ORDER, INFORMATION & STREAMS

S. Guha
UPenn



Data Streams Model

o We are given a sequence of input
Xq,....Xi,...X, and have to compute some

function f
o Computation proceeds in passes
o Space is restricted

o Any x; hot explicitly remembered:
inaccessible in the same pass



The significance of the model

o It is a model which treats "random
access” as a resource.

The effect of the order of the input on
computing a function.

The information we need to pass around,
specially in multi-pass algorithms.



Two Interpretations

o What does the stream encode
Whole objects: median finding
Updates: computing distances

o Two oldest problems in streaming...

(with some retro interpretation)
[80], [85]



Types of Order

Adversarial
Random
Sorted

Aggregated (updates)
Update is <UL
Aggregated is ..<uX; 8'p...

o Sorted Aggregated ... (time series)

O O O O

o ... random access = we control the structure



Median finding

o Munro Paterson 78
O~(n'/?) space, p passes
Det. Lower bounds
O(y/n) space for 1 pass random order

Lower bound for "“algorithms which store
contiguous..."

Conj. O(log log n) pass polylog space
median finding algorithm exists



Approximation

o Manku, Rajagopalan, Lindsay
o Greenwald, Khanna
e

o O(1/¢) space for + ¢ n

o ~ Munro Paterson type tradeoff
o ~ O(1/£P) space for + ¢ nin p passes

o ~ Chang, Kannan 05...first Q() result
(for a different problem)



Is there an Q2()7?

o Why do we care?
o Usual reasons ...

o [6uha, McGregor 06] Random order
Polylog space + (4/n) log® n error, 1 pass
O(log log n) passes suffice

o Q = Exponential Separation!



There Is an Q().

o Ongoing work ...

o Indexing
Alice has ¢ € {0,1}"
Bob has j
Compute o[j]
Q(n) communication ...

o Alice creates a stream ..2i+c[i]...
o Bob adds n-j O's and j copies of 2(n+1)



Round Elimination Lemma

o Bro-Miltersen, Nisan, Safra, Wigderson
o Communication problem F(x,y)
o Define P

Alice has xq,%5... X,

Bob has yi,i
Compute F(x;,y)

o Great protocol for P = Good protocol for F
o If Pgis self reducible, i.e. similar to F, then..



Median Is self reducible

o Alice creates




Median Is self reducible

o Bob adds




Median Is self reducible

o Bob adds




Result ...

o Q(nYpr-1) space p passes

o = Exponential Separation in random
and adversarial order

o What about other orders?
o Sorted?



Order of Medians

o One pass is hard - if we do not know
length of stream

o Two pass is trivial.

o Variations of sorted order...
Bitonic?
Two increasing sequences?
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What about the upper bounds?

o Median of two sorted sequences

o Emulate O(nY/r-) protocol for Alice and Bob

Alice sends O(n!/3) quantiles.
Bob locates the position of median

Sends back O(n!'/3) quantiles of that region +
above, below, etc.

The number of candidates is now O(n!/3)
Alice sends O(n!/3) humbers to Bob

Bob computes their rank (and of the O(n!/3)
elements he has) announces the answer




What about the upper bounds?

o Median of two sorted sequences

o The critical operation.
Bob locates the position of median

Sends back O(n!/3) quantiles of that region
+ above, below, etc.

o O(n¥@r-D) is tight for bitonic seq.



Adversarial Order?

o Can we do better than Munro-
Paterson?

o No.

o How?
o Round Elimination does not work.



Pointer Chasing

o Alice and Bob has a function f,g resp. over

[n]

o They want to compute f(g(f(g......(1))
o k alterations
o Nisan and Wigderson : Q(n/k?) space

o But k/2 passes ... each pass has both f,g



Multiparty Pointer Chasing

o K+1 players
o Functions over [m]

O COY\'\PUT@ fl(fz(f3(f4 ...... (1))

o Consider "blowing up” the tree

o Each of Py P,,.. P, "anticipate” the value
coming in.

O Py.1 dumps f.;(1) to the stream

o Why medians?



Easy

o One alternation pointer chasing is
Indexing.

o (slightly modified version of) Old
reduction

o Q(nk) lower bound



Interestingly...

o We have a result which separates
streaming and communication
complexity.




Types of Order

Adversarial
Random
Sorted

Aggregated (updates)
Update is <UL
Aggregated is ..<uX; 8'p...

o Sorted Aggregated ... (time series)

O O O O

o ... random access = we control the structure



Distances between 2 streams

o Alon, Matias & Szegedy 4 for k> 2 ...

o Feigenbaum, Kannan, Strauss & Vishwanathan ¢
but in an "aggregate model” = ... (i, # of
packets) ...

o Indyk 4 for 1< k<2 ..

o Tight results for k > 3 have since been
achieved...



Random Projections

o [Johnson, Lindenstrauss] 1984

o Given a matrix A whose elements are
iild Gaussian, and any vector x, with
high prob.

I, <]Ax], < @+,

if 2 € R™ then A € R»xO(logn)
— Az € RO(logn)

Dimensionality reduction, nearest nbr searches.



What it achieves

o Computes Norm when elements
arrive out of order.

A

X

Note: A proof that such a pseudorandom generator exists is
Necessary — and is not always easy.



A Kalelidoscope of questions

Which other distances are approximable?

What property of a distance makes it
approximable?

You guessed if.

It's the order in which a stream arrives - and the
information that comes with it.



A peek of things to come

o That's probably it folks, for update
streams.

o Aggregate streams - different story.




A real Kaleidoscope of questions

o You may also ask: For what "popular”
measure do we learn something new?

o Understanding is not a popularity
contest.

o And popular with whom?



An Example

D2=%; (v/X; - Vi)
(squared) Hellinger distance

Easy in "aggregate” model

What about updates? k
e

> VIx:-y:| is easy (1/2 stable distribution)




A Kalelidoscope of questions

o What measures of distances are
meaningful for distributions ?

Hypothesis testing:

o f-divergences or Ali-Silvey-Cziszar
divergences

Mathematical programming:
o Bregman divergences

o Model "Risk"” etc.,




Divergences

o f-divergences:

Pick a j from x and consider the expected
likelihood D¢(x,y)=E, ; f(y,/x;) provided f(1)=0.f
convex...

o 0 KL(x)y) =2 x; log (x;/y;) = f(u)=- log u

2 o Hellinger”2 = %; (v/x; - v/¥))2 =; x; (1-/ (y;/x))?
or f(u)=(1-\/u)?.

©o 4=31x-y; | =% x; | 1= (yy/x)] or f(u)=|1-ul

o Also arises from loss functions in learning ...



Bregman Divergences

o Potential field F

o Convex F
© F(x)=x? =
0 B(X,y)=x2-y?-2y(x-y)=(x-y)* = &, |
F(x)=x lg x =
o B(x,y)=xlg x -y lgy - (1+Ig y)(x-y)
=xlg (y/x)-x +y s
— Gen. KL div a

Br(p,q)=F(p) — F(q) — (V F(Q)) o (p-9)




Consequence (1)...

o If f',f" exist ... f-divergences cannot be
approximated in update streams

[, is the ONLY f-divegence

We now know exactly why the other divergences
do not work.




Conseqguence (2) ...

o Bregman: If F" vanishes or diverges
polynomially at the nbd of O =
inapproximable.

o Note F“=constant for ¢4,



The takeaway

o Any distance measure which is
decomposable & ¢(x;,y;) is such that it
shrinks or increases even when x; -y, is
constant.

o It's the order.



