
Counting Triangles and other Subgraphs
in Data Streams

Stefano Leonardi1

Joint work with:
 Luciana Salete Buriol2, Gereon Frahling3, Alberto

Marchetti-Spaccamela1, Christian Sohler4

1 Univ. of Rome “La Sapienza”
2 Univ. of Porto Alegre

3Google
4 Heinz Nixdorf Institute, Univ. of Paderborn

Counting Subgraphs

Several applications:

– Network analysis: Computation of indices, e.g. the clustering
coefficient

– Network modelling: Frequent small subgraphs or motifs are
considered as building blocks of universal classes of complex
networks [Itzkovits et al, Science 298]

– Community detection: Occurrence of a large number of specific
subgraphs, e.g. bipartite cliques, has been observed in the
Webgraph [Kumar et al, 1999]

– Indexing: identify the most frequent patterns in a graphical
database [Yan, Yu and Han, 2004]

Most basic problem:
Counting Triangles in a Graph

• Exact computation reduces to matrix multiplication:
unfeasible for networks even of medium size

• Several heuristics have been proposed and tested
(Schank and Wagner, 2005, Latapy 2006)

• Resort to the Data Stream Model:

• Data arrives one item at a time. The algorithms
have the task of handling the computation in small
space and computational time per item.

Main applications:

• When the streams are not stored and must be processed on the
fly as they are produced (more than 20 exabytes are created
every year, most of them are forgotten);

• When the memory or time for storing or processing the stream
is limited;

• When an exact computation is too time consuming and just a
good estimation of the underlying data is required.

Data Stream Sampling Algorithms

• Selection of a subset of items and check some specific
property on them;

• Define the kind of sample and the sample size

• Results: Algorithms that produce an (1±ε)
approximation of the number of subgraphs in the graph
with probability at least 1-δ by using O(s) memory cells

• s is usually the number of samples needed to achieve a
given precision

Counting Triangles in Data Streams

Let’s T0, T1, T2 and T3 represent the set of triples that
 have 0, 1, 2 and 3 edges, respectively.

• Given a graph G=(V,E), where V is the set of vertices
and E the set of edges, consider all triples of nodes
of V;

• We can find four type of structures depending on the
number of edges connecting them

Naive Sampling

• r independent samples of three distinct vertices
(a,b,c) from the graph

• For the ith sample, if (a,b,c) is a triangle then
output βi=1 else output βi=0.

• E[βi] = T3 / (T0 +T1 + T2 + T3)

• T3 = (T0 +T1 + T2 + T3) = (|V|*|V-1|*|V-2|) / 6

Naive sampling

• Use Σi βi/r as an estimator of E[βi]

• Output T’3 = T3 * Σi βi/r

• By Chernoff bounds:

• If r= O(log (1/ δ) 1/ε2 ((T0 +T1 + T2 + T3) / T3))

then (1-ε) T3 <T’3 < T3 (1+ ε) with pb > 1- δ

• Number of samples is prohibitive if T3= o(n2)

The Graph as a Stream

• Adjancency Stream model: Each item of the stream is an arc of
the graph

Depending on the application, we can consider some order in the
stream.

• Incidence Stream model: The entire incidence list of outgoing
arcs of each node is extracted consecutively.

Our result for the Adjacency Stream
model

Previous best results:

s=O(log (1/ δ) 1/ε2 ((T1 + T2 + T3)3
 / T3) log |V|)

[Bar-Yossef, Kumar and Sivakumar, Reductions in
Streaming Algorithms, with an Application to Counting
Triangles in Graphs, SODA 2002]

Theorem 1: There exists a 1-pass streaming algorithm
which needs s=O(log (1/ δ) 1/ε2 ((T1 + T2 + T3) / T3))
memory cells and O(1+ s log |E|/|E|)) update time per
item

Idea of the algorithm
 for the Adjacency Stream model

• We take an edge e=(a,b) ∈ E and a node v ∈
V \ {a,b}, and look for the missing edges.

• The following property holds for any graph:

T1 + 2T2 + 3T3 = |E|(|V|-2)

• Triples belonging to T0 are not considered.

?

?
a

b

v
|E|(|V|-2)

A 3-pass streaming algorithm

1. 1st Pass: count the number of edges |E| in the
stream

2. 2nd Pass: sample an edge e=(a,b) uniformly chosen
among all edges from the stream.
Choose a node v uniformly from V\{a,b}

3. 3rd Pass: Test if edges (a,v) and (b,v) are present
in the stream.
If (a,v) ∈ E and (b,v) ∈ E then output β=1 else
output β=0.

A 3-pass streaming algorithm

• The streaming algorithm outputs a value β
having expected value:

321

3

32

3
][

TTT

T
E

++
=!

3

)2|(|||].[
3

!
=

VEE
T

"

• Furthermore:

A 3-pass streaming algorithm

• There is a streaming algorithm that outputs a
value T’3 satisfying (1-ε) T <T’ < T (1+ ε) with
probability 1-δ

• We start r parallel instances of the 3-pass
algorithm, and each one outputs a value βi

)
1

ln(
322

3

321

2 !" T

TTT
r

++
=

A 3-pass streaming algorithm

• We use as an estimator for

• We estimate T3 as:

! =

r

i i

r
1

1
"

!

T '3 =
1

r
"
i

i=1

r

#
$

%
&

'

(
) .
| E | (|V |*2)

3

321

3

32

3
][

TTT

T
E

++
=!

A 3-pass streaming algorithm

• Proof by Chernoff Bounds

• Setting

both probabilities together are bounded by δ

3/].[.

1

2

][)1(
1

Pr rEr

i i
eE

r

!"!"! #

=
$%&

'
()

*
++,

2/].[.

1

2

][)1(
1

Pr rEr

i i
eE

r

!"!"! #

=
$%&

'
()

*
#$+

)
1

ln(
322

3

321

2 !" T

TTT
r

++
=

A 3-pass streaming algorithm

• We suppose that the events within the brackets do
not occur. In this case:

• Same argument to obtain

][)1(
1

1

!"! E
r

r

i

i
+<#

=

3

)2|(|||
][)1(

3

)2|(|||1

1

!
+<

!
" #

=

VE
E

VE

r

r

i

i
$%$

!

" T '
3
< (1+ #)T

3

!

" T '
3
> (1+ #)T

3

One pass algorithm

• A uniform choice of an edge in one pass can be done
with reservoir sampling: choose the first edge as a
sample edge and replacing this edge by the i-th edge
of the stream with probability 1/i.

• When choosing a sample, it can happen that we
already miss some arcs. We have 1/3 of probability of
not doing that.

Sample one-pass

i←1;
for each edge es=(as,bs) in the stream do:

flip a coin. With probability 1/i do:
a ← as; b ← bs;
v ← node uniformly chosen from V \ {a,b}
x ←false; y ←false;

end do

if es = (a,v) then x ←true;
If es = (b,v) then y ←true;

end for
if x=true and y=true return β=1 else return β=0

a

b

v

Sample one-pass

321

3

32

3
][

TTT

T
E

++
=!

• The streaming algorithm outputs a value b having
expected value:

)
1

ln(
326

3

321

2 !" T

TTT
r

++
=

• The size of the sample

!

3T ' =
1

r
"
i

i=1

r

#
$

%
&

'

(
) . | E | (|V |*2)

• We estimate T3 as:

Results for a sample set of size 100

Considering a structured stream

• Which kind of structure can benefit the algorithm and still be a
natural and good representation of the graph?

• Consider the Incidence Stream model, where the adjacency lists
of nodes are stored in sequence in the stream

• No order is required within each adjacency list

• Each arc is seen twice in the stream

Results on Incidence Stream

• Our result:

• Previous best results from Yossef, Kumar and
Sivakumar: Reductions in Streaming Algorithms, with
an Application to Counting Triangles in Graphs, 2002

!
!
"

#
$
$
%

&
!!
"

#
$$
%

&
+!

"

#
$
%

&

3

2

2
1.

1
log.

1

T

T
O

'(

!

O
1

"2
.log

1

#

$

%
&
'

(
) . 1+

T2

T3

$

%
&

'

(
)

2

logn + d logn

$

%

&
&

'

(

)
)

Incidence streams

• Sample from all possible Vs, i.e., combinations of two arcs leaving
a node

• For each node i, where di is its degree, the number of V’s, having
node i in common is:

i i

A V

!
"

#
$
%

& '
=!!

"

#
$$
%

&

2

1
.

2

i

i

i d
d

d

Counting triangles in incidence streams

• In this case our sample is a V, and we check if the
third arc is later seen in the stream

• It holds for any graph:

! =
"
#

$
%
&

' (
=+

||

132
2

1
.3

V

i

i

i

d
dTT

Incidence 3-pass algorithm

• 1st Pass: count the number of Vs of the stream

• 2nd Pass: uniformly choose one V among all of them.
Let us call it (a,b,c)

• 3rd Pass: Test if edge (a,c) is present in the stream.
If (a,c) ∈ E then output β=1 else output β=0;

a

b
c

Computational Experiments

• Optimized implementation of the algorithms

• Experiments on large Webgraphs, Wikigraphs,
collaboration between scientists and actors

• Adjacency list model: accurate estimation for
s = 106

• Incidence list model: accurate estimation for
s = 104

Results for the Incidence List model

Dimension of some
graphs extracted from

different sorces

Number of triangles
of the graphs

Comparing with the optimal computation
[Schank and Wagner, 2004]

Clustering Coefficient

• Graph G = (V, E) V: set of n vertices E: set of m edges

• N(v) = set of vertices adjacent to v

•Local Clustering Coefficient of vertex

probability that any two vertices in N(v) are connected

C(v) = |{(u,v) ∈ E : u,v ∈ N(v) }|/ (N(v) *(N(v) -1))/2)

•Clustering Coefficient of a graph:

C(G)= 1/n ∑ C(v)

V

C(v)=3/6

Transitivity Coefficient

• Transitivity Coefficient:

probability that any two vertices adjacent to a third vertex in
the graph are connected

T(G) = ∑v|{(u,w) ∈ E : u,w ∈ N(v) }|/ (∑v N(v) *(N(v) -1))/2)

• Reduce to counting number
of triangles in the graph

T(G)=9/14

Computing the Clustering Coefficient

• Our results:
There is a 1-pass streaming algorithm which
with pb (1-δ) returns an ε-approximation of
C(G) when the graph is given as an incidence
stream that uses

O(log (1/ δ) log n/ ε2 C(G)) memory cells.

• C(G) is usually in [10-1,10-5]: feasible for
networks of any size.

A 2-pass streaming algorithm

1. Sample s vertices w1, ….., ws.

2. for i = 1 to s do

sample at random pair (u,v), u ≠ v, of points of N(wi)

If (u,v) ∈ E then Xi = 1
else Xi = 0

3. Output X= 1/s ∑i Xi

Counting k3,3 in Data Streams

• Let k3,3 denote the number of k3,3 minors
and k3,1 denote the number of k3,1 minors

• We assume the outdegree of the graph
bounded by d

• The edges are sorted by destination nodes
• We do not assume any order by source nodes

Sample

• Sample a k3,1 and 2 nodes not belonging to
the k3,1

w

v

b

c

a

u

Counting k3,3 in Data Streams

b

c

a

u

• From all k3,1 occuring in the stream, chose one
uniformly

• Let the three edges be (a,u), (b,u) and (c,u)

Counting k3,3 in Data Streams

• From all k3,1 occuring in the stream, chose one uniformly
• Let the three edges be (a,u), (b,u) and (c,u)
• Select uniformly x1, x2 ∈ {a,b,c}
• Choose uniformly random variables k1, k2 ∈ {1,2,…,d}
• If k1=k2 and x1=x2 then output β = 0
• Go on passing over the stream
• Select the (x1,v) as the k1-th edge (x1,) after selecting the k3,1

v

b

x1

a

u

c

x2

Counting k3,3 in Data Streams

• From all k3,1 occuring in the stream, chose one uniformly
• Let the three edges be (a,u), (b,u) and (c,u)
• Select uniformly x1, x2 ∈ {a,b,c}
• Choose uniformly random variables k1, k2 ∈ {1,2,…,d}
• If k1=k2 and x1=x2 then output β = 0
• Go on passing over the stream
• Select the (x1,v) as the k1-th edge (x1,) after selecting the k3,1
• Select the (x2,w) as the k2-th edge (x2,) after selecting the

k3,1

v

b

c

a

u

w x2

x1

Counting k3,3 in Data Streams

• From all k3,1 occuring in the stream, chose one uniformly
• Let the three edges be (a,u), (b,u) and (c,u)
• Select uniformly x1, x2 ∈ {a,b,c}
• Choose uniformly random variables k1, k2 ∈ {1,2,…,d}
• If k1=k2 and x1=x2 then output β = 0
• Go on passing over the stream
• Select the (x1,v) as the k1-th edge (x1,) after selecting the k3,1
• Select the (x2,w) as the k2-th edge (x2,) after selecting the

k3,1
• From the time of selecting (x1,v): check if (a,v), (b,v), (c,v) are

present in the stream

v c

w

b

a

u

One-pass algorithm

• From the time of selecting (x2,w): check if (a,w), (b,w), (c,w) are
present in the stream

• In this case output β = 1 else output β = 0

• From all k3,1 occuring in the stream, chose one uniformly
• Let the three edges be (a,u), (b,u) and (c,u)
• Select uniformly x1, x2 ∈ {a,b,c}
• Choose uniformly random variables k1, k2 ∈ {1,2,…,d}
• If k1=k2 and x1=x2 then output β = 0
• Go on passing over the stream
• Select the (x1,v) as the k1-th edge (x1,) after selecting the k3,1
• Select the (x2,w) as the k2-th edge (x2,) after selecting the

k3,1
• From the time of selecting (x1,v): check if (a,v), (b,v), (c,v) are

present in the stream

Probability of finding a k3,3

• The k3,3 will be chosen in case the following events
occur:
– Nodes a,b,c,u are chosen as the k3,1 with u being the

destination node Pr = 1/k3,1
– v and w must be chosen Pr = 1/d*1/d
– x1 must be the first within the incidence list of v

Pr = 1/3
– x2 must be the first within the incidence list of w

Pr = 1/3

Counting k3,3 in Data Streams

• The algorithm outputs a value β such that:

1,3

2

3,3

9
][

kd

k
E =!

The following property holds for any graph:

!
=

""
=##

$

%
&&
'

(
=

||

1 6

)2)(1(

3
1,3

V

i

iiii dddd
k

Counting k3,3 in Data Streams

• Number of samples:

• Approximation:

!"

1
ln.

.
.

1

3,3

2

1,3

2
k

dk
r =

!!
"

#
$$
%

&
!!
"

#
$$
%

&
''!

"

#
$
%

&
= ((

=
= 6

9
.)2).(1.(.

1~
2||

1
13,3

d
ddd

r
K

V

i

iii
i

r

i
)

1-Pass algorithm for counting K3,3

• There is a one pass algorithm that counts the
number of k3,3 of a graph in incidence
streams ordered by destination nodes with
outdegree bounded by d up to a multiplicative
error of ε with probability at least 1-δ, which
space is

!
!

"

#

$
$

%

&

'(

1
ln.

.
.

1
|).log(|

3,3

2

1,3

2
k

dk
VO

Counting other Subgraphs
(with Ilaria Bordino and Debora Donato)

Experimental results

Experimental results

Conclusions and Open Problems

• Random Sampling Data Stream Algorithms for
counting the number of some minors in a graph.

• Algorithms scale up to networks of any size for graph
minors of size 3 and 4.

• Automatically select the best strategy for each given
graph minor

• Counting on streams of insertions and deletions

