CPU cores and a GPU. For each GPU workload, we report the
performance averaged (geometric mean) over the three mixes containing that GPU workload.
The multi-frame 3D rendering jobs are detailed in Table 2. The last column of this table lists
the baseline average frames per second (FPS) achieved by the applications when co-scheduled
with the four-way CPU mixes. The CUDA applications are shown in Table 3. LBM is drawn
from Parboil [58]; CFD and BFS from Rodinia 3.0 [5, 6]; FASTWALSH, BLACKSCHOLES,
and REDUCTION from the CUDA SDK 4.2. These six CUDA applications are selected
based on their sensitivity toward memory system optimizations.

Within each heterogeneous mix, the first 200M instructions retired by each CPU core are
used to warm up the caches. After the warm-up, each CPU application in a mix commits
at least 450M dynamic instructions [54]. Early-finishing applications continue to run until
each CPU application commits its representative set of dynamic instructions and the GPU
completes its job. The performance metrics used for CPU mix, 3D animation, and CUDA
application are respectively weighted speedup, average frame rate, and the number of
execution cycles.

5.1 Additional Hardware Overhead

In this section, we discuss the hardware overhead of our proposal. The critical stream
identification logic needs to maintain the 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 counters for the FE, BT, ZS, SH,
and CW units. The 3D rendering GPU has 64 SH units and sixteen ZS and CW units
leading to 98 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 counters requiring a total of 196 bytes. The GPGPU model

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:15

Table 1. Simulation environment

CPU cache hierarchy

Per-core iL1 and dL1 caches: 32 KB, 8-way, 2 cycles
Per-core unified L2 cache: 256 KB, 8-way, 3 cycles

GPU model for 3D scene rendering

Shader cores: 64, 1 GHz, four 4-way SIMD per core
Texture samplers: two per shader core, 128 GTexel/s
ROP: 16, fill rate 64 GPixels/s
Texture caches: three-level hierarchy,
L0: 2 KB per sampler, shared L1, L2: 64 KB, 384 KB
Depth caches: two-level hierarchy,
L1: 2 KB per ROP, shared L2: 32 KB
Color caches: two-level hierarchy,
L1: 2 KB per ROP, shared L2: 32 KB
Vertex cache: 16 KB, shader instruction cache: 32 KB,
Hierarchical depth cache: 16 KB

GPU model for GPGPU

Shader cores: 16, 2 GHz, sixteen SP FLOPs/cycle
Instruction, data cache per core: 4 KB, 32 KB,
Texture, constant cache per core: 8 KB, 8 KB,
Software-managed shared memory per core: 16 KB

Shared LLC and interconnect

Shared LLC: 16 MB, 16-way, lookup latency 10 cycles,
inclusive for CPU blocks, non-inclusive for GPU blocks,
two-bit SRRIP policy [19]
Interconnect: bi-directional ring, single-cycle hop

Memory controllers and DRAM

Memory controllers: two on-die single-channel,
DDR3-2133, FR-FCFS access scheduling in baseline
DRAM modules: 14-14-14, 64-bit channels, BL=8,
open-page policy, one rank/channel, 8 banks/rank,
1 KB row/bank/device, x8 devices

has sixteen shader cores. Each core maintains one 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙 counter, one 𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙
counter, and a sixteen-entry stall table with each entry being 69 bits (32-bit PC, 32-bit stall
cycles, one valid bit, and four LRU bits) amounting to 2.2 KB for all cores. The frame rate
estimation mechanism maintains a 64-entry RTP information table, each entry being 97
bits leading to an overhead of under 1 KB. Overall, the storage overhead of our proposal is
only 3.1 KB. Most importantly, none of the additional structures are accessed or updated
on the critical path of execution. The structures that are accessed every cycle (such as
the 𝐶𝑖𝑛, 𝐶𝑜𝑢𝑡, 𝐼𝑛𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙, and 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑡𝑎𝑙𝑙 counters) are small in size and expend energy
much smaller than what we save throughout the system (CMP die and DRAM device) by
improving performance. The remaining structures are accessed less frequently and expend
much lower energy.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:16 S. Rai and M. Chaudhuri

Table 2. Graphics frame details

Application, DX/OGL7 Frames Res.8 FPS

3DMark06 GT1, DX 670–671 R1 5.9
3DMark06 GT2, DX 500–501 R1 14.0
3DMark06 HDR1, DX 600–601 R1 16.7
3DMark06 HDR2, DX 550–551 R1 21.8
Call of Duty 2 (COD2), DX 208–209 R2 19.5
Crysis, DX 400–401 R2 6.7
DOOM3, OGL 300–314 R3 80.7
Half Life 2 (HL2), DX 25–33 R3 77.4
Left for Dead (L4D), DX 601–605 R1 33.6
Need for Speed (NFS), DX 10–17 R1 66.6
Quake4, OGL 300–309 R3 80.5
Chronicles of Riddick 253–267 R1 103.9
(COR), OGL
Unreal Tournament 2004 200–217 R3 132.5
(UT2004), OGL
Unreal Tournament 3 955–956 R1 26.6
(UT3), DX
7 DX=DirectX, OGL=OpenGL
8 Resolutions: R1=1280×1024, R2=1920×1200, R3=1600×1200

Table 3. CUDA application details

Application Thread configuration

LBM 120×150 blocks, 120 threads/block
CFD 759 blocks, 128 threads/block
BFS 1954 blocks, 512 threads/block
FASTWALSH 8192 blocks, 256 threads/block
BLACKSCHOLES 480 blocks, 128 threads/block
REDUCTION 64 blocks, 256 threads/block

6 SIMULATION RESULTS

We evaluate our proposal on a simulated heterogeneous CMP with four CPU cores and one
GPU. With each GPU workload, we co-execute a mix of four CPU applications. Sections 6.1
and 6.2 respectively discuss the results for the mixes containing the 3D rendering and CUDA
workloads.

6.1 Mixes with 3D Rendering Workloads

We divide the discussion into evaluation of the several individual components that constitute
our proposal.

6.1.1 Critical vs. Non-critical Accesses. We conduct two experiments to understand whether
our critical access identification logic is able to mark the critical GPU accesses as such. In
one case, we treat all non-compulsory LLC misses from the critical accesses as hits. In the

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:17

other case, we treat all non-compulsory LLC misses from the non-critical accesses as hits.
Figure 8 shows the improvement in FPS over the baseline in the two cases. Except for L4D,
all applications show much higher FPS improvement when the critical accesses are treated
ideally. These results confirm that our proposal is able to identify a subset of the critical
accesses correctly. On average, treating the critical accesses identified by our algorithm
with an ideal memory sub-system (LLC onward) offers an FPS improvement of 48%, while
favoring the complementary access set offers only 13% improvement. In L4D, our algorithm
misclassifies a number of critical blitter accesses. This points to further scope of improvement
in understanding blitter criticality. COR loses performance when the non-critical accesses
are treated ideally because some of the non-critical accesses negatively interfere with the
critical ones.

−15

0

15

30

45

60

75

90

105

P
e
rc

e
n
t
in

c
re

a
s
e
 i
n
 F

P
S

3D
M
ar
k0
6G
T1

3D
M
ar
k0
6G
T2

3D
M
ar
k0
6H
D
R
1

3D
M
ar
k0
6H
D
R
2

U
T3

U
T2
00
4

C
R
YS
IS

C
O
R

C
O
D
2

L4
D

D
O
O
M
3

N
FSH

L2

Q
U
A
K
E4

A
ve
ra
ge

Critical Non−critical

Fig. 8. Percent improvement in FPS when LLC behaves ideally for critical and non-critical accesses.

Figure 9 shows the distribution of the critical color (C), critical texture (T), critical
depth (Z), critical blitter (B), critical other (O), and non-critical (NC) accesses as identified
by our algorithm in the aforementioned experiment. The distribution varies widely across
the applications with 62% of accesses being identified as critical on average. It is encouraging
to note that for most of the applications, the stream that was found to enjoy the largest
speedup in Figure 3 is among the dominant critical streams identified by our algorithm.
This confirms the success of our algorithm.

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti
o
n
 o

f
a
ll
 G

P
U

 a
c
c
e
s
s
e
s

3D
M
ar
k0
6G
T1

3D
M
ar
k0
6G
T2

3D
M
ar
k0
6H
D
R
1

3D
M
ar
k0
6H
D
R
2

C
O
D
2

C
R
YS
IS

D
O
O
M
3

H
L2 L4

D
N
FS

Q
U
A
K
E4

C
O
R

U
T2
00
4

U
T3

A
ve
ra
ge

C T Z B O NC

Fig. 9. Distribution of critical accesses.

6.1.2 Frame Rate Estimation. Figure 10 shows the percent error observed in our dynamic
frame rate estimation technique. A positive error means over-estimation and a negative error
means under-estimation. Several applications have zero error. The maximum over-estimation
error is 6% (UT2004) and the maximum under-estimation error is 4% (COR). The average
error across all applications is less than 1%.

6.1.3 DRAM Scheduling for Critical GPU Accesses. Our DRAM scheduling proposal em-
ploys the access criticality information for the 3D rendering applications that fail to meet a
target FPS. We set this target to 40 FPS and show the results for the eight applications

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:18 S. Rai and M. Chaudhuri

−4

−2

0

2

4

6

P
e

rc
e

n
t

e
rr

o
r

3D
M
ar
k0
6G
T1

3D
M
ar
k0
6G
T2

3D
M
ar
k0
6H
D
R
1

3D
M
ar
k0
6H
D
R
2

U
T3

U
T2
00
4

C
R
YS
IS

C
O
R

C
O
D
2

L4
D

D
O
O
M
3

N
FSH

L2

Q
U
A
K
E4

A
ve
ra
ge

Fig. 10. Percent error in frame rate estimation.

that deliver frame rate below this level (see Table 2).9 Figure 11 evaluates the GPU-favoring
and IM policies (Section 4.3) for the mixes containing these GPU applications. The left
panel shows the FPS of the GPU normalized to the baseline. The right panel shows the
weighted speedup for the corresponding CPU mixes normalized to the baseline. We identify
each CPU workload by GPUworkloadnameCPU . Each bar represents an average (geometric
mean) of three heterogeneous mixes that each GPU workload belongs to. The GPU-favoring
policy improves the FPS by 18% on average while degrading the weighted speedup of the
CPU mixes by 8% on average. The IM policy is able to recover most of the lost CPU
performance. This policy improves the FPS of the GPU applications by 15% on average
while performing within 3% of the baseline for the CPU application mixes. The CPU mixes
co-scheduled with 3DMark06HDR1 perform better than the baseline, on average. The IM
policy has the IM-SCHED and IM-LLC components. Compared to the GPU-favoring policy,
the IM-LLC component alone reduces CPU performance loss by 3% while sacrificing 2%
GPU performance. The IM-SCHED component alone reduces CPU performance loss by 2%
while sacrificing 1% GPU performance. Effects are additive when IM-LLC and IM-SCHED
work together in the IM policy.

1

1.05

1.1

1.15

1.2

1.25

1.3

F
P

S
 n

o
rm

a
liz

e
d
 t
o
 b

a
s
e
lin

e

G
E
O
M
E
A
N

3
D
M
a
rk
0
6
H
D
R
2

3
D
M
a
rk
0
6
H
D
R
1

3
D
M
a
rk
0
6
G
T
2

3
D
M
a
rk
0
6
G
T
1

C
O
D
2

C
R
Y
S
IS

L
4
D
U
T
3

GPU−favoring policy

IM policy

0.8

0.85

0.9

0.95

1

1.05

1.1

N
o
rm

a
liz

e
d
 w

e
ig

h
te

d
 s

p
e
e
d
u
p

G
E
O
M
E
A
N

U
T
3
C
P
U

L
4
D
C
P
U

C
R
Y
S
IS
C
P
U

C
O
D
2
C
P
U

H
D
R
2
C
P
U

H
D
R
1
C
P
U

G
T
2
C
P
U

G
T
1
C
P
U

GPU−favoring policy

IM policy

Fig. 11. Left: normalized FPS of GPU applications that perform below target FPS. Right: weighted
CPU speedup for the mixes.

To further understand the quality of the critical access set identified by our algorithm, we
conduct two experiments with the HL mixes containing the GPU applications with lower than
40 FPS. In the first experiment, we evaluate the FPS improvement when out of the critical
accesses, as identified by our algorithm, a randomly selected 25% or 50% or 75% or 100%
population is marked critical. The left panel of Figure 12 shows the stacked improvement in
FPS as a new quarter of the critical accesses is marked critical. These results show that all
quarters are equally important from performance viewpoint. In the second experiment, we
explore if our criticality estimation algorithm can be replaced by a simpler random sampling
algorithm that marks accesses as critical uniformly at random while maintaining the total

9 Our prior work has explored mechanisms to improve the system performance of the heterogeneous mixes
containing the remaining GPU applications that already meet the 40 FPS target. The central idea involved
throttling the LLC access rate of the GPU application so that it delivers just 40 FPS and shifting the memory

system resources (LLC capacity and DRAM bandwidth) thus freed to the co-executing CPU applications so

that they improve in performance [50].

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:19

number of critical accesses from each stream same as our algorithm. The right panel of
Figure 12 shows the performance of this algorithm normalized to our algorithm. On average,
the random sampling technique performs 5% worse than our algorithm.

1

1.05

1.1

1.15

1.2

1.25

1.3

F
P

S
 n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

3
D
M
a
rk
0
6
G
T
1

3
D
M
a
rk
0
6
G
T
2

3
D
M
a
rk
0
6
H
D
R
1

3
D
M
a
rk
0
6
H
D
R
2

C
O
D
2

C
R
Y
S
IS

L
4
D
U
T
3

G
E
O
M
E
A
N

Q1 Q2 Q3 Q4

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

N
o

rm
a

liz
e

d
 F

P
S

 o
f

ra
n

d
o

m
 s

a
m

p
lin

g
3
D
M
a
rk
0
6
G
T
1

3
D
M
a
rk
0
6
G
T
2

3
D
M
a
rk
0
6
H
D
R
1

3
D
M
a
rk
0
6
H
D
R
2

C
O
D
2

C
R
Y
S
IS

L
4
D

U
T
3

G
E
O
M
E
A
N

Fig. 12. Left: cumulative performance contribution of each quarter of the critical accesses. Right:
performance of random sampling normalized to the proposed criticality estimation algorithm.

6.1.4 Comparison to Related Proposals. Several DRAM scheduling policies have been
proposed for heterogeneous CMPs. These proposals were discussed in Section 2. We compare
our proposal against staged memory scheduling (SMS) [2], dynamic priority scheduler (Dyn-
Prio) [20], and deadline-aware scheduling (DASH) [64]. We evaluate two versions of SMS,
namely, one with a probability of 0.9 of using shortest-job-first (SMS-0.9) and the other
with this probability zero (SMS-0) i.e., it always selects the round-robin policy. SMS-0.9 is
expected to favor latency-sensitive jobs while SMS-0 is expected to favor bandwidth-sensitive
jobs. We let DynPrio and DASH use our frame rate estimation technique to compute the time
left in a frame. Additionally, we compare our proposal against HeLM, the state-of-the-art
shared LLC management policy for heterogeneous CMPs [39]. This policy employs LLC
bypassing for a subset of GPU read misses to create LLC space for CPU as well as GPU.

0.6

0.8

1

1.2

1.4

N
o
rm

a
li
z
e
d
 F

P
S

GEOMEAN

3
D
M
a
rk
0
6
G
T
1

3
D
M
a
rk
0
6
G
T
2

3
D
M
a
rk
0
6
H
D
R
1

3
D
M
a
rk
0
6
H
D
R
2

C
O
D
2

C
R
Y
S
IS

L
4
D

U
T
3

0.8

0.9

1

1.1

1.2

C
P

U
 s

p
e
e
d
u
p

GEOMEAN

G
T
1
C
P
U

G
T
2
C
P
U

H
D
R
1
C
P
U

H
D
R
2
C
P
U

C
O
D
2
C
P
U

C
R
Y
S
IS
C
P
U

L
4
D
C
P
U

U
T
3
C
P
U

SMS−0.9 SMS−0 DynPrio DASH HeLM GPU criticality

Fig. 13. Top: FPS speedup over baseline. Bottom: weighted CPU speedup for the mixes.

Figure 13 shows the comparison for the heterogeneous mixes containing the GPU ap-
plications that fail to meet the target FPS. SMS suffers large losses in FPS (upper panel)
due to the delay in batch formation. DynPrio fails to observe any overall benefit because it
offers express bandwidth to the GPU application only during the last 10% of a frame time.
Both DASH and our GPU criticality-aware proposal (IM policy) improve average FPS by
14%. DASH prioritizes the GPU accesses throughout the execution. Such a policy, however,

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:20 S. Rai and M. Chaudhuri

hurts the performance of the co-scheduled CPU mixes by 10% on average (lower panel of
Figure 13). Our proposal, on the other hand, accelerates only the critical GPU accesses and
improves average FPS by the same amount as DASH while delivering CPU performance
within 3% of the baseline. Referring back to Figure 11, we notice that our GPU-favoring
policy, which always prioritizes the critical GPU accesses, performs better than DASH for
both GPU and CPU workloads. These results clearly bring out the advantage of prioritizing
only the critical GPU accesses as opposed to prioritizing all GPU accesses, as DASH does.
Both SMS-0.9 and SMS-0 improve CPU mix performance by 8%, while suffering large losses
in GPU performance. HeLM improves CPU performance by 6% on average, while degrading
GPU performance by 5%. These results clearly indicate that the GPU performance can be
traded off to improve CPU performance and vice-versa in such heterogeneous platforms. Our
proposal strikes a nice balance in this trade-off by probabilistically offering express DRAM
bandwidth to a subset of the critical GPU accesses while shifting the remaining DRAM
bandwidth to the CPU. To understand how these proposals fare in terms of combined
CPU-GPU system performance, we consider a performance metric in which the CPU and
the GPU performance are weighed equally i.e., overall speedup is the geometric mean of the
FPS speedup and the normalized weighted speedup of the CPU mix [36]. We find that DASH
and HeLM improve this performance metric by 1% on average compared to the baseline,
while our proposal improves this metric by 5%. DynPrio delivers baseline performance, while
both SMS-0.9 and SMS-0 degrade the equal-weight metric by 9%.

6.1.5 Sensitivity to LLC Capacity. Figure 14 summarizes the performance of the IM policy
when the heterogeneous CMP is equipped with an 8 MB shared LLC (as opposed to 16 MB
considered so far). The GPU applications improve by an impressive 17% over the baseline
and the co-scheduled CPU application mixes perform within 4% of the baseline, on average.
The CPU mixes co-scheduled with 3DMark06HDR1 and 3DMark06HDR2 outperform the
baseline, on average. Referring back to Figure 11, we observe that for a 16 MB LLC, the
GPU gain is 15% and the CPU mixes perform within 3% of the baseline, on average.

1

1.05

1.1

1.15

1.2

1.25

1.3

F
P

S
 n

o
rm

a
liz

e
d

 t
o

 b
a

s
e

lin
e

3
D
M
a
rk
0
6
G
T
1

3
D
M
a
rk
0
6
G
T
2

3
D
M
a
rk
0
6
H
D
R
1

3
D
M
a
rk
0
6
H
D
R
2

C
O
D
2

C
R
Y
S
IS

L
4
D
U
T
3

G
E
O
M
E
A
N

IM policy

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
1.01
1.02

N
o

rm
a

liz
e

d
 w

e
ig

h
te

d
 s

p
e

e
d

u
p

G
T
1
C
P
U

G
T
2
C
P
U

H
D
R
1
C
P
U

H
D
R
2
C
P
U

C
O
D
2
C
P
U

C
R
Y
S
IS
C
P
U

L
4
D
C
P
U

U
T
3
C
P
U

G
E
O
M
E
A
N

IM policy

Fig. 14. Left: normalized FPS of GPU applications that perform below target FPS. Right: weighted
CPU speedup for the mixes.

6.2 Mixes with GPGPU Workloads

Figure 15 evaluates SMS-0.9, SMS-0, HeLM, and our GPU criticality-aware proposal for the
heterogeneous mixes containing CUDA applications when the CMP is equipped with a 16 MB
shared LLC.10 The left panel quantifies the speedup experienced by the GPU application in

10 DynPrio and DASH are left out from this evaluation because these two proposals are suitable only for

deadline-sensitive GPU workloads.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:21

the mix, while the right panel shows the weighted speedup of the co-running CPU mixes
normalized to the baseline. Both SMS-0.9 and SMS-0 degrade GPU performance (left panel)
by 4% on average while improving the CPU performance (right panel) by 7% and 8%,
respectively. HeLM improves GPU performance by 6% and CPU performance by 7%, on
average. Our proposal improves GPU performance by 1% and CPU performance by 14%, on
average. Since the GPU performance can be traded off for CPU performance and vice-versa,
we use the equal-weight performance metric to understand the overall system performance.
Both SMS-0.9 and SMS-0 improve the equal-weight metric by 2%, while HeLM improves
this metric by 6%. Our proposal achieves a 7% improvement in this metric.

0.9

1

1.1

1.2

G
P

U
 s

p
e

e
d

u
p

SMS−0.9 SMS−0 HeLM GPU criticality

0.9

1

1.1

1.2

1.3

C
P

U
 s

p
e

e
d

u
p

1.81

L
B
M

C
F
D

B
F
S

F
A
S
T
W
A
L
S
H

B
L
A
C
K
S
C
H
O
L
E
S

R
E
D
U
C
T
IO
N

G
E
O
M
E
A
N

L
B
M
−
C
P
U

C
F
D
−
C
P
U

B
F
S
−
C
P
U

F
W
−
C
P
U

B
S
−
C
P
U

R
E
D
−
C
P
U

G
E
O
M
E
A
N

Fig. 15. Left: GPU application speedup. Right: weighted CPU speedup for the mixes.

7 SUMMARY

We have presented a new class of memory access schedulers for heterogeneous CMPs. Our
proposal dynamically identifies the critical GPU accesses and probabilistically prioritizes
them in the memory access scheduler. Detailed simulation studies show that our proposal
achieves its goal of offering a bigger share of the shared memory system resources to the
critical GPU accesses. The GPU performance improves by 15% on average for the 3D scene
rendering applications, while the co-scheduled CPU application mixes perform within 3%
of the baseline on average. For the heterogeneous mixes with GPGPU applications, the
CPU application mixes improve by 14% on average, while the GPU performs 1% above the
baseline leading to an overall 7% improvement in system performance, measured in terms of
a CPU-GPU equal-weight performance metric.

REFERENCES

[1] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kandemir, and O. Mutlu. Ex-
ploiting Inter-Warp Heterogeneity to Improve GPGPU Performance. In Proceedings of the International

Conference on Parallel Architecture and Compilation Techniques, pages 25–38, October 2015.
[2] R. Ausavarungnirun, K. K-W. Chang, L. Subramanian, G. H. Loh, and O. Mutlu. Staged Memory

Scheduling: Achieving High Performance and Scalability in Heterogeneous Systems. In Proceedings of

the 39th International Symposium on Computer Architecture, pages 416–427, June 2012.

[3] D. Bouvier, B. Cohen, W. Fry, S. Godey, and M. Mantor. Kabini: An AMD Accelerated Processing
Unit System on a Chip. In IEEE Micro, 34(2):22–33, March/April 2014.

[4] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian. Managing DRAM
Latency Divergence in Irregular GPGPU Applications. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages 128–139, November 2014.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia: A Benchmark
Suite for Heterogeneous Computing. In Proceedings of the IEEE International Symposium on Workload

Characterization, pages 44–54, October 2009.
[6] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron. A Characterization of the

Rodinia Benchmark Suite with Comparison to Contemporary CMP Workloads. In Proceedings of the

IEEE International Symposium on Workload Characterization, pages 1–11, December 2010.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:22 S. Rai and M. Chaudhuri

[7] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi. Application-to-core Mapping Policies
to Reduce Memory System Interference in Multi-core Systems. In Proceedings of the 19th International
Symposium on High Performance Computer Architecture, pages 107–118, February 2013.

[8] M. Demler. Iris Pro Takes On Discrete GPUs. In Microprocessor Report , September 9, 2013.

[9] G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark. Ocelot: A Dynamic Optimization Framework
for Bulk-synchronous Applications in Heterogeneous Systems. In Proceedings of the 19th International

Conference on Parallel Architecture and Compilation Techniques, pages 353–364, September 2010.

[10] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via Source Throttling: A Configurable
and High-performance Fairness Substrate for Multi-core Memory Systems. In Proceedings of the 15th

International Conference on Architectural Support for Programming Languages and Operating Systems,
pages 335–346, March 2010.

[11] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N. Patt. Parallel Ap-
plication Memory Scheduling. In Proceedings of the 44th International Symposium on Microarchitecture,
pages 362–373, December 2011.

[12] S. Ghose, H. Lee, and J. F. Martinez. Improving Memory Scheduling via Processor-side Load Criticality
Information. In Proceedings of the 40th International Symposium on Computer Architecture, pages
84–95, June 2013.

[13] N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer Visibility. In Proceedings of the 20th SIGGRAPH
Annual Conference on Computer Graphics and Interactive Techniques, pages 231–238, August 1993.

[14] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor, J. Hong, M. Dixon, M. Derr,

M. Hunsaker, R. Kumar, R. B. Osborne, R. Rajwar, R. Singhal, R. D’Sa, R. Chappell, S. Kaushik, S.
Chennupaty, S. Jourdan, S. Gunther, T. Piazza, and T. Burton. Haswell: The Fourth Generation Intel
Core Processor. In IEEE Micro, 34(2):6–20, March/April 2014.

[15] M. Harris. Dynamic Texturing. Available at http://developer.download.nvidia.com/assets/gamedev/docs/
DynamicTexturing.pdf.

[16] I. Hur and C. Lin. Adaptive History-Based Memory Schedulers. In Proceedings of the 37th International

Symposium on Microarchitecture, pages 343–354, December 2004.
[17] Intel Corporation. Intel Core i7-4770 Processor. Available at http://ark.intel.com/products/75122/Intel-

Core-i7-4770-Processor-8M-Cache-up-to-3 90-GHz.

[18] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Self-Optimizing Memory Controllers: A Reinforcement
Learning Approach. In Proceedings of the 35th International Symposium on Computer Architecture,

pages 39–50, June 2008.

[19] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. Emer. High Performance Cache Replacement using
Re-reference Interval Prediction (RRIP). In Proceedings of the 37th International Symposium on

Computer Architecture, pages 60–71, June 2010.
[20] M. K. Jeong, M. Erez, C. Sudanthi, and N. C. Paver. A QoS-aware memory controller for dynamically

balancing GPU and CPU bandwidth use in an MPSoC. In Proceedings of the 49th Annual Design

Automation Conference, pages 850–855, June 2012.
[21] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das. Orchestrated

Scheduling and Prefetching for GPGPUs. In Proceedings of the 40th International Symposium on

Computer Architecture, pages 332–343, June 2013.
[22] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das.

OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving GPGPU Performance. In

Proceedings of the 18th International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 395–406, March 2013.

[23] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das. Exploiting

Core Criticality for Enhanced GPU Performance. In Proceedings of the International Conference on
Measurement and Modeling of Computer Science (SIGMETRICS), pages 351–363, June 2016.

[24] D. Kanter. Intel’s Ivy Bridge Graphics Architecture. April 2012. Available at
http://www.realworldtech.com/ivy-bridge-gpu/.

[25] D. Kanter. Intel’s Sandy Bridge Graphics Architecture. August 2011. Available at

http://www.realworldtech.com/sandy-bridge-gpu/.
[26] D. Kanter. AMD Fusion Architecture and Llano. June 2011. Available at

http://www.realworldtech.com/fusion-llano/.

[27] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T. Kandemir, G. H. Loh, O. Mutlu,
and C. R. Das. Managing GPU Concurrency in Heterogeneous Architectures. In Proceedings of the 47th

International Symposium on Microarchitecture, pages 114–126, December 2014.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

Criticality of GPU Accesses in Memory Management 1:23

[28] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither More nor Less: Optimizing Thread-level
Parallelism for GPGPUs. In Proceedings of the 22nd International Conference on Parallel Architectures
and Compilation Techniques, pages 157–166, September 2013.

[29] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and High-performance Scheduling
Algorithm for Multiple Memory Controllers. In Proceedings of the 16th International Conference on
High-Performance Computer Architecture, January 2010.

[30] H. Kim, J. Lee, N. B. Lakshminarayana, J. Sim, J. Lim, and T. Pho. MacSim: A CPU-GPU Heterogeneous
Simulation Framework. February 2012. Available at https://code.google.com/p/macsim/.

[31] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior. In Proceedings of the 43rd International Symposium
on Microarchitecture, pages 65–76, December 2010.

[32] N. Kirman, M. Kirman, M. Chaudhuri, and J. F. Martinez. Checkpointed Early Load Retirement. In
Proceedings of the 11th International Conference on High-Performance Computer Architecture, pages
16–27, February 2005.

[33] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin. DRAM Scheduling Policy for GPGPU Architectures
Based on a Potential Function. In IEEE Computer Architecture Letters, 11(2): 33–36, July 2012.

[34] S-Y. Lee, A. Arunkumar, and C-J. Wu. CAWA: Coordinated Warp Scheduling and Cache Prioritiza-

tion for Critical Warp Acceleration of GPGPU Workloads. In Proceedings of the 42nd International
Symposium on Computer Architecture, pages 515–527, June 2015.

[35] S-Y. Lee and C-J. Wu. CAWS: Criticality-aware Warp Scheduling for GPGPU Workloads. In Proceedings

of the International Conference on Parallel Architectures and Compilation Techniques, pages 175–186,
August 2014.

[36] J. Lee and H. Kim. TAP: A TLP-aware Cache Management Policy for a CPU-GPU Heterogeneous

Architecture. In Proceedings of the 18th International Symposium on High Performance Computer
Architecture, pages 91–102, February 2012.

[37] F. D. Luna. Introduction to 3D Game Programming with DirectX 10 . Wordware Publishing Inc..

[38] R. Manikantan and R. Govindarajan. Focused Prefetching: Performance Oriented Prefetching Based on
Commit Stalls. In Proceedings of the 22nd International Conference on Supercomputing , pages 339–348,

June 2008.

[39] V. Mekkat, A. Holey, P-C. Yew, and A. Zhai. Managing Shared Last-level Cache in a Heterogeneous
Multicore Processor. In Proceedings of the 22nd International Conference on Parallel Architectures and

Compilation Techniques, pages 225–234, September 2013.

[40] V. Moya, C. Gonzalez, J. Roca, A. Fernandez, and R. Espasa. ATTILA: A Cycle-Level Execution-Driven
Simulator for Modern GPU Architectures. In Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software, pages 231–241, March 2006. Source and traces available
at http://attila.ac.upc.edu/wiki/index.php/Main Page.

[41] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. T. Kandemir, and T. Moscibroda. Reducing Memory

Interference in Multicore Systems via Application-aware Memory Channel Partitioning. In Proceedings
of the 44th International Symposium on Microarchitecture, pages 374–385, December 2011.

[42] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An Alternative to Very Large

Instruction Windows for Out-of-Order Processors. In Proceedings of the 9th International Symposium
on High-Performance Computer Architecture, pages 129–140, February 2003.

[43] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors. In

Proceedings of the 40th International Symposium on Microarchitecture, pages 146–160, December 2007.
[44] O. Mutlu and T. Moscibroda. Parallelism-aware Batch Scheduling: Enhancing both Performance and

Fairness of Shared DRAM Systems. In Proceedings of the 35th International Symposium on Computer

Architecture, pages 63–74, June 2008.
[45] N. C. Nachiappan, P. Yedlapalli, N. Soundararajan, M. T. Kandemir, A. Sivasubramaniam, and C.

R. Das. GemDroid: A Framework to Evaluate Mobile Platforms. In Proceedings of the International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), pages 355–366, June

2014.

[46] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. 2006. Fair Queuing Memory Systems. In
Proceedings of the 39th International Symposium on Microarchitecture, pages 208–222, December 2006.

[47] T. Olson. Mali 400 MP: A Scalable GPU for Mobile and Embedded Devices. In Symposium on

High-Performance Graphics, June 2010.
[48] T. Piazza. Intel Processor Graphics. In Symposium on High-Performance Graphics, August 2012.

[49] S. Rai and M. Chaudhuri. Exploiting Dynamic Reuse Probability to Manage Shared Last-level Caches

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

1:24 S. Rai and M. Chaudhuri

in CPU-GPU Heterogeneous Processors. In Proceedings of the 30th International Conference on
Supercomputing, June 2016.

[50] S. Rai and M. Chaudhuri. Improving CPU Performance through Dynamic GPU Access Throttling in

CPU-GPU Heterogeneous Processors. In Proceedings of the 26th IEEE International Heterogeneity in
Computing Workshop, pages 18–29, May 2017.

[51] M. Ribble. Next-gen Tile-based GPUs. In Game Developers’ Conference, 2008.

[52] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D. Owens. Memory Access Scheduling. In

Proceedings of the 27th International Symposium on Computer Architecture, pages 128–138, June 2000.
[53] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A Cycle Accurate Memory System Simulator.

In IEEE Computer Architecture Letters, 10(1): 16–19, January-June 2011.
[54] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically Characterizing Large Scale

Program Behavior. In Proceedings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 45–57, October 2002.

[55] A. L. Shimpi. Intel Iris Pro 5200 Graphics Review: Core i7-4950HQ Tested. June 2013. Available at

http://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested.

[56] D. Shingari, A. Arunkumar, and C-J. Wu. Characterization and Throttling-Based Mitigation of Memory
Interference for Heterogeneous Smartphones. In Proceedings of the International Symposium on Workload

Characterization, pages 22–33, October 2015.

[57] A. Stevens. QoS for High-performance and Power-efficient HD Multimedia. ARM White Paper , 2010.
[58] J. A. Stratton, C. Rodrigues, I-J. Sung, N. Obeid, L-W. Chang, N. Anssari, G. D. Liu, and W-m.

W. Hwu. Parboil: A Revised Benchmark Suite for Scientific and Commercial Throughput Computing.
IMPACT Technical Report IMPACT-12-01 , March 2012.

[59] S. Subramaniam, A. Bracy, H. Wang, and G. H. Loh. Criticality-based Optimizations for Efficient

Load Processing. In Proceedings of the 15th International Conference on High-Performance Computer
Architecture, pages 419–430, February 2009.

[60] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu. The Blacklisting Memory Scheduler:

Achieving High Performance and Fairness at Low Cost. In Proceedings of the 32nd International
Conference on Computer Design, pages 8–15, October 2014.

[61] L. Subramanian, V. Seshadri, A. Ghosh, S. M. Khan, and O. Mutlu. The Application Slowdown

Model: Quantifying and Controlling the Impact of Inter-application Interference at Shared Caches and
Main Memory. In Proceedings of the 48th International Symposium on Microarchitecture, pages 62–75,

December 2015.

[62] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu. MISE: Providing Performance
Predictability and Improving Fairness in Shared Main Memory Systems. In Proceedings of the 19th

International Symposium on High Performance Computer Architecture, pages 639–650, February 2013.
[63] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2Sim: A Simulation Framework for CPU-

GPU Computing. In Proceedings of the 21st International Conference on Parallel Architecture and

Compilation Techniques, pages 335–344, September 2012.
[64] H. Usui, L. Subramanian, K. K-W. Chang, and O. Mutlu. DASH: Deadline-Aware High-Performance

Memory Scheduler for Heterogeneous Systems with Hardware Accelerators. In ACM Transactions on

Architecture and Code Optimization, 12(4), January 2016.
[65] J. Walton. The AMD Trinity Review (A10-4600M): A New Hope. May 2012. Available at

http://www.anandtech.com/show/5831/amd-trinity-review-a10-4600m-a-new-hope/.

[66] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts. A Fully Integrated Multi-CPU, GPU, and
Memory Controller 32 nm Processor. In Proceedings of the International Solid-State Circuits Conference,

pages 264–266, February 2011.

[67] 3D Mark Benchmark. http://www.3dmark.com/.

Received April 2017; revised June 2017; accepted June 2017

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 6, Article 1. Publication date:

October 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 GPU Access Criticality
	4.1 Identifying Critical GPU Accesses
	4.2 Estimating Projected Frame Rate
	4.3 Scheduling DRAM Accesses

	5 Simulation Environment
	5.1 Additional Hardware Overhead

	6 Simulation Results
	6.1 Mixes with 3D Rendering Workloads
	6.2 Mixes with GPGPU Workloads

	7 Summary
	References

