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Counting Subgraphs

Several applications:

- Network analysis: Computation of indices, e.g. the clustering
coefficient

- Network modelling: Frequent small subgraphs or motifs are
considered as building blocks of universal classes of complex
networks [Itzkovits et al, Science 298]

- Community detection: Occurrence of a large number of specific
subgraphs, e.g. bipartite cliques, has been observed in the
Webgraph [Kumar et al, 1999]

- Indexing: identify the most frequent patterns in a graphical
database [Yan, Yu and Han, 2004]



Most basic problem:
Counting Triangles in a Graph

Exact computation reduces to matrix multiplication:
unfeasible for networks even of medium size

Several heuristics have been proposed and tested
(Schank and Wagner, 2005, Latapy 2006)

Resort to the Data Stream Model:

Data arrives one item at a time. The algorithms
have the task of handling the computation in small
space and computational time per item.



Main applications:

» When the streams are not stored and must be processed on the
fly as they are produced (more than 20 exabytes are created
every year, most of them are forgotten);

 When the memory or time for storing or processing the stream
is limited;

* When an exact computation is oo time consuming and just a
good estimation of the underlying data is required.



Data Stream Sampling Algorithms

Selection of a subset of items and check some specific
property on them;

Define the kind of sample and the sample size

Results: Algorithms that produce an (1+¢)
approximation of the number of subgraphs in the graph
with probability at least 1-8 by using O(s) memory cells

s is usually the number of samples needed to achieve a
given precision



Counting Triangles in Data Streams

« Given a graph 6=(V,E), where V is the set of vertices
and E the set of edges, consider all triples of nodes
of V.

« We can find four type of structures depending on the
number of edges connecting them
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Let's TO, T1, T2 and T3 represent the set of triples that
have 0, 1, 2 and 3 edges, respectively.




Naive Sampling

r independent samples of three distinct vertices
(a,b,c) from the graph

For the ith sample, if (a,b,c) is a triangle then
output p;=1 else output p,=0.

E[B:1=Ts/ (To+T +T,+T3)

T3 = (To+Ty+ T+ T3) = (IVI*[V-1]*|V-2]) / 6



Naive sampling

+ Use Z;B,/r as an estimator of E[f;]

* Output T3 =T3* 2 B/r

* By Chernoff bounds:

+ If r= O(log (1/ 8) 1/€2 (T +T;+ T+ T3)/ T3))
then (1-¢) T3 <T'3 < T3 (1+ e) with pb > 1- 8

« Number of samples is prohibitive if T5= o(n?)



The Graph as a Stream

* Adjancency Stream model: Each item of the stream 1s an arc of
the graph

Depending on the application, we can consider some order in the
stream.

e Incidence Stream model: The entire incidence list of outgoing
arcs of each node 1s extracted consecutively.




Our result for the Adjacency Stream
model

Theorem 1. There exists a 1-pass streaming algorithm
which needs s=O(log (1/8) 1/e2 ((T1+ T2+ T3 )/ T3))
memory cells and O(1+ s log |E|/|E|)) update time per
Item

Previous best results:
s=0(log (1/ 8) 1/e2 ((Ty+ T,+ T3)*/ T3) log |V])

[Bar-Yossef, Kumar and Sivakumar, Reductions in
Streaming Algorithms, with an Application to Counting
Triangles in Graphs, SODA 2002]



Idea of the algorithm

for the Adjacency Stream model
- We take an edge e=(a,b) EE and a node v €
V \ {a,b}, ang look for the missing edges.

/ E[(V]-2)

* The following p.r'oper"ry holds for any graph:

T, + 2T, + 3T; = [E[(|V]-2)

* Triples belonging to Tyare not considered.



A 3-pass streaming algorithm

1st Pass: count the number of edges |E| in the
stream

2nd Pass: sample an edge e=(a,b) uniformly chosen
among all edges from the stream.

Choose a node v uniformly from V\{a,b}

3rd Pass: Test if edges (a,v) and (b,v) are present
in the stream.

If (a,v) € Eand (b,v) € E then output p=1 else
output p=0.



A 3-pass streaming algorithm

» The streaming algorithm outputs a value p
having expected value:

3T,
1, + 2T, + 37,

E[f]=

e Furthermore:

EIBLIET(V]-2)

e 3




A 3-pass streaming algorithm

* There is a streaming algorithm that outputs a
value T'; satisfying (1-¢) T <T < T (1+ &) with
probability 1-8

+ We start r parallel instances of the 3-pass
algorithm, and each one outputs a value £,

2 1T+ 2T, + 31,
£’ T,

r

ln%)



A 3-pass streaming algorithm

|l :
+ Weuse —>» B asanestimator for
r

3
T, + 2T, + 3T,

Elp]

+ We estimate T; as:

(I |E 1V 1=2)
T3—(r}j,.=1/3i). .



A 3-pass streaming algorithm

* Proof by Chernoff Bounds

+ Setting

l r - - —e2 E[B]r/3
Pri 3= () ELB] | <

l r <(1_ < ¢ ElBlr/2
Pri_ S = (- e)ELB] | <o

2 1)+ 2T, + 3T,
£’ T,

r

1n<§>

both probabilities fogether are bounded by



A 3-pass streaming algorithm

+ We suppose that the events within the brackets do
not occur. In this case:

=3B, <(1+e)EL)

LA IEIVID) (g B0V 1D
r 3 3
=T, <+ )T,

+ Same argument to obtain =T, > (1 + )T,



One pass algorithm

* A uniform choice of an edge in one pass can be done
with reservoir sampling: choose the first edge as a
samEle edge and replacing this edge by the i-th edge
of the stream with probability 1/i.

* When choosing a sample, it can happen that we
already miss some arcs. We have 1/3 of probability of
not doing that.



Sample one-pass

i<—1;

for each edge e=(a,b,) in the stream do:

flip a coin. With probability 1/i do:
a<a, b< b
v < node uniformly chosen from V \ {a,b}

x <false; y <false;
end do

if e = (a,v) then x <true;
If e, = (b,v) theny <ftrue;
end for
if x=true and y=true return p=1 else return =0



Sample one-pass

« The streaming algorithm outputs a value b having
expected value:
AT,

E[B]=
[P 1, + 2T, + 37,
* The size of the sample

6 T +2T, +3T7,
g’ T,
 We estimate T; as:

IR NG _
T3—(r2i=1/3i).lEl(IVl 2)

r

1n<;>
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Considering a structured stream

Which kind of structure can benefit the algorithm and still be a
natural and good representation of the graph?

Consider the Incidence Stream model, where the adjacency lists
of nodes are stored in sequence in the stream

No order is required within each adjacency list

Each arc is seen twice in the stream



Results on Incidence Stream

3]

* Previous best results from Yossef, Kumar and
Sivakumar: Reductions in Streaming Algorithms, with
an Application to Counting Triangles in Graphs, 2002

e« Qur result:
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Incidence streams

Sample from all possible Vs, i.e., combinations of two arcs leaving
a node

AV
@ @

For each node /, where d.is its degree, the number of V's, having

node 7/ inh common is:
d. o
( | ) } dl .( dl 1 )
2 2




Counting triangles in incidence streams

* In this case our sample is a V, and we check if the
third arc is later seen in the stream
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Tt holds for any graph:

T, +3T, = Eizldi'( d,-z—l)




Incidence 3-pass algorithm

- 1st Pass: count the number of Vs of the stream

+ 2"d Pass: uniformly choose one V among all of them.
Let us call it (a,b,c) @ a

b/
O o C

+ 3rd Pass: Test if edge (a,c) is present in the stream.
If (a,c) € E then output p=1 else output =0;




Computational Experiments
+ Optimized implementation of the algorithms

- Experiments on large Webgraphs, Wikigraphs,
collaboration between scientists and actors

+ Adjacency list model: accurate estimation for
s = 106

- Incidence list model: accurate estimation for
s =104



Results for the Incidence List model

Table 2. Results for the one pass algerithm for counting triangles in an undirected graph structured as an incidence list. Samples of sizes of
10,000, 100,000 and 1,000,000 were considered.

Graph r=10, 000 r=100, 000 r=1,000,000 T—g‘-r—,‘f ;
T Qlu (%) Time T3 Qlt (%) Time T3 Qlu (%) Time
webgraph T7.991,057.264 - 15378 | 7,541,370,749 - 39378 | 7,993.479.298 - 490.56
6461,924928 - 153,55 | 7,384,193.,673 - 39220 | 8097287808 - 49000
9.977.868.646 - 15369 | 8 337,706,066 - 39392 | 7591170489 - 49128

actor2004 1,127,610.593 -4.16 12.29 | 1,155,564.261 -1.79 3328 | 1181693982 043 35.84 0.174932
1L111,095851 -5.57 12.52 | 1,192,599 566 1.36 20.28 | 1,177.782.402 0.10 3511
1,177,449, 181 0.07 12.12 | 1,175,270,762 -0.11 2030 | 1,178.307.250 014 85.48

google-2002 43,353 -1.22 0.28 45489 3.65 1.20 44,765 2.00 497 0.004922
45293 3.20 0.28 45435 3.52 1.00 43,704 -042 4.85
37.346 -14.91 0.27 42420 3.4 0.99 44,208 0.73 7.55

actor2002 244,973,896 -0.53 6.70 345,817,151 -0.29 11.93 347.151,228 0.10 2436 0.110693
351,507,100 1.35 6.59 347,683,085 0.25 12.03 345.810,766 -0.29 24.38
330,775,554 -4.62 6.62 344,359.423 -0.71 12.00 347.532,178 0.21 55.16

authors 1,636,611 -1.73 0.43 1,665,394 -0.01 1.21 1.670,148 0.28 447 0.227631
1,586,971 -4.71 0.44 1,648 484 -1.02 1.19 1,665,792 0.02 445
1,633,188 -1.94 0.44 1,650,487 -0.90 1.20 1,664,291 -0.07 6.86

itdk0304 458517 0.76 0.33 449 558 -1.21 1.24 457,604 0.56 4.58 0.040506
399317 -12.25 0.34 458,260 0.70 1.11 451,481 -0.79 4.44
438.002 -3.75 0.34 453440 -0.36 1.11 451,358 -0.81 6.40

wikiEN 21,099 883 7.35 2.19 20,693,869 5.29 5.34 19938256 144 16.73 0.003876
17,713,801 -0.87 2.21 20,206,714 2.81 4.78 19,894,603 1.22 16.78
20,695,192 5.30 2.19 17,977,501 -8.53 4.78 19414246 -1.22 26.72

wikiDE 7.524.028 -6.87 0.91 8265424 2131 124 8.120,882 0.52 10.54 0.027802
8,327,148 3.07 0.89 8,213,376 1.66 2.44 8,080,158 0.01 10.54
8,114,584 0.44 0.94 8,162,754 1.04 2.45 8.024.967 -0.67 16.43

wikiFR 3,060,821 -3.23 0.34 3,255,383 292 1.45 3,125,790 -1.18 7.67 0.038523
3,476,882 9.92 0.34 2,199 530 115 1.29 3125613 -1.I8 7.61
1447016 898 0.34 3,206,780 1.38 1.28 3,138,100 -0.79 10.63

wikiES 863,765 8.45 0.18 782,798 -1.72 0.94 793,282 -0.40 5.00 0.042708
791,437 -0.63 0.18 774447 -2.76 0.90 800,619 0.52 5.00
768,999 -3.45 0.18 827,132 385 087 803,774 0.92 6.85

wikilT 339,404 3.39 0.12 313,241 -4.58 0.75 337,842 292 4.16 0.038986
318.664 -2.92 0.12 308 480 -6.03 0.74 330,290 0.62 4.11
305.763 -6.85 0.12 339498 342 0.73 322894 -1.64 5.53

wikiPT 70,699 0.94 0.07 70,443 0.57 0.53 70,942 1.28 263 0.026000
62,620 -10.60 0.07 71,136 1.56 0.53 72,329 3.26 2.58
80,752 15.29 0.07 69 568 -0.68 0.53 69,203 -1.20 332




Dimension of some
graphs extracted from
different sorces

Number of triangles
of the graphs

e

Graph A |E|p |E|lnp min  avg max
actor2002  382.219 15.038.083 30.076.166 1 78.69 3.96
actor2004  667.609 27.581.275 55.162.550 1 R2.63 4.605

aunthors 307.971 831.5567 1.663.114 1 5.40 248
google-2002  394.510 480.259 960.518 1 2.43 1.160
it k0304 192,244 609.066 1.218.132 1 6.34 1.071
wikiEN 339.834 4.811.393 9.622.786 0 28.32 47.123
wikiDE 116.251 1.907.891 3.815.782 0 32.82 5.962
wikil'R 42 987 077.781 1.155.562 0 26.88  7.651

wikiES 27.262 246.316 492.632 0 18.07 2,973

wikil'T 13.132 134.342 268,684 0 20.46 1.793

wikiPT 8.645 42.083 84166 0 9.74 2317

WebGraph

Graph #A4  #  Triples transitivity cc¢
actor2002 346.813.199  6.266.209.411 0.1660  0.78
actor2004  1.176.613.576 13.452.269.555 0.2624  0.80
aut hors 1.665.486 14.633.230 0.3414 0.76
google-2002 13.888 17,834,734 0.0074 0.23
itd k0304 455.062 22.468.727 0.0608  0.20
wikiEN 19.654.359 10.142.714.082 0.01  0.30
wikiDE 8.079.044 081,182,129 0.04  0.25
wikiFR 3.163.074 164.215.854 0.06  0.32
wikiES 796.465 37.298.489 0.06  0.31
wikil'T’ 328.265 16.840.168 0.06  0.33
wikiPT 70.043 5.369.380 0.04  0.46

WebGraph




Comparing with the optimal computation

[ Schank and Wagner, 2004]

Graph r=1000 r=10,000 r=100, 000
Qlt. Time Qlt. Time Qlt. Time

actor2002 9.3 5.89 3.60 7.99 .93 17.88
actor2004 3.79 10.81 1.35 13.37 -0.56  28.94
aunthors 12.63 (.35 9.62 0.54 10.65 1.81
google-2002 60,79 (.20 28.52 0.37 26.5 1.71
1tdk 0304 16.00 (.26 0.18 0.43 9.31 1.81
wikiEN 71.55 1.88 1.30 2.60 .08 7.15
wikiDE 22.13 0.77 -0.04 1.13 3.22 4.00
wikiFF R -3.59 .24 1.76 .45 1.52 2.19
wikiES 6.75 0.11 -0.36 (.26 1.00 1.50
wikil'T 25.14 0.07 3.91 .20 3.80) 1.29
wikiPT -9.13 0.03 11.64 0.13 9.46 (.88
WebGraph | 163.927.225 121.60 | 173.143.470 122.14 | 204.250.410 126.80




Clustering Coefficient

» Graph 6 = (V,E) V:setof n vertices E: set of medges
* N(v) = set of vertices adjacent to v

‘Local Clustering Coefficient of vertex

probability that any two vertices in N(v) are connected

C(v) = [{(uv) € Euyv e N(V) H/ (N(v) *(N(v) -1))/2)

-Clustering Coefficient of a graph: v
C(G)Z 1/n¥ C(V) C(V):3/6



Transitivity Coefficient

» Transitivity Coefficient:

probability that any two vertices adjacent to a third vertex in
the graph are connected

T(G) = 2 {(uw) € E: uw € N(V) }H/ (Z, N(v) *( N(v) -10L2)

» Reduce to counting number
of triangles in the graph

T(6)=9/14



Computing the Clustering Coefficient

- Our results:

There is a 1-pass streaming algorithm which
with pb (1-8) returns an e-approximation of
C(G) when the graph is given as an incidence
stream that uses

O(log (1/ 8) log n/ €2 C(G)) memory cells.

C(6) is usually in [10-1,10-2]: feasible for
networks of any size.



A 2-pass streaming algorithm

Sample s vertices wy, ..... , W,
fori =1tosdo

sample at random pair (u,v), u = v, of points of N(w,)

If uv)€eE then X. =1
else X, =0

Output X=1/s 3. X,



Counting k3,3 in Data Streams

- Let k3,3 denote the number of k3,3 minors
and k3,1 denote the number of k3,1 minors

+ We assume the outdegree of the graph
bounded by d

* The edges are sorted by destination nodes
- We do not assume any order by source nodes



Sample

- Sample a k3,1 and 2 nodes not belonging to
the k3,1




Counting k3,3 in Data Streams

* From all k3,1 occuring in the stream, chose one
uniformly

« Let the three edges be (a,u), (b,u) and (c,u)

P

uQe——0ob

.



Counting k3,3 in Data Streams

From all k3,1 occuring in the stream, chose one uniformly

Let the three edges be (a,u), (b,u) and (c,u)

Select uniformly x1, x2 € {a,b,c}

Choose uniformly random variables k1, k2 € {1,2,...,d}

If k1=k2 and x1=x2 then output § =0

Go on passing over the stream

Select the (x1,v) as the k1-th edge (x1, ) after selecting the k3,1

P

uQe——0ob

v()l@c X1

X2



Counting k3,3 in Data Streams

From all k3,1 occuring in the stream, chose one uniformly

Let the three edges be (a,u), (b,u) and (c,u)

Select uniformly x1, x2 € {a,b,c}

Choose uniformly random variables k1, k2 € {1,2,...,d}

If k1=k2 and x1=x2 then output § =0

Go on passing over the stream

Select the (x1,v) as the k1-th edge (x1, ) after selecting the k3,1

Select the (x2,w) as the k2-th edge (x2, ) after selecting the
k3,1
WO a x2

uéb
VQ>QC .



Counting k3,3 in Data Streams

From all k3,1 occuring in the stream, chose one uniformly

Let the three edges be (a,u), (b,u) and (c,u)

Select uniformly x1, x2 € {a,b,c}

Choose uniformly random variables k1, k2 € {1,2,...,d}

If k1=k2 and x1=x2 then output § =0

Go on passing over the stream

Select the (x1,v) as the k1-th edge (x1, ) after selecting the k3,1

Select the (x2,w) as the k2-th edge (x2, ) after selecting the
k3,1

From the time of selecting (x1,v): check if (a,v), (b,v), (c,v) are

present in the stream w® /O a
u @<Z b
@)

\' C



One-pass algorithm

From all k3,1 occuring in the stream, chose one uniformly

Let the three edges be (a,u), (b,u) and (c,u)

Select uniformly x1, x2 € {a,b,c}

Choose uniformly random variables k1, k2 € {1,2,...,d}

If k1=k2 and x1=x2 then output § =0

Go on passing over the stream

Select the (x1,v) as the k1-th edge (x1, ) after selecting the k3,1

Select the (x2,w) as the k2-th edge (x2, ) after selecting the
k3,1

From the time of selecting (x1,v): check if (a,v), (b,v), (c,v) are
present in the stream

From the time of selecting (x2,w): check if (a,w), (b,w), (c,w) are
present in the stream

In this case output § = 1 else output f =0



Probability of finding a k3,3

The k3,3 will be chosen in case the following events

occur.

- Nodes a,b,c,u are chosen as the k3,1 with u being the
destination node Pr=1/k3,1

- vand w must be chosen Pr=1/d*1/d
- x1 must be the first within the incidence list of v

Pr=1/3
- x2 must be the first within the incidence list of w

Pr=1/3



Counting k3,3 in Data Streams

» The algorithm outputs a value $ such that:

k3,3

EPI=5 0k

The following property holds for any graph:

_ di _ o di(di_l)(di_z)
k3,1_(3)_2 :




Counting k3,3 in Data Streams

* Number of samples:

k. .d’
1 — .lnl

e ki, O

=

* Approximation:

~ | @ 'V' 9d’
K3,3 - (; Ei=1l3i )(121 di°(di _1)°(di - 2))( 6 )




1-Pass algorithm for counting Kj 3

* There is a one pass algorithm that counts the
number of k3,3 of a graph in incidence
streams ordered by destination nodes with
outdegree bounded by d up to a multiplicative
error of ¢ with probability at least 1-6, which

space is

( k.. .d’ )
Ol log(|V ). 12. AR
\ R 5)




Counting other Subgraphs

(with Ilaria Bordino and Debora Donato)
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Experimental results

Sottografi di tre nodi in www
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significance score
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Conclusions and Open Problems

* Random Sampling Data Stream Algorithms for
counting the number of some minors in a graph.

» Algorithms scale up to networks of any size for graph
minors of size 3 and 4.

- Automatically select the best strategy for each given
graph minor

» Counting on streams of insertions and deletions



