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ABSTRACT
There is growing interest in algorithms for processing and query-
ing continuous data streams (i.e., data that is seen only once in a
fixed order) with limited memory resources. Providing (perhaps
approximate) answers to queries over such streams is a crucial re-
quirement for many application environments; examples include
large IP network installations where performance data from dif-
ferent parts of the network needs to be continuously collected and
analyzed.

The ability to estimate the number of distinct (sub)tuples in
the result of a join operation correlating two data streams (i.e.,
the cardinality of a projection with duplicate elimination over a
join) is an important requirement for several data-analysis sce-
narios. For instance, to enable real-time traffic analysis and load
balancing, a network-monitoring application may need to esti-
mate the number of distinct (source, destination) IP-address
pairs occurring in the stream of IP packets observed by router R1,
where the source address is also seen in packets routed through
a different router R2. Earlier work has presented solutions to the
individual problems of distinct counting and join-size estimation
(without duplicate elimination) over streams. These solutions,
however, are fundamentally different and extending or combining
them to handle our more complex “Join-Distinct” estimation
problem is far from obvious. In this paper, we propose the first
space-efficient algorithmic solution to the general Join-Distinct
estimation problem over continuous data streams (our techniques
can actually handle general update streams comprising tuple dele-
tions as well as insertions). Our estimators are probabilistic in
nature and rely on novel algorithms for building and combining
a new class of hash-based synopses (termed “JD sketches”) for
individual update streams. We demonstrate that our algorithms
can provide low error, high-confidence Join-Distinct estimates
using only small space and small processing time per update. In
fact, we present lower bounds showing that the space usage of
our estimators is within small factors of the best possible for the
Join-Distinct problem. Preliminary experimental results verify
the effectiveness of our approach.

1. INTRODUCTION
Query-processing algorithms for conventional Database

Management Systems (DBMS) rely on (possibly) several
passes over a collection of static data sets in order to produce
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an accurate answer to a user query. For several emerging ap-
plication domains, however, updates to the data arrive on a
continuous basis, and the query processor needs to be able to
produce answers to user queries based solely on the observed
stream and without the benefit of several passes over a static
data image. As a result, there has been a flurry of recent
work on designing effective query-processing algorithms that
work over continuous data streams to produce results online
while guaranteeing (1) small memory footprints, and (2) low
processing times per stream item [1, 6, 11]. Such algorithms
typically rely on summarizing the data stream(s) involved
in concise synopses that can be used to provide approximate
answers to user queries along with some reasonable guaran-
tees on the quality of the approximation.

In their most general form, real-life data streams are ac-
tually update streams; that is, the stream is a sequence of
updates to data items, comprising data-item deletions as
well as insertions. 1 Such continuous update streams arise
naturally, for example, in the network installations of large
Internet service providers, where detailed usage information
(SNMP/RMON packet-flow data, active VPN circuits, etc.)
from different parts of the underlying network needs to be
continuously collected and analyzed for interesting trends.
The processing of such streams follows, in general, a dis-
tributed model where each stream (or, part of a stream) is
observed and summarized by its respective party (e.g., the
element-management system of an individual IP router) and
the resulting synopses are then collected (e.g., periodically)
at a central site, where queries over the entire collection of
streams can be processed [11]. This model is used, for exam-
ple, in Lucent’s Interprenet and Cisco’s NetFlow products
for IP network monitoring.

Clearly, there are several forms of queries that users or
applications may wish to pose (online) over such contin-
uous update streams; examples include join or multi-join
aggregates [1, 6], norm and quantile estimation [2, 14, 16],
or histogram and wavelet computation [13, 12]. Estimat-
ing the number of distinct (sub)tuples in the result of an
equi-join operation correlating two update streams (i.e., the
cardinality of a projection with duplicate elimination over a
join) is one of the fundamental queries of interest for sev-
eral data-analysis scenarios. As an example, a network-
management application monitoring active IP-sessions may
wish to correlate the active sessions at routers R1 and R2

by posing a query such as: “What is the number of dis-
tinct (source, destination) IP-address pairs seen in pack-

1An item modification is simply seen as a deletion directly fol-
lowed by an insertion of the modified item.



ets routed through R1 such that the source address is also
seen in packets routed by R2?”. Such a query would be
used, for example, when trying to determine the load (i.e.,
number of distinct source-destination sessions) imposed on
a core router R1 by the set of customers connected to a spe-
cific router R2 at the edge of the network. The result is
simply the number of distinct tuples in the output of the
project-join query πsour1 ,dest1 (R1(sour1, dest1) ./sour1=sour2

R2(sour2, dest2)), where Ri(souri, desti) denotes the multi-
set of source-destination address pairs observed in the packet
stream through router Ri. The ability to provide effective
estimates for such “Join-Distinct” query aggregates over the
observed IP-session data streams in the underlying network
can be crucial in quickly detecting possible Denial-of-Service
attacks, network routing or load-balancing problems, poten-
tial reliability concerns (catastrophic points-of-failure), and
so on. Join-Distinct queries are also an integral part of
query languages for relational database systems (e.g., the
DISTINCT clause in the SQL standard [20]). Thus, one-pass
synopses for effectively estimating Join-Distinct aggregates
can be extremely useful, e.g., in the optimization of such
queries over Terabyte relational databases [10].

Prior Work. Estimating the number of distinct values in
one pass over a data set is a very basic problem with several
practical applications (e.g., query optimization); as a result,
several solutions have been proposed for the simple distinct-
count estimation problem over data streams. In their in-
fluential paper, Flajolet and Martin [7] propose an effec-
tive randomized estimator for distinct-value counting that
relies on a hash-based synopsis data structure. The analy-
sis of Flajolet and Martin makes the unrealistic assumption
of an explicit family of hash functions exhibiting ideal ran-
dom properties; in a later paper, Alon et al. [2] present a
more realistic analysis of the Flajolet-Martin estimator that
relies solely on simple, linear hash functions. Several esti-
mators based on uniform random sampling have also been
proposed for distinct-element counting [4, 15]; however, such
sampling-based approaches are known to be inaccurate and
substantial negative results have been shown by Charikar
et al. [4] stating that accurate estimation of the number of
distinct values (to within a small constant factor with con-
stant probability) requires nearly the entire data set to be
sampled! More recently, Gibbons et al. [10, 11] have pro-
posed specialized sampling schemes specifically designed for
distinct-element counting; their sampling schemes rely on
hashing ideas (similar to [7]) to obtain a random sample
of the distinct elements that is then used for estimation.
Bar-Yossef et al. [3] also propose improved distinct-count
estimators that combine new techniques and ideas from [2,
7, 11].

In our recent work [9], we have proposed novel, small-
space synopsis data structures, termed 2-level hash sketches,
and associated estimation algorithms for estimating the car-
dinality of general set expressions (including operators like
set intersection or difference) over update streams. (Distinct-
element counting can be seen as cardinality estimation for
simple set unions.) Our results demonstrate that our 2-level
hash sketch estimators require near-optimal space for ap-
proximating set-expression cardinalities and, unlike earlier
approaches, they can handle general update streams with-
out ever requiring access to past stream items. (In contrast,
sampling-based solutions like [10, 11] may very well need to
rescan and resample past stream items when deletions cause

the maintained sample to be depleted; this is clearly an un-
realistic requirement in a data-streaming environment.)

The problem of computing non-distinct aggregates over
join or multi-join stream queries has also received a fair
amount of attention recently. Alon et al. [1, 2] have proposed
provably-accurate probabilistic techniques for tracking self-
join and binary-join sizes (i.e., the total number of tuples
in the join result) over update streams. Dobra et al. [6] ex-
tend their techniques and theoretical results to multi-join
queries and general aggregate functions. The estimation al-
gorithms described in [1, 2, 6] are fundamentally different
from the above-cited techniques for distinct-count estima-
tion, and rely on synopses obtained through pseudo-random,
linear projections of the underlying frequency-distribution
vectors. Thus, a direct combination of the two families of
techniques to possibly obtain a solution to our Join-Dis-

tinct estimation problem appears to be very difficult, if not
impossible.

Our Contributions. In this paper, we propose the first
space-efficient algorithmic solution to the general Join-Dis-
tinct cardinality estimation problem over continuous update
streams. Our proposed estimators are probabilistic in nature
and rely on novel algorithms for building and combining a
new class of hash-based synopses, termed “JD sketches”, for
individual update streams. We present novel estimation al-
gorithms that use our JD sketch synopses to provide low
error, high-confidence Join-Distinct estimates using only
small space and small processing time per update. We also
present lower bounds showing that the space usage of our
estimators is within small factors of the best possible for
any solution to our Join-Distinct estimation problem. More
concretely, our key contributions can be summarized as fol-
lows.

• New JD Sketch Synopsis Structures for Update
Streams. We formally introduce the JD sketch synopsis
data structure and describe its maintenance over a continu-
ous stream of updates (rendering a multi-set of data tuples).
In a nutshell, our JD synopses make use of our earlier 2-level
hash sketch structures while imposing an additional level of
hashing that is needed in order to effectively project and
count on the attributes in the distinct-count clause. Our JD

sketch synopses are built independently on each of the indi-
vidual streams to be joined, and never require rescanning or
resampling of past stream items, regardless of the deletions
in the stream: at any point in time, our synopsis structure
is guaranteed to be identical to that obtained if the deleted
items had never occurred in the stream.

• Novel, Streaming Join-Distinct Estimation Algo-
rithms. Based on our JD sketch synopses, we propose novel
probabilistic algorithms for estimating Join-Distinct cardi-
nalities over update streams. A key element of our solution is
a new technique for intelligently composing independently-
built JD sketches (on different streams) to obtain an estimate
for the cardinality of their Join-Distinct result. We present
a detailed analysis of the space requirements for our estima-
tors, as well as a lower bound result showing that the space
requirements of our estimators is actually within small con-
stant and log factors of the optimal. We also discuss how
our techniques can be extended to handle other aggregates
(e.g., predicate selectivities) over the results of Join-Dis-

tinct queries. Once again, ours is the first approach to solve
these difficult estimation problems in the data- or update-



streaming model. Furthermore, even though we present our
estimators in a single-site setting, our solutions also natu-
rally extend to more general distributed-streams models [11].

• Experimental Results Validating our Approach.
We present preliminary results from an experimental study
with different synthetic data sets that verify the effective-
ness of our JD sketch synopses and estimation algorithms.
The results substantiate our theoretical claims, demonstrat-
ing the ability of our techniques to provide space-efficient
and accurate estimates for Join-Distinct cardinality queries
over continuous streaming data.

2. PRELIMINARIES
In this section, we discuss the basic elements of our update-

stream processing architecture, state our Join-Distinct es-
timation problem, and introduce some key concepts and
ideas, including our recently-proposed 2-level hash sketch
synopses [9] which play an integral role in our Join-Distinct

synopses and estimation procedures.

2.1 Stream Model and Problem Formulation
The key elements of our update-stream processing archi-

tecture for Join-Distinct cardinality estimation are depicted
in Figure 1; similar architectures for processing data streams
have been described elsewhere (see, for example, [6, 9, 13]).

Update stream for R(A,B)

Synopsis

Update stream for S(B,C)

Memory

Query−Processing
Engine

Stream 

Synopsis
for S(B,C)for R(A,B)

Approximate
Answer

Query:  COUNT(     (R        S) )π

Figure 1: Update-Stream Processing Architecture.

Each input stream renders a multi-set of relational tu-
ples (R(A,B) or S(B,C)) as a continuous stream of updates.
Note that, in general, even though A, B, and C are denoted
as single attributes in our model, they can in fact denote
sets of attributes in the underlying relational schema. Fur-
thermore, without loss of generality, we assume that each
attribute X ∈ {A, B, C} takes values from the integer do-
main [MX ] = {0, . . . , MX−1}. Each streaming update (say,
for input R(A,B)) is a pair of the form < (a, b),±v >, where
(a, b) ∈ [MA] × [MB ] denotes the specific tuple of R(A,B)

whose frequency changes, and ±v is the net change in the
frequency of (a, b) in R(A,B), i.e., “+v” (“−v”) denotes v
insertions (resp., deletions) of tuple (a, b). (Note that han-
dling deletions substantially enriches our streaming model;
for instance, it allows us to deal with estimation over sliding
windows of the streams by simply issuing implicit delete op-
erations for expired stream items no longer in the window of
interest.) We also let N denote an upper bound on the total
number of data tuples (i.e., the net sum of tuple frequen-
cies) in either R(A,B) or S(B,C). In contrast to conventional
DBMS processing, our stream processor is allowed to see
the update tuples for each relational input only once, in the

fixed order of arrival as they stream in from their respective
source(s). Backtracking over an update stream and explicit
access to past update tuples are impossible.

Our focus in this paper is on the difficult problem of es-
timating the number of distinct (A, C) (sub)tuples in the
result of the data-stream join R(A,B)./B S(B,C). More for-
mally, we are interested in approximating the result of the
query Q= |πA,C(R(A,B) ./ S(B,C))| or, using SQL,2

Q = SELECT COUNT DISTINCT (A, C)

FROM R(A,B), S(B,C)

WHERE R.B = S.B

(We use |X| to denote the set cardinality, i.e., number of
distinct elements with positive net frequency, in the multi-
set X.) Note that, in general, the attribute sets A, B, and C
in Q are not necessarily disjoint or non-empty. For example,
the target attributes A and C may in fact contain the join
attribute B, and either A or C can be empty (i.e., a one-
sided projection). To simplify the exposition, we develop
our estimation algorithms assuming both A and C are non-
empty and disjoint from B, i.e., A, C 6= φ and A∩B = B ∩
C = φ. Then, in Section 5 we discuss how our techniques can
handle other forms of Join-Distinct aggregate estimation.
In a slight abuse of notation, we will use A as a shorthand for
the set of distinct A-values seen in R(A,B), and |A| to denote
the corresponding set cardinality, i.e., |A| = |πA(R(A,B))|.
(B, C and |B|, |C| are used similarly, with B being the
distinct B-values seen in either R(A,B) or S(B,C), i.e., the
union πB(R(A,B))∪ πB(S(B,C)).)

Our stream-processing engine is allowed a bounded amount
of memory, typically significantly smaller than the total size
of its input(s). This memory is used to maintain a concise
synopsis for each update stream. The key constraints im-
posed on such synopses are that: (1) they are much smaller
than the number of elements in the streams (e.g., their size
is polylogarithmic in |R(A,B)|, |S(B,C)|); and, (2) they can be
easily maintained, during a single pass over the streaming
update tuples in the (arbitrary) order of their arrival. At
any point in time, our estimation algorithms can combine
the maintained synopses to produce an estimate for Q.

Even for the simpler case of insert-only streams, com-
munication-complexity arguments can be applied to show
that the exact computation of Q requires at least Ω(MB)
space3, even for randomized algorithms [18, 17] (the prob-
lem is at least as hard as the SET-DISJOINTNESS prob-
lem for B values). Instead, our focus is to approximate the
count Q to within a small relative error, with high confidence.
Thus, we seek to obtain a (randomized) (ε, δ)-approximation
scheme [2, 11], that computes an estimate Q̂ of Q such that
Pr

�
|Q̂− Q| ≤ εQ � ≥ 1 − δ.

2.2 The 2-level Hash Sketch Stream Synopsis
Flajolet and Martin [7] were the first to propose the use

of hash-based techniques for estimating the number of dis-
tinct elements (i.e., |A|) over an (insert-only) data stream

2It is interesting to note here that, yet another possible applica-
tion of our techniques is to estimate the number of distinct vertex
pairs at distance 2 over the stream of edges of a massive graph
(e.g., Internet-connectivity or Web-linkage data).
3The asymptotic notation f(n) = Ω(g(n)) is equivalent to g(n) =
O(f(n)). Similarly, the notation f(n) = Θ(g(n)) means that
functions f(n) and g(n) are asymptotically equal (to within con-
stant factors); in other words, f(n) = O(g(n)) and g(n) =
O(f(n)) [5].



A. Briefly, assuming that the elements of A range over the
data domain [M ], the Flajolet-Martin (FM) algorithm re-
lies on a family of hash functions H that map incoming
elements uniformly and independently over the collection of
binary strings in [M ]. It is then easy to see that, if h ∈ H
and lsb(s) denotes the position of the least-significant 1-bit
in the binary string s, then for any i ∈ [M ], lsb(h(i)) ∈
{0, . . . , log M − 1} and Pr [lsb(h(i)) = l] = 1

2l+1 .4 The ba-
sic hash synopsis maintained by an instance of the FM al-
gorithm (i.e., a specific choice of hash function h ∈ H) is
simply a bitmap of size Θ(log M). This bitmap is initial-
ized to all zeros and, for each incoming value i in the input
(multi-)set A, the bit located at position lsb(h(i)) is turned
on. The key idea behind the FM technique is that, by the
properties of the hash functions in H, we expect a fraction
of 1

2l+1 of the distinct values in A to map to location l in
each synopsis; thus, we expect |A|/2 values to map to bit 0,
|A|/4 to map to bit 1, and so on. Therefore, the location of
the leftmost zero (say λ) in a bitmap synopsis is a good in-
dicator of log |A|, or, 2λ ≈ |A|. Of course, to boost accuracy
and confidence, the FM algorithm employs averaging over
several independent instances (i.e., choices of the mapping
hash-function h ∈ H and corresponding bitmap synopses).

In our earlier work [9], we have proposed a generaliza-
tion of the basic FM bitmap hash synopsis, termed 2-level
hash sketch, that enables accurate, small-space cardinality
estimation for arbitrary set expressions (e.g., including set
difference, intersection, and union operators) defined over a
collection of general update streams (ranging over the do-
main [M ]). 2-level hash sketch synopses rely on a family of
(first-level) hash functions H that uniformly randomize in-
put values over the data domain [M ]; then, for each domain
partition created by first-level hashing, a small (logarithmic-
size) count signature is maintained for the corresponding
multi-set of stream elements.

More specifically, a 2-level hash sketch uses one randomly-
chosen first-level hash function h ∈ H that, as in the FM
algorithm, is combined with the lsb operator to map the
domain elements in [M ] onto a logarithmic range {0, . . . ,
Θ(log M)} of first-level buckets with exponentially-decreasing
probabilities. Then, for the collection of elements mapping
to a given first-level bucket, a count signature comprising
an array of log M + 1 element counters is maintained. This
count-signature array consists of two parts: (a) one total
element count, which tracks the net total number of ele-
ments that map onto the bucket; and, (b) log M bit-location
counts, which track, for each l = 1, . . . , log M , the net to-
tal number of elements e with bitl(e) = 1 that map onto
the bucket (where, bitl(e) denotes the value of the lth bit
in the binary representation of e ∈ [M ]). Conceptually, a
2-level hash sketch for a streaming multi-set A can be seen
as a two-dimensional array SA of size Θ(log M) × (log M +
1) = Θ(log2 M), where each entry SA[k, l] is a data-element
counter of size O(log N) corresponding to the lth count-
signature location of the kth first-level hash bucket. By
convention, given a bucket k, SA[k, 0] denotes the total ele-
ment count, whereas the bit-location counts are located at
SA[k, 1], . . . , SA[k, log M ]. The structure of our 2-level hash
sketch synopses is pictorially depicted in Figure 2.
Maintenance. The algorithm for maintaining a 2-level
hash sketch synopsis SA over a stream of updates to a multi-

4All log’s in this paper denote base-2 logarithms.
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bit−location counts

Figure 2: The 2-level Hash Sketch Synopsis Struc-
ture.

set A is fairly simple. The sketch structure is first initial-
ized to all zeros and, for each incoming update < e,±v >,
the element counters at the appropriate locations of the SA

sketch are updated; that is, we simply set SA[lsb(h(e)), 0]
:= SA[lsb(h(e)), 0] ± v to update the total element count in
e’s bucket and, for each l = 1, . . . , log M such that bitl(e) =
1, we set SA[lsb(h(e)), l] := SA[lsb(h(e)), l] ± v to update
the corresponding bit-location counts. Note here that our
2-level hash sketch synopses are essentially impervious to
delete operations; in other words, the sketch obtained at
the end of an update stream is identical to a sketch that
never sees the deleted items in the stream.

Estimation. Despite their apparent simplicity, 2-level hash
sketches turn out to be a powerful stream-synopsis structure.
As shown in our earlier work [9], they can serve as the basis
for probabilistic algorithms that accurately estimate the car-
dinality of general set expressions over rapid update streams
while using only small (in fact, provably near-optimal) space.
Briefly, all these set-expression estimators rely on construct-
ing several (say, s1) independent instances of parallel 2-level
hash sketch synopses (using the same first-level hash func-
tions) over the input streams, and using them to infer a
low-error, high-probability cardinality estimate [9]. The fol-
lowing theorem summarizes the quality guarantees for the
2-level hash sketch set-intersection estimator in [9] (termed
IntersectionEstimator in this paper); similar results have been
shown for other set operators (like, set union and difference),
as well as general set expressions [9].

Theorem 2.1. ([9]) : Algorithm IntersectionEstimator re-
turns an (ε, δ)-estimate for the size of the set intersection
|A ∩ B| of two update streams A and B using 2-level hash
sketch synopses with a total storage requirement of Θ(s1 log2 M

log N), where s1 = Θ
	

log(1/δ)|A∪B|

ε2|A∩B| 
 .

3. JOIN-DISTINCT SYNOPSIS STRUCTURE
AND ESTIMATION ALGORITHM

In this section, we define our basic Join-Distinct syn-
opses (termed JD sketches) and describe the algorithm for
maintaining JD sketches over a stream of updates. We then
present our Join-Distinct estimation algorithm that, ab-
stractly, combines information from individual JD sketch syn-
opses to produce a theoretically-sound, guaranteed-error es-
timate of the Join-Distinct cardinality.



3.1 Our Stream Synopsis: JD Sketches
Briefly, our proposed JD sketch synopsis data structure for

update stream R(A,B) uses hashing on attribute(s) A (similar
to the basic FM distinct-count estimator) and, for each hash
bucket of A, a family of 2-level hash sketches is deployed as
a concise synopsis of the B values corresponding to tuples
mapped to this A-bucket. More specifically, a JD sketch syn-
opsis XA,B for stream R(A,B) relies on a hash function hA se-
lected at random from an appropriate family of randomizing
hash functions HA that uniformly randomize values over the
domain [MA] of A. As in the FM algorithm (and 2-level hash
sketches), this hash function hA is used in conjunction with
the lsb operator to map A-values onto a logarithmic num-
ber of hash buckets {0, . . . , Θ(log MA)} with exponentially-
decreasing probabilities. Each such bucket XA,B[i] is an
array of s1 independent 2-level hash sketches built on the
(multi-)set of B values for (A,B) tuples whose A compo-
nent maps to bucket i. Let XA,B[i, j] (1 ≤ j ≤ s1) denote
the jth 2-level hash sketch on B for the ith A bucket – a
crucial point in the JD sketch definition is that the B hash
functions (hB) used by the jth 2-level hash sketch in XA,B

are identical across all A buckets; in other words, XA,B [i1, j]
and XA,B[i2, j] use exactly the same hash functions on B for
any i1, i2 in {0, . . . , Θ(log MA)}.

Conceptually, a JD sketch XA,B for the update stream
R(A,B) can be seen as a four-dimensional array of total size
Θ(log MA)× s1× Θ(log MB)× (log MB +1) = s1· Θ(log MA

log2 MB), where each entry XA,B[i, j, k, l] is a counter of size
O(log N). Our JD sketch structure is pictorially depicted in
Figure 3. Note that, a JD sketch XA,B essentially employs
two distinct levels of hashing, with a first-level hash function
applied to the projected attribute(s) A, and s1 second-level
hash functions applied to the join attribute(s) B of the input
stream (by the 2-level hash sketches in the corresponding A-
bucket).

( a , b )

���
�

���
�

���
�

logMAΘ(           )

�� �	 
�
logMcount 1count 0 count � �� �� count logMcount 1count 0

logMBΘ(             ) logMBΘ(             )
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�
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s1 independent 2−level hash sketches on B−values

0

0 0

Figure 3: Our JD Sketch Synopsis for Stream R(A,B).

Maintenance. The maintenance algorithm for a JD sketch
synopsis built over the R(A,B) stream follows easily along
the lines of our 2-level hash sketch maintenance procedure.
Once again, all counters in our data structure are initial-
ized to zeros and, for each incoming update < (a, b),±v >
(where (a, b) ∈ [MA] × [MB ]), the a value is hashed using
hA() to locate an appropriate A-bucket and all the 2-level
hash sketches in that bucket are then updated using the
< b,±v > tuple; that is, each of the s1 2-level hash sketches
XA,B [hA(a), j] (j = 1, . . . , s1) is updated with < b,±v > us-

ing the 2-level hash sketch maintenance algorithm described
in Section 2.2. Thus, the per-tuple maintenance cost for a
JD sketch is Θ(s1 log MB). It is easy to see that, as in the
case of 2-level hash sketches, our JD sketch synopses are also
impervious to deletions in the update stream.

3.2 The Join-Distinct Estimator
We now proceed to describe our Join-Distinct estimation

algorithm for update streams. In a nutshell, our estimator
constructs several independent pairs of parallel JD sketch
synopses (XA,B,XC,B) for the input update streams R(A,B)

and S(B,C) (respectively). The key here is that, for the XC,B

sketch, C plays the same role as attribute A in XA,B (i.e.,
it is used to determine a first-level bucket in the JD sketch).
Furthermore, both XA,B and XC,B use exactly the same
hash functions for B in corresponding 2-level hash sketches
for any A or C bucket; that is, the B-hash functions for
XA,B[∗, j] and XC,B [∗, j] are identical for each j = 1, . . . , s1

(here, “∗” denotes any first-level bucket in either of the two
JD sketches). Then, at estimation time, each such pair of
parallel JD sketches is composed in a novel manner to build
an “FM-like” synopsis for the number of distinct (A, C) pairs
in the join result. As we will see, this composition step is
novel and non-trivial, and relies on the use of new, compos-
able families of hash functions (hA() and hC()) for the first
level of our JD sketch synopses. We demonstrate how such
hash-function families can be built and composed, and ana-
lyze their randomization properties. We begin by describing
the basic JD sketch composition step in detail, and then for-
mally describe our Join-Distinct estimation algorithm; the
analysis of the space requirements and approximation guar-
antees for our estimator are discussed in Section 4.

Composing a Parallel JD Sketch Pair. Consider a pair
of parallel JD sketch synopses (XA,B,XC,B) over R(A,B) and
S(B,C). The goal of our JD sketch composition step is to
combine information from XA,B and XC,B to produce an
“FM-like” bitmap synopsis for the number of distinct (A, C)
value pairs. The key here, of course, is that we should build
this bitmap using only (A,C) pairs in the result of the join
R./S. Thus, our composition step should use XA,B and XC,B

to determine (with high probability (w.h.p.)) the (A, C)-
value pairs that belong in the join result, and map such
pairs to the cells of a bitmap YA,C of logarithmic size (i.e.,
O(log MA + log MC)) with exponentially-decreasing proba-
bilities.

Our JD sketch composition algorithm, termed Compose, is
depicted in Figure 4. Briefly, our algorithm considers all
possible combinations of bucket indices k 6= l from the two
input parallel JD sketches(the k 6= l restriction comes from
a technical condition on the composition of the two first-
level hash functions on A and C). For each such bucket
pair XA,B[k] and XC,B[l], the composition algorithm em-
ploys the corresponding 2-level hash sketch synopses on B
to estimate the size of the intersection for the sets of B values
mapped to those first-level buckets (procedure IntersectionEs-

timator in Step 4). If that size is estimated to be greater
than zero (i.e., the two buckets share at least one common
join-attribute value), then the bit at location min{k, l} of
the output (A,C)-bitmap YA,C is set to one (Step 5). Of
course, since our JD sketches do not store the entire set of
B values for each first-level bucket but, rather, a concise
collection of independent 2-level hash sketch synopses, the
decision of whether two first-level buckets join is necessar-



procedure Compose( XA,B ,XC,B )
Input: Pair of parallel JD sketch synopses for update

streams R(A,B), S(B,C).
Output: Bitmap-sketch YA,C on (A, C) value pairs in R./ S

begin

1. YA,C := [ 0, · · · , 0 ] // initialize
2. for each bucket k of XA,B do
3. for each bucket l 6= k of XC,B do

4. if IntersectionEstimator(XA,B [k], XC,B [l]) ≥ 1 then

5. YA,C [min{k, l}] := 1
6. return(YA,C)
end

Figure 4: JD Sketch Composition Algorithm.

ily approximate and probabilistic (based on the 2-level hash
sketch intersection estimate). Our analysis in Section 4 will
clearly demonstrate the effect of this approximation on the
error guarantees and space requirements of our Join-Dis-

tinct estimation algorithm.
Our JD sketch composition algorithm actually implements

a composite hash function hA,C() over (A,C)-value pairs
that combines the first-level hash functions hA() and hC()
from sketches XA,B and XC,B , respectively. We now exam-
ine this composite hash function and its properties in more
detail. Our ability to use the final (A,C) bitmap synopsis
YA,C output by algorithm Compose to estimate the number
of distinct (A, C)-value pairs in R(A,B)./S(B,C) depends cru-
cially on designing a composite hash function hA,C() (based
on the individual functions hA(), hC()) that guarantees cer-
tain randomizing properties similar to those of the hash
functions used in the Flajolet-Martin or 2-level hash sketch
estimators. More specifically, our composite hash function
hA,C() needs to (a) allow us to easily map (A,C)-value
pairs onto a logarithmic range with exponentially-decreasing
probabilities; and, (b) guarantee a certain level of indepen-
dence between distinct tuples in the (A, C)-value pair do-
main. The key problem here, of course, is that, since the tu-
ples from R(A,B) and S(B,C) are seen in arbitrary order and
are individually summarized in the XA,B and XC,B synopses,
our composite hash-function construction can only use the
hash values lsb(hA()) and lsb(hC()) maintained in the indi-
vidual JD sketches. This limitation makes the problem non-
trivial, since it essentially rules out standard pseudo-random
hash-function constructions, e.g., using finite-field polyno-
mial arithmetic over [MA] × [MC ] [2, 9]. To the best of our
knowledge, our hash-function composition problem is novel
and has not been previously studied in the pseudo-random
generator literature. In the following theorem, we estab-
lish the existence of such composable hash-function pairs
(hA(), hC()) and demonstrate that, for such functions, the
composition procedure in algorithm Compose indeed guar-
antees the required properties for the resulting composite
hash function (i.e., exponentially-decreasing mapping prob-
abilities and pairwise independence for (A,C)-value pairs).

Theorem 3.1. The hash functions (hA(), hC()) used to
build a parallel JD sketch pair (XA,B,XC,B) can be constructed
so that the hash-function composition procedure in algorithm
Compose: (1) guarantees that (A, C)-value pairs are mapped
onto a logarithmic range Θ(log max{MA, MC}) with expo-
nentially-decreasing probabilities (in particular, the mapping

probability for the jth bucket is pj = Θ(4−(j+1))); and, (2)
gives a composite hash function hA,C() that guarantees pair-
wise independence in the domain of (A, C)-value pairs.

Proof: Let M = max{MA, MC}, and construct the individ-
ual hash functions hA() and hC() as linear hash functions
over the field GF(22 log M ) comprising boolean-coefficient poly-
nomials of degree at most 2 log M − 1 (or, equivalently,
2 log M -bit integers) [19]. 5 More specifically, given input
arguments a, c ∈ M (i.e., field elements of GF(2log M )), de-
fine hA(a) = r + s · α · a and hC(c) = t + s · c, where r,
s, t are randomly-chosen field elements of GF(22 log M ) (i.e.,
2 log M -bit integers) such that s 6= 0 and r 6= t, and α de-
notes the 2 log M -bit constant with a single 1-bit at location
log M . Note that the α constant corresponds to the poly-
nomial xlog M in GF(22 log M ) and, in GF-polynomial arith-
metic [19], the operation α ·a essentially left-shifts the argu-
ment a by log M bits. Clearly, both hA() and hC() guarantee
pairwise independence over M (see, e.g., [2]). Let hA,C() de-
note the composite hash function over (A, C)-value pairs de-
fined by algorithm Compose. Recall that the first-level buck-
ets of the R(A,B) and S(B,C) JD sketches basically record the
locations of the least-significant 1-bits (lsb’s) of hA() and
hC() values, respectively. It is then easy to see that, given
an (A,C)-value pair, say (a, c), with k = lsb(hA(a)) and
l = lsb(hC(c)) with k 6= l (and, of course, assuming that
the corresponding sets of B-values join), the Compose algo-
rithm will map that pair to bucket j = lsb(hA,C(a, c)) =
min{k, l} = min{lsb(hA(a)), lsb(hC(c))} of YA,C . And,
since k 6= l, it is easy to see that j = lsb(hA,C(a, c)) =
lsb(hA(a) + hC(c)); in other words, the composite hash
function computed by Compose is essentially hA,C(a, c) =
hA(a) + hC(c) = (r + t)+ s · (α · a + c). (Recall that in
GF-field arithmetic “+” is basically an XOR operation.)

To estimate the mapping probabilities for lsb(hA,C(a, c))
over the Θ(log M) range, observe that, by our construction:

Pr [lsb(hA,C(a, c)) = j] = Pr [lA(a) = j and lC(c) > j]

+Pr [lC(c) = j and lA(a) > j] ,

where lA(a) = lsb(hA(a)) (with lC(c) defined similarly).
Using the pairwise independence of hA() and hC() and the
fact that Pr [lA(a) = i] = Pr [lC(c) = i] = 1

2i+1 , the above
expression gives:

Pr [lsb(hA,C(a, c)) = j] = 2 · 1

2j+1

�

i≥j+2

1

2i
=

2

4j+1
.

Thus, our construnction gives exponentially-decreasing map-
ping probabilities, as needed.

We now give a counting argument to demonstrate that our
composite hash function hA,C() indeed guarantees pairwise
independence over (A,C)-value pairs. Let K = M 2 denote
the number of elements in the GF(22 log M ) field. Given an
input (a, c) pair and a hash function value v, the number of
ways in which the (a, c) pair maps to v (i.e., hA,C(a, c) = v)
is given by the number of choices for the triple of parameters
(r, s, t) for which the equation

hA,C(a, c) = v or, equivalently, (r + t) + s · (α · a + c) = v

is satisfied in GF(22 log M ). It is easy to see that, for each
of the K(K − 1) possible (random) choices for the (r, s)
pair (remember that s 6= 0), the above equation essentially
specifies a unique solution for t in GF(22 log M ), namely, t =
v−s·(α·a+c)−r. In other words, out of the (approximately)
K3 possible total choices for (r, s, t) triples over GF(22 log M ),

5Without loss of generality, we assume M to be a power of 2 in
what follows.



only (approximately) K2 choices will satisfy the equation
hA,C(a, c) = v; therefore, given (a, c) and v, we have

Pr [hA,C(a, c) = v] ≈ K2

K3
=

1

K
. (1)

Now, suppose we are given two distinct input pairs (a1, c1) 6=
(a2, c2) and hash values v1, v2. We again want to count the
number of ways in which the two equations hA,C(a1, c1) = v1

and hA,C(a2, c2) = v2 are satisfied over the possible choices
for the (r, s, t) triples. We can write this system of equations
in matrix form as�

1 α · a1 + c1

1 α · a2 + c2 � �
r + t

s � =

�
v1

v2 � .

The fact that (a1, c1) 6= (a2, c2) also implies that α · a1 +
c1 6= α · a2 + c2 (since they correspond to different 2 log M -
bit numbers as explained earlier); thus, the determinant of
the above system of equations is non-zero, which implies a
unique solution for (r + t, s). So, for each of the K pos-
sible choices for r, the system of equations hA,C(a1, c1) =
v1 and hA,C(a2, c2) = v2 uniquely determine s and t; in
other words, over the (approximately) K3 choices for (r, s, t)
triples over GF(22 log M ), we have

Pr [hA,C(a1, c1) = v1 and hA,C(a2, c2) = v2] ≈ K

K3
=

1

K2

= Pr [hA,C(a1, c1) = v1] · Pr [hA,C(a2, c2) = v2]

(based on Equation (1)). This proves the pairwise inde-
pendence property for the composite hash function hA,C(),
completing our proof argument.

The Join-Distinct Estimator. The pseudo-code of our
algorithm for producing an (ε, δ) probabilistic estimate for
the Join-Distinct problem (termed JDEstimator) is depicted
in Figure 5. Briefly, our estimator employs an input col-
lection of s2 independent JD sketch synopsis pairs built in
parallel over the input update streams R(A,B) and S(B,C).
(The values for the s1, s2 parameters are determined by
our analysis in Section 4.) Each such parallel JD sketch pair
(X i

A,B ,X i
C,B) is first composed (using algorithm Compose) to

produce a bitmap synopsis Y i
A,C over the (A,C)-value pairs

in the join result (Steps 1-2). Then, the resulting s2 Yi
A,C

bitmaps are examined level-by-level in parallel, searching
for the highest bucket level (“index”) at which the number
of bitmaps that satisfy the condition: “Y i

A,C [index] = 1”,
lies between s2 · (1 − 2ε) ε

8
and s2 · (1 + ε)ε (Steps 4-11).

(These lower and upper bound values are again based on
our analysis.) The final estimate returned is equal to the
fraction of Yi

A,C synopses satisfying the condition at level
“index” (i.e., “count/s2”) scaled by the inverse of the map-

ping probability for that level pindex = 2 · 4−(index+1) (by
Theorem 3.1). Note that, if no such level is found, our algo-
rithm only returns a “failure” indicator; our analysis shows
that this event can only happen with low probability.

4. ANALYSIS
In this section, we present the analysis of the approxima-

tion guarantees and space requirements of our Join-Distinct
estimation algorithm (Figure 5). We begin by introducing
some additional notation and terminology that we will use in
our analysis. We then proceed to demonstrate the main the-
oretical result in this paper that establishes the (worst-case)

procedure JDEstimator( (X i
A,B ,X i

C,B), i = 1, . . . , s2, ε )

Input: s2 independent pairs of parallel JD sketch synopses
(X i

A,B ,X i
C,B) for the update streams R(A,B), S(B,C).

Output: (ε, δ)-estimate for |πA,C(R(A,B) ./ S(B,C))|.
begin

1. for i := 1 to s2 do

2. Yi
A,C := Compose(X i

A,B ,X i
C,B)

3. let B denote the highest bucket index in the YA,C synopses
4. for index := B downto 0 do

5. count := 0
6. for i := 1 to s2 do

7. if Yi
A,C [index] = 1 then count := count +1

8. endfor

9. if � (1 − 2ε) ε
8
≤ count

s2
≤ (1 + ε)ε � then

10. return( count/(pindex · s2) )
11. endfor
12. return( fail )
end

Figure 5: Join-Distinct Estimation Algorithm.

space requirements of our Join-Distinct estimator for guar-
anteeing small relative error with high probability. Finally,
we present a lower bound on the space usage of any (possi-
bly, randomized) estimation algorithm for the Join-Distinct

problem, showing that our estimator is within small factors
of the best possible solution.

4.1 Notation
Let Sp denote a random sample of distinct (A,C)-value

pairs drawn from the cartesian product [MA] × [MC ] of the
underlying value domains, where each possible pair is se-
lected for inclusion in the sample with probability p. (Note
that the collection of (A, C)-value pairs mapped to level i
of each bitmap synopsis YA,C generated in Steps 1-2 of our
Join-Distinct estimator can essentially be seen as such a
random sample Spi

with selection probability pi = Θ(4−(i+1)).)
We also define two additional random variables Up and Tp

over the sample Sp of (A, C)-value pairs as follows:

Up = |{b : ∃(a, c) ∈ Sp such that [(a, b) ∈ R(A,B) OR

(b, c) ∈ S(B,C)]}|,
Tp = |{b : ∃(a, c) ∈ Sp such that [(a, b) ∈ R(A,B) AND

(b, c) ∈ S(B,C)]}|.

In other words, the Up random variable counts the size of
the total B-neighborhood of the Sp sample; that is, the
number of distinct B-values that are “connected” (through
R(A,B) or S(B,C)) to either the A or the C component of
an (A,C)-value pair in Sp. Tp, on the other hand, captures
the size of the B-support of the Sp sample in the join re-
sult R(A,B)./S(B,C); that is, the number of distinct B-values
that appear with both the A and the C component of an
(A, C)-value pair in Sp.

Figure 6 depicts an example instantiation for the sample
Sp and the above-defined random variates using the simple
analogy of a 3-partite graph over [MA] × [MB ] × [MC ] as
a representation for the join R(A,B)./S(B,C). Note that an
(a, b) ((b, c)) edge in the figure represents the existence of
at least one such data tuple in the R(A,B) (resp., S(B,C))
stream. We define the B-degree of a value x in A (or, C) as
the number of distinct B-values that are “connected” to x in
the input stream, and let deg(A), deg(C) denote the average
B-degree of values in A and C, respectively; for example, in



Figure 6, deg(A) = 10
6

= 1.67.

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������	�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�		�	�	�	�	�	�	�	
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
����������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

a6

a5

a4

a3

a2

a1 b1

b2

b3

b4

b5

c1

c4

c3

c2

Sp  = { (a1,c1), (a2,c3), (a5,c4) }

Tp = | {b2, b5} | = 2 

deg(A) = 10/6 = 1.67

deg(C) = 5/4 = 1.25

Up = | {b1, b2, b3, b5} | = 4

A B C

Figure 6: Example R(A,B)./ S(B,C) Instance.

4.2 Space-Usage Analysis
We now present the analysis of the worst-case space re-

quirements of our probabilistic Join-Distinct estimator (as
a function of the associated (ε, δ) estimation guarantees). In
order to simplify the exposition, we abstract away many of
the constants in our bounds using Θ()-notation – the deriva-
tion of the exact constants for our analysis is deferred to the
full version of this paper [8]. We should, once again, empha-
size that our analysis only considers the worst-case space
usage for our algorithm; as our experimental results demon-
strate, the average-case behavior of our schemes is consis-
tently much better than what our pessimistic, worst-case
bounds would predict (Section 6).

Fix a specific YA,C bitmap synopsis for (A,C)-value pairs
produced by algorithm JDEstimator, and consider a particu-
lar bucket level l in this bitmap. As we already mentioned
in Section 3, our estimator makes use of the 2-level hash
sketches synopses in the original JD sketch buckets for R(A,B)
and S(B,C) that map to bucket YA,C [l] in order to decide
whether there exists a common B-value that would give rise
to an (A, C)-value pair in this bucket in the Join-Distinct

result. In other words, our algorithm sets YA,C [l] = 1 only
if our 2-level hash sketch set-intersection estimator (Intersec-

tionEstimator in Figure 4) is able to accurately detect that
the intersection of B-values in the corresponding buckets of
the two JD sketches being composed is non-empty (given, of
course, that this is indeed the case). Since our intersection
estimator (based on concise 2-level hash sketches) is nec-
essarily probabilistic, we need to ensure that the detection
of such non-empty B-value intersections for YA,C [l] is done
with high probability. Observe that the set of (A,C)-value
pairs mapped to YA,C [l] is essentially a random sample Spl

of

[MA]×[MC ] with selection probability pl = Θ(4−(l+1)). Fur-
thermore, by our earlier results on set-intersection estima-
tion using 2-level hash sketches (Theorem 2.1), we know that
we can detect a non-empty intersection with high probability
(≥ 1−δ) as long as the number s1 of 2-level hash sketch syn-
opses maintained is at least Θ(log( 1

δ
)·|union|/|intersection|).

(Detecting the condition |intersection| ≥ 1 can be done using
any constant relative error ε < 1/2 in Theorem 2.1.) Thus,
using the notation introduced earlier in this section and the
fact that our algorithm maintains s1 2-level hash sketches
at each JD sketch level, the conditional probability that our
estimator detects (w.h.p.) a non-empty B intersection at

level l of YA,C (given that it exists) can be expressed as:

Pr [detect at l] = Pr

�
Upl

Tpl

≤ Θ(s1/ log(
1

δ
)) | Tpl

≥ 1 � .

Let e(pl) denote the conditional expectation E
� Upl

Tpl

| Tpl
≥

1 � , and assume that the number of per-level 2-level hash

sketches is s1 = Θ(e(pl) · log( 1
δ
)/ε). Then, a simple applica-

tion of Markov’s inequality [21] gives that the above proba-
bility is
Pr [detect at l] ≥ 1 − Θ(ε).

Let m = |πA,C(R(A,B) ./ S(B,C))|, i.e., the true size of
our Join-Distinct query, and let m̂ denote the estimate for
m returned by our JDEstimator algorithm. Define the prob-
ability p as p = ε/m, and let l be the unique level in the
YA,C bitmap synopsis such that p

4
< pl ≤ p (remember that

the per-level probabilities decrease by powers of 4). Us-
ing the union bound and the pairwise-independence proper-
ties of the mappings in YA,C in conjunction with the Inclu-
sion/Exclusion Principle, the probability Pr [Tpl

≥ 1] can be
bounded as follows:

mpl(1 − mpl

2
) ≤ mpl −

�
m
2  p2

l ≤ Pr [Tpl
≥ 1] ≤ mpl.

(2)

Now, consider the probability rl = Pr [YA,C [l] = 1]. Since
our 2-level hash sketch set-intersection estimator guarantees
no false positives (i.e., will not detect a non-empty intersec-
tion unless it actually exists), it is easy to see that rl ≤
Pr [Tpl

≥ 1] ≤ mpl ≤ ε (since pl ≤ p = ε/m); furthermore,
we have:

rl = Pr [YA,C [l] = 1] ≥ Pr [Tpl
≥ 1] · Pr [detect at l]

≥ (1 − Θ(ε))mpl(1 − mpl

2
)

≥ (1 − Θ(ε))
ε

8

where the last inequality follows from our earlier analysis,
our choice of level l, Equation (2), and the fact that ε < 1.

Given the above bounds on the rl probability, a simple ap-
plication of the Chernoff bound [21] shows that, using s2 =

Θ( log(1/δ)

ε3
) independent copies of the YA,C bitmap synopsis,

the fraction r̂l of the level-l buckets that satisfy the condition
“YA,C [l] = 1” (i.e., the count

s2
ratio in algorithm JDEstima-

tor) is guaranteed to be in the range (1 ± ε)rl.
6 Using our

bounds on rl, this implies that, with high probability, we
have (1 − Θ(ε))2mpl(1 − mpl

2
) ≤ r̂l ≤ (1 + ε)mpl, which, of

course, implies that the observed ratio estimate r̂l

pl
(returned

in Step 10 of algorithm JDEstimator) satisfies

(1 − Θ(ε))3m ≤ r̂l

pl
≤ (1 + ε)m.

(Note that, since Θ(ε) < 1, we have (1−Θ(ε))3 > (1−3Θ(ε));
thus, we get a Θ(ε) approximation by simply using ε′ = ε/3.)

As the above analysis demonstrates, if our estimation al-
gorithm selects the (unique) level l such that pl ∈ ( ε

4m
, ε

m
]

6Note that the space requirements for our distinct-count estima-
tion procedure over the “composed” YA,C bitmaps are worse than
those of known (ε, δ)-approximation schemes for simple distinct-
count estimation (e.g., [9]). This is primarily due to the fact
that our composed hash functions can guarantee only pairwise
independence.



(i.e., “index” = l in Figure 5), then the estimate r̂l

pl
returned

(Step 10 of JDEstimator) will be within a small relative error
of the true Join-Distinct count m with high probability. We
now demonstrate that, with an appropriately small value of
ε, our algorithm is in fact guaranteed to terminate at level l
or l + 1 with high probability. Consider any level k ≥ l + 2.
Note that, the mapping probability for level k is pk ≤ p

16
=

ε
16m

. Following the steps of the analysis for level l, it is
easy to see that, even for this level k ≥ l + 2, the frac-
tion r̂k of bitmaps satisfying “YA,C [k] = 1” will be r̂k ≤
(1 + ε)mpk ≤ (1 + ε) ε

16
, with high probability. Thus, since

r̂l ≥ (1 −Θ(ε))2 ε
8

(w.h.p.), our algorithm, with high proba-
bility, (1) terminates at either level l or l + 1; and, (2) does
not terminate at any level k ≥ l+2, as long as (1−Θ(ε))2 >
1+ε
2

(that is, some “separation” exists between levels l and
l + 2). It is easy to see that this condition can easily be
satisfied with an appropriately small value of ε (the exact
constant factors can be found in the full paper [8]). The
error guarantees for our final estimate will hold regardless
of which of the two levels (l or l + 1) our algorithm chooses.

Remember that our analysis relies on maintaining s1 =
Θ(e(pl) · log( 1

δ
)/ε) 2-level hash sketch summaries at each

level of our JD sketches, where e(pl) denotes the conditional

expectation E
� Upl

Tpl

| Tpl
≥ 1 � . As a final step in our analysis,

the following lemma demonstrates that, for any level l such
that pl ≤ p = ε

m
(like the levels considered in our analysis

above), the conditional expectation e(p) = E
� Up

Tp
| Tp ≥ 1 �

(i.e., using p instead of pl) is a good approximation to e(pl);
the detailed proof is deferred to the full paper [8]. This
result allows us to use e(p) instead of the “level-specific”
e(pl) term in the remainder of our discussion.

Lemma 4.1. Assume m ≥ 1, ε < 1
4
, and 0 < q ≤ p = ε

m
.

Then, E
� Uq

Tq
| Tq ≥ 1 � ≤ (1 + 5ε) · E

� Up

Tp
| Tp ≥ 1 � .

The following theorem summarizes the results of our anal-
ysis; we use M = max{MA, MB , MC} to simplify the state-
ment of our worst-case space bounds.

Theorem 4.2. Let m denote the result size of an input
Join-Distinct query on two update streams R(A,B) and S(B,C),

and let M = max{MA, MB , MC}, e(p) = E
� Up

Tp
| Tp ≥ 1 � ,

where p = ε
m

. Algorithm JDEstimator returns and (ε, δ)-
estimate for m using JD sketch synopses with a total stor-
age requirement of Θ(s1s2 log3 M log N) and per-tuple up-

date time of Θ(s1 log M), where: s1 = Θ
	

e(p) log(1/δ)
ε 
 , and

s2 = Θ
	

log(1/δ)

ε3 
 .

The conditional-expectation term e(p) basically captures
the expected ratio of the total B-neighborhood to the cor-
responding B-support for the join operation over randomly-
chosen (A, C) pairs. Intuitively, large e(p) values imply that
the underlying join query has relatively small support over
A×C and, thus, our probabilistic estimation techniques will
require more space in order to be able to detect supporting
tuples for the join.

4.3 Further Discussion and Lower Bounds
Ignoring the conditional-expectation term e(p), Theorem 4.2

essentially states that our Join-Distinct estimation problem
over update streams is solvable in small (i.e., polylogarith-
mic) space; unfortunately, the existence of the e(p) term in

our space bounds does not allow us to make such a claim.
It is, therefore, interesting to ask at this point how good
our randomized estimator really is – is it perhaps possible
to design a new estimation procedures that significantly im-
proves on the space requirements stated in Theorem 4.2? In
this section, we further discuss the role of the conditional-
expectation term in the bounds of Theorem 4.2, and we
answer the above question in the negative by demonstrating
space lower bounds for Join-Distinct estimators working in
the streaming model.

Recall that the conditional expectation e(p) basically cap-
tures the expectation of the union-over-intersection ratio of
B values for a randomly-chosen subset of (A, C)-value pairs
in our input streams (given that this intersection is non-
empty). Since the e(p) term is not very intuitive, we pro-
vide, in the following lemma, a relaxation (i.e., an upper
bound) for the conditional expectation e(p) in terms of “eas-
ier” properties of the underlying data streams.

Lemma 4.3. Let p = ε
m

. Then, e(p) = E
� Up

Tp
| Tp ≥ 1 � ≤

ε|A||C|(deg(A)+deg(C))
m

.

Lemma 4.3 essentially states that, with limited space,
our estimator is guaranteed to provide robust estimates for
Join-Distinct cardinalities that are sufficiently large com-
pared to the product of the total number of distinct (A, C)-
value pairs seen in the input streams and the average B-
degree of A and C values. We should note here that the
upper bound on e(p) in Lemma 4.3 is fairly loose – it es-
sentially assumes that B-values are not shared across dif-
ferent values in A or C (and, once again, our analysis only
looks at worst-case bounds for our estimators). The fol-
lowing theorem proves a lower bound for all approximation
algorithms for our Join-Distinct estimation problem over
streams, which (based on Lemma 4.3) shows that the space
requirements of our JDEstimator algorithm cannot be signif-
icantly improved (i.e., it is within small constant and log
factors of the optimal). Our proof makes use of information-
theoretic arguments and Yao’s lower-bounding lemma, and
can be found in Appendix A.

Theorem 4.4. Let Φ be any scheme for building a sum-
mary of a database relation, and let A be any (randomized
or deterministic) scheme such that A(Φ(R(A,B)), Φ(S(B,C)))
provides a constant-factor approximation of |πA,C(R(A,B) ./
S(B,C))| with high probability. Then, given an a-priori lower
bound β on the Join-Distinct result size, where (deg(A) +
deg(C))

√
β ≤ 2N , the size of the summary Φ must be at

least |A||C|(deg(A)+deg(C))
2β

.

5. EXTENSIONS
Handling Other Join-Distinct Aggregates. Our dis-
cussion thus far has focused on the query Q= |πA,C(R(A,B) ./
S(B,C))| (where A, C 6= φ and A∩B = B∩C = φ). We now
discuss how our proposed Join-Distinct estimation tech-
niques can be adapted to deal with other forms of Join-Dis-
tinct COUNT queries conforming to the general query pattern
described in Section 2.1.

For example, consider the case of a one-sided projection
query Q’= |πA,B(R(A,B) ./ S(B,C))|, where we seek to esti-
mate the number of distinct R(A,B) tuples joining with at
least one tuple from S(B,C)(i.e., the number of distinct tu-
ples in a stream semi-join). Our JDEstimator algorithm can



readily handle the estimation of Q’ – the key idea is to sim-
ply replace attribute C by B in the JD sketch construction
and estimation steps already described for Q. Thus, for Q’,
the JD sketch synopsis built on the S(B,C) side actually uses
a first-level hash function on attribute B in addition to the
per-bucket 2-level hash sketch collections (also built on B);
then, when the JD sketch composition process (Figure 4) is
applied (at estimation time), the output is a set of FM-like
bitmap synopses YA,B on (A, B)-value pairs that can be used
to produce an estimate for Q’. Similarly consider the case of
a “full-projection” query Q’’= |πA,B,C(R(A,B) ./ S(B,C))|,
that simply outputs the number of distinct (A, B, C) tuples
in the join result. Handling Q’’ simply involves replacing A
(C) by (A,B) (resp., (B, C)) in the JD sketch construction
and JDEstimator algorithms for Q.

Handling other forms of Join-Distinct aggregates (e.g.,
predicate selectivities over the result of a Join-Distinct query)
is slightly more complicated. In a nutshell, the key idea is
to augment the first-level hash tables in our JD sketch syn-
opses with count signatures for the corresponding projected-
attribute values. Then, after the JD sketch composition step,
these count signatures can be employed (in a manner simi-
lar to [9]) to identify singleton projected-attribute values.
Such singletons essentially form a distinct sample of the
projected-attribute values in the Join-Distinct result and,
thus, can be used to estimate distinct-values predicate se-
lectivities (as in [10]). The results of our analysis for our
estimators can also be readily extended to cover the afore-
mentioned different forms of Join-Distinct estimation prob-
lems; due to space constraints, the details are deferred to
the full paper [8].

An Alternative, Θ(|B|)-Space Join-Distinct Estima-
tor. In developing our Join-Distinct estimation algorithms,
we have thus far insisted on polylogarithmic-space synop-
sis structures. Such a restriction makes sense, for example,
when joining on attributes with very large numbers of dis-
tinct values (e.g., (source, destination) IP-address pairs).
When this is not the case, and using Θ(|B|) space is a viable
option for estimating Q= |πA,C(R(A,B) ./ S(B,C))|, we now
briefly describe a different, simpler Join-Distinct estimation
algorithm.

In a nutshell, our alternative algorithm again relies on
our idea of using composable hash functions (Theorem 3.1)
to compose a bit-vector sketch on (A, C) from hash sketches
built individually on R(A,B) and S(B,C); however, the synop-
sis structure used is different from that of JDEstimator. More
specifically, we make use of a Θ(|B|) bit-vector indicating
the existence of a particular B value in an input stream;
for each non-empty B-bucket, we maintain a collection of
independent FM synopses (using counters instead of bits)
that summarize the collection of distinct A (C) values for
tuples in R(A,B) (resp., S(B,C)) containing this specific B-
value. (These FM synopses are built using composable hash
functions hA() and hC(), as in Section 3.2.) At estimation
time, the A and C FM synopses for each B-value that ap-
pears in both R(A,B) and S(B,C) (note that, since we are using
Θ(|B|) space, this co-occurrence test is now exact) are com-
posed to produce an (A, C)-bitmap sketch for that B-value.
Then, all such (A,C)-bitmaps are unioned (by simple bit-
wise OR-ing) to give FM bit-vectors on (A,C) for the result
of R./ S, that can be directly used for estimating Q. It can
be shown [8], that our alternative Join-Distinct estimator
can produce an (ε, δ)-estimate for Q using Θ(|B| log( 1

δ
)/ε3)

space, and can also be easily extended to handle other forms
of Join-Distinct aggregates. Note that this new estimator
has a “hard” space requirement of at least Ω(|B|) and, un-
fortunately, there is no obvious way to extend it so that it
works with less than O(|B|) space.

6. EXPERIMENTAL STUDY
In this section, we describe the results obtained from a

preliminary experimental study of the algorithmic techniques
developed in this paper. The objective of this study is to test
the effectiveness of our novel stream-synopsis data structures
and probabilistic estimation algorithms in practical data-
streaming scenarios, and study their average-case behavior
over different problem instances. Our preliminary experi-
mental results substantiate our theoretical claims, demon-
strating the ability of our techniques to provide (with only
limited space) accurate approximate answers to Join-Dis-

tinct aggregates over continuous streaming data.

6.1 Testbed
Methodology. Our experiments study the accuracy of the
two probabilistic Join-Distinct cardinality estimation tech-
niques proposed in this paper, namely our JDEstimator al-
gorithm (based on JD sketches) and our alternative Θ(|B|)-
space estimation algorithm (termed LinearJDEstimator) dis-
cussed in Section 5. We tested our two estimators over differ-
ent synthetic data streams, employing the conventional ab-
solute relative error metric as the primary metric for gauging
approximation accuracy; that is, given two streams R(A,B)

and S(B,C) and an estimate Ĵ of their Join-Distinct car-
dinality J , we define the error of the estimate as the ratio
|Ĵ−J|
|J|

. Our experiments measure the errors of our estima-

tion algorithms as a function of the space made available for
building synopses of the two input data streams. (Note, once
again, that ours is the first solution to the Join-Distinct es-
timation problem in the streaming context.) To account for
the randomness in our techniques, all numbers reported be-
low represent averages over 10 runs of our algorithms with
different random seeds.

Data Sets. Given that our synopsis data structures for
both JDEstimator and LinearJDEstimator are impervious to dele-
tions in the stream, our synthetic data generator focuses
solely on insert-only data streams. Furthermore, since our
analysis of JDEstimator shows that its accuracy depends on
the ratio Up/Tp of neighborhood size to join support (Sec-
tion 4), we employ a controlled data-generation process that
allows us to effectively vary this ratio.

More specifically, our synthetic data sets are generated
using a random-graph model. A random graph is specified
using two parameters: the number of nodes n, and edge
probability q. Given these two parameters, we construct a
bipartite graph on n×n vertices, where an edge between each
pair of vertices (i, j) is added independently with probability
q. The edges (i, j) of the final bipartite graph are essentially
the (two-attribute) tuples of an input stream R(A,B). The
second stream S(B,C) is also generated similarly, using the
same set of n×n graph nodes and the same edge probability
q. It is not difficult to see that the size of a Join-Distinct

query over R(A,B) and S(B,C) is equal to the number of pairs
of (A, C) vertices in the combined tri-partite graph which
have a path of length two between them.

Our random-graph model allows us to effectively control
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Figure 7: Average relative estimation error numbers for JDEstimator (a) and LinearJDEstimator (b), over random
data graphs with n = 1, 000 and q ∈ {0.01, 0.02, 0.04}.

the Up/Tp ratio. Indeed, if we look at a random tuple (a, c) ∈
A×C, the expected size of the Up neighborhood (i.e., the set
of B-vertices adjacent with either a or c) is approximately
2nq. Furthermore, the size of the join support Tp of (a, c)
(i.e., the number of B-vertices adjacent with both a and c)
is about nq2. So, for a given edge probability q, the Up/Tp

ratio is of the order 2/q; thus, by varying q, we effectively
vary Up/Tp accordingly.

6.2 Experimental Results
Figure 7 presents some of our preliminary relative-error

results for our JDEstimator and LinearJDEstimator algorithms
as a function of the number of sketches employed in the un-
derlying synopsis data structures (i.e., JD sketches for JDEs-

timator and FM sketches for LinearJDEstimator). (In the case
of JDEstimator, the number of inner 2-level hash sketches is
kept fixed at 40.) The numbers shown were obtained over
random data graphs generated with n = 1, 000 and edge
probabilities q varying from 0.01 to 0.04. With these pa-
rameter settings, the input relation sizes varied between ap-
proximately 10, 000 and 40, 000 (distinct) tuples, while the
true Join-Distinct result cardinality was between approxi-
mately 820, 000 (for q = 0.04) and 115, 000 (for q = 0.01).
(Qualitatively similar results were obtained for other param-
eter settings.)

Our results demonstrate the effectiveness of our proba-
bilistic Join-Distinct estimators: in most cases, using only
about 100-150 sketches, our algorithms’ estimates are within
relative errors of about 15 − 20% or lower. The setup with
q = 0.01 clearly represents a “difficult” case for our JDEstima-

tor algorithm, since it corresponds to a fairly low neighborhood-
to-join-support (i.e., Up/Tp) ratio, making it hard to detect
non-empty bucket intersections over the JD sketches. Since,
as mentioned earlier, our probabilistic intersection estima-
tors guarantee no false negatives, JDEstimator typically ends
up underestimating the true Join-Distinct cardinality in
such difficult setups. As our numbers show, however, our al-
ternative LinearJDEstimator can actually provide an effective
alternative even for such “sparse” joins, assuming, of course,
that the number of distinct values for the join attribute B
remains reasonably small (|B| = 1, 000 in our example set-
ting).

7. CONCLUSIONS
Estimating the cardinality of Join-Distinct expressions

over (perhaps, distributed) continuous update streams is
a fundamental class of queries that next-generation data-
stream processing systems need to effectively support. In
this paper, we have proposed the first space-efficient al-
gorithmic solution to the general Join-Distinct cardinal-
ity estimation problem in the data- or update-streaming
model. Our proposed estimators rely on novel, hash-based
synopsis data structures that can be effectively composed to
provide low error, high-confidence Join-Distinct estimates
using only small space and small processing time per up-
date. Preliminary results from an empirical study of our
algorithms have substantiated our theoretical claims, show-
ing that our techniques can provide efficient and accurate
Join-Distinct cardinality estimates over streams.
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APPENDIX

A. LOWER-BOUND PROOF
Our proof goes along the ideas of the lower bound shown

in [1]. We use Yao’s lemma. We exhibit two distributions
according to which we select the tuples in relations R and
S respectively. Suppose there exits a deterministic algo-
rithm Φ which always produces a synopsis of length less
than |A||C|(deg(A) + deg(C))/(2β). Then, we will show

that such an algorithm will not be able to output a constant
factor (better than 2) estimation of the Join-Distinct size
for a set of inputs of constant probability measure. Yao’s
lemma will then imply Theorem 4.4.

Let m = N−d
√

β. We first define a distribution D1 on set
of m tuples, each tuple belonging to relation R. Attribute B
takes values from the set {1, . . . , t}, where we fix the value of
t later. We pick a value i from this set uniformly at random.
We define m different tuples r1, . . . , rm as follows : rk[B] = i
for k = 1, . . . , m. These tuples are divided into m/d groups,
each group being of size d. The tuples r in group k satisfy
rk[A] = ak, where a1, a2, . . . , am/d are distinct values in A.

We can now define the distribution on the first relation
R. R has N tuples. The first m tuples are drawn according
to D1 as described above. The remaining N − m = d

√
β

tuples are chosen as follows : r[B] = 0 for all these tuples
r. As before, we divide these N −m tuples into groups of d
each. All tuples r in the same group have the same value of
r[A], but tuples in different groups have distinct A-attribute
values.

We now define another distribution D2, which again is a
distribution on sets of tuples of size m, each tuple belonging
to relation S. We first define a set system P on {1, . . . , t} as
follows. Each set P ∈ P has size t/10 and if P1, P2 are two
distinct sets in P, then |P1 ∩ P2| ≤ t/20. Further, P has 2t

sets. The existence of such a set system can be shown by the
probabilistic method. We pick a set P from this set system
uniformly at random. We define |P | = t/10 tuples. The
B attributes of these tuples are distinct elements of P . We
divide these t/10 elements into groups of d elements each.
Thus, there are t/10d such groups.

We make 10m/t copies of these t/10 tuples (thus, there
are a total of m tuples). Observe that we have a total of
(t/10d)·(10m/t) = m/d groups of these tuples. We associate
a unique C attribute with each of these groups.

This gives us a set of m tuples for S. We define another
N −m tuples in exactly the same way as we did for relation
R. This describes a relation S of size N .

Suppose we are given two relations R and S according to
these distributions. The first thing to observe is that the
Join-Distinct size is either β or β + m2/td, depending on
whether the value i ∈ B chosen according to D1 belongs to
the set P chosen in distribution D2. We set t = m2/(dβ).
So, the Join-Distinct size is either β or 2β. Thus, if we
give a wrong answer to the Join-Distinct size query, then
we are off by a constant factor. Suppose S1 and S2 are two
relations such that Φ(S1) = Φ(S2). Then, we claim that our
algorithm will give an error on a constant fraction of the
values i chosen from the set {1, . . . , t}. Indeed, suppose S1

is defined by the set P1 ∈ P and S2 is defined by the set P2 ∈
P. If i /∈ P1 ∩ P2, then the Join-Distinct size of R with one
of S1 and S2 will be β, while it will be 2β with the other one.
But, at least t/20 values of i satisfy this property. Thus, if S1

and S2 are mapped to the same synopsis, then we give errors
on a constant fraction of the possible R relations. Now, there
are 2t possible S relations. If Φ always produces a synopsis
with at most t−1 bits, then most of the possible relations S
will have the property that there exists another relation S′

such that Φ(S) = Φ(S′). But then, our algorithm will give
an error for a constant fraction of the input. Thus, Φ must
use at least t = m2/td = m/d ·m/d ·d ·1/β bits. This proves
the desired result since, clearly, d = (deg(A) + deg(C))/2 in
our instance.


