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Counting Subgraphs

Several applications:

– Network analysis:  Computation of indices, e.g. the clustering
coefficient

– Network modelling: Frequent small subgraphs or motifs are
considered as building blocks of universal classes of complex
networks [Itzkovits et al, Science 298]

– Community detection: Occurrence of a large number of specific
subgraphs, e.g. bipartite cliques, has been observed in the
Webgraph [Kumar et al, 1999]

– Indexing:  identify the most frequent patterns in a graphical
database [Yan, Yu and Han, 2004]



Most basic problem:
Counting Triangles in a Graph

• Exact computation reduces to matrix multiplication:
unfeasible for networks even of medium size

• Several heuristics have been proposed and tested
(Schank and Wagner, 2005, Latapy 2006)

• Resort to the Data Stream Model:

• Data arrives one item at a time. The algorithms
have the task of handling the computation in small
space and computational time per item.



Main applications:

• When the streams are not stored and must be processed on the
fly as they are produced (more than 20 exabytes are created
every year, most of them are forgotten);

• When the memory or time for storing or processing the stream
is limited;

• When an exact computation is too time consuming and just a
good estimation of the underlying data is required.



Data Stream Sampling Algorithms

• Selection of a subset of items and check some specific
property on them;

• Define the kind of sample and the sample size

• Results:  Algorithms that produce an (1±ε)
approximation of the number of subgraphs in the graph
with probability at least 1-δ by using O(s) memory cells

• s is usually the number of samples needed to achieve a
given precision



Counting Triangles in Data Streams

Let’s T0, T1, T2 and T3 represent the set of triples that
 have 0, 1, 2 and 3 edges, respectively.

• Given a graph G=(V,E), where V is the set of vertices
and E the set of edges, consider all triples of nodes
of V;

• We can find four type of structures depending on the
number of edges connecting them



Naive Sampling

• r independent samples of  three distinct vertices
(a,b,c) from the graph

• For the ith sample, if (a,b,c) is a triangle then
output βi=1 else output βi=0.

• E[βi] = T3 / (T0 +T1 + T2 + T3 )

• T3 = (T0 +T1 + T2 + T3 ) = (|V|*|V-1|*|V-2|) / 6



Naive sampling

• Use Σi βi/r  as an estimator of E[βi]

• Output T’3 = T3 * Σi βi/r

• By Chernoff bounds:

• If r= O(log (1/ δ) 1/ε2 ((T0 +T1 + T2 + T3 ) / T3))

then (1-ε) T3 <T’3 < T3 (1+ ε) with pb > 1- δ

• Number of samples is prohibitive if T3= o(n2)



The Graph as a Stream

• Adjancency Stream model: Each item of the stream is an arc of
the graph

Depending on the application, we can consider some order in the
stream.

• Incidence Stream model: The entire incidence list of outgoing
arcs of each node is extracted consecutively.



Our result for the Adjacency Stream
model

Previous best results:

s=O(log (1/ δ) 1/ε2 ((T1 + T2 + T3 )3
 / T3) log |V|)

[Bar-Yossef, Kumar and Sivakumar, Reductions in
Streaming Algorithms, with an Application to Counting
Triangles in Graphs, SODA 2002]

Theorem 1: There exists a 1-pass streaming algorithm
which needs s=O(log (1/ δ) 1/ε2 ((T1 + T2 + T3 ) / T3))
memory cells and O(1+ s log |E|/|E|)) update time per
item



Idea of the algorithm
 for the Adjacency Stream model

• We take an edge e=(a,b) ∈ E and a node v ∈
V \ {a,b}, and look for the missing edges.

• The following property holds for any graph:

T1 + 2T2 + 3T3 = |E|(|V|-2)

• Triples belonging to T0 are not considered.
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A 3-pass streaming algorithm

1. 1st Pass: count the number of edges |E| in the
stream

2. 2nd Pass: sample an edge e=(a,b) uniformly chosen
among all edges from the stream.
Choose a node v uniformly from V\{a,b}

3. 3rd Pass: Test if edges (a,v) and (b,v) are present
in the stream.
If (a,v) ∈ E and (b,v) ∈ E then output β=1 else
output β=0.



A 3-pass streaming algorithm

• The streaming algorithm outputs a value β
having expected value:
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• Furthermore:



A 3-pass streaming algorithm

• There is a streaming algorithm that outputs a
value  T’3 satisfying (1-ε) T <T’ < T (1+ ε) with
probability 1-δ

• We start r parallel instances of the 3-pass
algorithm, and each one outputs a value βi
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A 3-pass streaming algorithm

• We use                    as an estimator for

• We estimate T3 as:
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A 3-pass streaming algorithm

• Proof by Chernoff Bounds

• Setting 

both probabilities together are bounded by δ
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A 3-pass streaming algorithm

• We suppose that the events within the brackets do
not occur. In this case:

• Same argument to obtain
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One pass algorithm

• A uniform choice of an edge in one pass can be done
with reservoir sampling:  choose the first edge as a
sample edge and replacing this edge by the i-th edge
of the stream with probability 1/i.

• When choosing a sample, it can happen that we
already miss some arcs. We have 1/3 of probability of
not doing that.



Sample one-pass

i←1;
for each edge es=(as,bs) in the stream do:

flip a coin. With probability 1/i do:
a ← as; b ← bs;
v ← node uniformly chosen from V \ {a,b}
x ←false; y ←false;

end do

if es = (a,v) then x ←true;
If es = (b,v) then y ←true;

end for
if x=true and y=true return β=1 else return β=0

a

b

v



Sample one-pass
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• The streaming algorithm outputs a value b having
expected value:
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Results for a sample set of size 100



Considering a structured stream

• Which kind of structure can benefit the algorithm and still be a
natural and good representation of the graph?

• Consider the Incidence Stream model, where the adjacency lists
of nodes are stored in sequence in the stream

• No order is required within each adjacency list

• Each arc is seen twice in the stream



Results on Incidence Stream

• Our result:

• Previous best results from Yossef, Kumar and
Sivakumar: Reductions in Streaming Algorithms, with
an Application to Counting Triangles in Graphs, 2002
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Incidence streams

• Sample from all possible Vs, i.e., combinations of two arcs leaving
a node

• For each node i, where di is its degree, the number of V’s, having
node i in common is:
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Counting triangles in incidence streams

• In this case our sample is a V, and we check if the
third arc is later seen in the stream

• It holds for any graph:
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Incidence 3-pass algorithm

• 1st Pass: count the number of Vs of the stream

• 2nd Pass: uniformly choose one V among all of them.
Let us call it (a,b,c)

• 3rd Pass: Test if edge (a,c) is present in the stream.
If (a,c) ∈ E then output β=1 else output β=0;

a

b
c



Computational Experiments

• Optimized implementation of the algorithms

• Experiments on large Webgraphs, Wikigraphs,
collaboration between scientists and actors

• Adjacency list model: accurate estimation for
s = 106

• Incidence list model: accurate estimation for
s = 104



Results for the Incidence List model



Dimension of some
graphs extracted from

different sorces

Number of triangles
of the graphs



Comparing with the optimal computation
[Schank and Wagner, 2004]



Clustering Coefficient

• Graph G = (V, E)    V: set of n  vertices   E: set of m edges

• N(v) = set of vertices adjacent to v

•Local Clustering Coefficient of vertex

probability that any two vertices in N(v)  are connected

C(v) = |{(u,v) ∈ E : u,v ∈ N(v) }|/ (N(v) *( N(v) -1))/2)

•Clustering Coefficient of a graph:

C(G)= 1/n ∑ C(v)

V

C(v)=3/6



Transitivity Coefficient

• Transitivity Coefficient:

probability that any two vertices adjacent to a third vertex in
the graph are connected

T(G) = ∑v|{(u,w) ∈ E : u,w ∈ N(v) }|/ (∑v N(v) *( N(v) -1))/2)

• Reduce to counting number
of triangles in the graph

T(G)=9/14



Computing the Clustering Coefficient

• Our results:
There is a 1-pass streaming algorithm which
with pb (1-δ) returns an ε-approximation of
C(G) when the graph is given as an incidence
stream  that uses

O(log (1/ δ) log n/ ε2 C(G)) memory cells.

• C(G) is usually in [10-1,10-5]: feasible for
networks of any size.



A 2-pass streaming algorithm

1. Sample s vertices w1, ….., ws.

2. for i  = 1 to s do

sample at random pair (u,v), u ≠ v, of points of N(wi)

If (u,v) ∈ E then Xi = 1
else Xi = 0

3. Output X= 1/s ∑i Xi



Counting k3,3 in Data Streams

• Let k3,3 denote the number of k3,3 minors
and k3,1 denote the number of k3,1  minors

• We assume the outdegree of the graph
bounded by d

• The edges are sorted by destination nodes
• We do not assume any order by source nodes



Sample

• Sample a k3,1 and 2 nodes not belonging to
the k3,1
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Counting k3,3 in Data Streams

b

c

a

u

• From all k3,1 occuring in the stream, chose one
uniformly

• Let the three edges be (a,u), (b,u) and (c,u)



Counting k3,3 in Data Streams

• From all k3,1 occuring in the stream, chose one uniformly
• Let the three edges be (a,u), (b,u) and (c,u)
• Select uniformly x1, x2 ∈ {a,b,c}
• Choose uniformly random variables k1, k2 ∈ {1,2,…,d}
• If k1=k2 and x1=x2 then output β = 0
• Go on passing over the stream
• Select the (x1,v) as the k1-th edge (x1, ) after selecting the k3,1
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Counting k3,3 in Data Streams

• From all k3,1 occuring in the stream, chose one uniformly
• Let the three edges be (a,u), (b,u) and (c,u)
• Select uniformly x1, x2 ∈ {a,b,c}
• Choose uniformly random variables k1, k2 ∈ {1,2,…,d}
• If k1=k2 and x1=x2 then output β = 0
• Go on passing over the stream
• Select the (x1,v) as the k1-th edge (x1, ) after selecting the k3,1
• Select the (x2,w) as the k2-th edge (x2, ) after selecting the

k3,1
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Counting k3,3 in Data Streams

• From all k3,1 occuring in the stream, chose one uniformly
• Let the three edges be (a,u), (b,u) and (c,u)
• Select uniformly x1, x2 ∈ {a,b,c}
• Choose uniformly random variables k1, k2 ∈ {1,2,…,d}
• If k1=k2 and x1=x2 then output β = 0
• Go on passing over the stream
• Select the (x1,v) as the k1-th edge (x1, ) after selecting the k3,1
• Select the (x2,w) as the k2-th edge (x2, ) after selecting the

k3,1
• From the time of selecting (x1,v): check if (a,v), (b,v), (c,v) are

present in the stream

v c
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b

a

u



One-pass algorithm

• From the time of selecting (x2,w): check if (a,w), (b,w), (c,w) are
present in the stream

• In this case output β = 1 else output β = 0

• From all k3,1 occuring in the stream, chose one uniformly
• Let the three edges be (a,u), (b,u) and (c,u)
• Select uniformly x1, x2 ∈ {a,b,c}
• Choose uniformly random variables k1, k2 ∈ {1,2,…,d}
• If k1=k2 and x1=x2 then output β = 0
• Go on passing over the stream
• Select the (x1,v) as the k1-th edge (x1, ) after selecting the k3,1
• Select the (x2,w) as the k2-th edge (x2, ) after selecting the

k3,1
• From the time of selecting (x1,v): check if (a,v), (b,v), (c,v) are

present in the stream



Probability of finding a k3,3

• The k3,3 will be chosen in case the following events
occur:
– Nodes a,b,c,u are chosen as the k3,1 with u being the

destination node Pr = 1/k3,1
– v and w must be chosen Pr = 1/d*1/d
– x1 must be the first within the incidence list of v

Pr = 1/3
– x2 must be the first within the incidence list of w

Pr = 1/3



Counting k3,3 in Data Streams

• The algorithm outputs a value β such that:
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The following property holds for any graph:
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Counting k3,3 in Data Streams

• Number of samples:

• Approximation:
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1-Pass algorithm for counting K3,3

• There is a one pass algorithm that counts the
number of k3,3 of a graph in incidence
streams ordered by destination nodes with
outdegree bounded by d up to a multiplicative
error of ε with probability at least 1-δ, which
space is
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Counting other Subgraphs
(with Ilaria Bordino and Debora Donato)



Experimental results



Experimental results

 



Conclusions and Open Problems

• Random Sampling Data Stream Algorithms for
counting the number of some minors in a graph.

• Algorithms scale up to networks of any size for graph
minors of size 3 and 4.

• Automatically select the best strategy for each given
graph minor

• Counting on streams of insertions and deletions


