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Abstract. We present a simple way of designing deterministic algo-
rithms for problems in the data stream model via lossless expander
graphs. We illustrate this by considering two problems, namely, k-sparsity
testing and estimating frequency of items.

1 Introduction

We say that an n-dimensional vector f from Zn is k-sparse if it has at most k
non-zero entries. The problem is to test whether f is k-sparse or no after it has
been subject to a sequence of coordinate wise updates in arbitrary order, that
is, f is the frequency vector of a data stream. More formally, a data stream over
the domain [n] = {1, 2, . . . , n} is a sequence σ of records of the form (index, i, v),
where, index is the position of the record in the sequence, i ∈ [n] and v ∈ Z.
Associated with each data stream σ is an n-dimensional frequency vector f(σ),
such that fi(σ) is the frequency of i, or the cumulative sum of the updates to
fi(σ), made by the sequence σ. That is,

fi(σ) =
∑

(index,i,v)∈σ

v, i ∈ [n] .

The k-sparsity testing problem is as follows: design a data structure, referred
to as a k-sparsity tester, that (a) processes any stream σ of updates over the
domain [n], and, (b) provides a test to check whether f(σ) is k-sparse, that is,
whether, f has at most k non-zero entries. The problem is to obtain solutions
whose space requirement is o(n).

We first review work on the following well-studied and closely related prob-
lem, namely, k-sparse vector reconstruction problem, where it is required to de-
sign a structure that can process a data stream σ and can retrieve the frequency
vector f(σ) provided f(σ) is k-sparse. However, the structure is not required to
actually test whether f(σ) is k-sparse or not and may present an incorrect an-
swer if f(σ) is not k-sparse. Let m denote maxn

i=1|fi|. It is easy to show [15] that
the k-sparse reconstruction problem requires Ω(k log(mn/k)) bits. Minsky et. al.
[22] study a constrained version of the k-sparse vector reconstruction problem
where f(σ) ∈ {−1, 0, 1}n and present a space-optimal algorithm for this sce-
nario. Eppstein and Goodrich [11] present a space-optimal solution for the case
when f(σ) ∈ {0, 1}n. The k-set structure [15] presents a k-sparse vector recon-
struction technique for the general case when f ∈ {−m, . . . ,m}n. We reproduce
their theorem since we will refer to it later.



Theorem 1 ([15]). For vectors f ∈ {−m, . . . ,m}n, there exists a data structure
for the k-sparse reconstruction problem that requires space O(k log(mn) log(n/k))
bits. The time taken to process any coordinate-wise update to f is O(k(log(n/k)))
elementary arithmetic operations over a finite field of size O(mn) and charac-
teristic at least mn + 1. ut

The work on compressed sensing [3, 10] has independently considered the prob-
lem of k-sparse vector reconstruction. Based on previous work in [3, 10, 18], Indyk
[20] presented the first deterministic algorithm in the compressed sensing frame-
work for k-sparse vector reconstruction using space O(k2(log log n)E

log(mn)) bits,
where, E > 1 is a constant that depends on the best known construction of a
class of extractors.

We now review prior work on k-sparsity testing. It is known that k-sparsity
testing for vectors in {−m, . . . ,m}n requires Ω(n) space, for any m ≥ 1 and
k ≥ 0 [11, 16]. In view of this negative result, in this paper, we will restrict
our attention to non-negative frequency vectors from {0, . . . ,m}n, that is, 0 ≤
fi(σ) ≤ m, for each i ∈ [n]. A space-optimal 1-sparsity tester was presented
in [12] that requires O(log(mn)) bits. A k-sparsity tester can be constructed
by using strongly selective families [6, 8] as follows. An (n, k) strongly selective
family is a family of sets {Si}1≤i≤t such that for any A ⊂ {1, 2, . . . , n} such that
|A| ≤ k and for any x ∈ A, there exists a member Sj of the family such that
Sj∩A = {x}. In other words, each member of the set A is selected via intersection
by some member of the family. Constructive solutions for (n, k)-strongly selective
families are known for which the size of the family t = O(k2 · polylog(n)). A
k-sparsity test can be designed by keeping a 1-sparsity tester [12] for each of
the sets {Si}1≤i≤t. The space requirement is O(k2 · polylog(n) log(mn)) bits.
This line of work cannot be used to obtain significantly more space efficient k-
sparsity tests, since, there is a space lower bound of Ω(k2(log(n/k))/(log k)) for
the size of (n, k)-strongly selective family [6]. The k-set structure [15] presents
a technique that can be used to test k-sparsity of vectors in {0, . . . ,m}n using
space O(k2 log n + k log(mn)). Finite fields based solutions to k-sparse vector
construction of Minsky et.al. [22], Eppstein and Goodrich [11], our previous
work in [15], and, the compressed sensing approach of Indyk [20] are not known
to directly extend to deterministic k-sparsity testing.

Deterministic estimation of data stream frequency. We consider determin-
istic solution to the ApproxFreq(ε) problem, namely, to design a low-space
data structure that can (a) process any stream σ over the domain [n], and,
(b) given any i ∈ [n], it returns a deterministic estimate f̂i for fi(σ) satisfying
|f̂i − fi(σ)| ≤ ε‖f(σ)‖1, where, ‖f(σ)‖1 is the `1 norm of the frequency vector
f(σ). The ApproxFreq(ε) problem is a well-studied and basic problem in data
stream processing. Deterministic algorithms requiring O(ε−1 log m) space are
known for insert-only (i.e., no deletions) streams [9, 23, 21]. For streams with
arbitrary insertions and deletions, the CR-Precis algorithm solves the problem
ApproxFreq(ε) [14] using space Õ(ε−2(log−2(1/ε))(log2 n)(log mn)). A space
lower bound of Ω(ε−2 log m) for deterministic algorithms is known for solving
ApproxFreq(ε) over streams with frequency vector in {−m, . . . ,m}n [13].



Contributions. We present a simple paradigm for designing deterministic algo-
rithms over data streams by using appropriately chosen lossless expander graphs.
The paradigm consists of two steps, namely, identifying the expansion properties
needed to solve the problem at hand, and, a low space representation of the ex-
pander graph (or an object that closely resembles it). We illustrate our paradigm
by designing algorithms for k-sparsity testing and estimating item frequencies.

We first present a novel solution for deterministic k-sparsity tester for the
frequency vector f(σ) of a data stream σ, when, f(σ) ∈ {0, . . . ,m}n. This tech-
nique, based on lossless expander graphs, requires space O(k · D(1/4, n, k)),
where, D(ε, n, r) = o(n) is the smallest known degree function in the con-
struction of (k, ε)-lossless expanders. We subsequently improve upon this al-
gorithm to present a space upper bound of O(k(log(n/k))(log mn)) bits. This
improves the current upper bound of O(k2 log n + k log(mn)) space [15] and
nearly matches the space lower bound up to a logarithmic factor, which we
show to be Ω(k log(mn/k)). We also use the expander graphs based approach
to design a family of deterministic algorithms for ApproxFreq(ε), of which the
CR-Precis algorithm [14] is a special case. The algorithms derived in this man-
ner are slightly more efficient in space and update time than the CR-Precis al-
gorithm.

Organization. The remainder of the paper is organized as follows. In Section 2,
we consider the k-sparsity testing problem over data stream and and in Section 3
we consider the ApproxFreq(ε) problem. Finally, we conclude in Section ??.

2 Testing k-sparsity

In this section, we design a deterministic k-sparsity tester for frequency vectors
in {0, . . . ,m}n based on lossless expander graphs. We first present a space lower
bound for k-sparsity testing of vectors over {0, . . . ,m}n in the data stream model.

Lemma 1. For each value of 1 ≤ k < n/2, a deterministic k-sparsity tester for
vectors over {0, . . . ,m}n requires Ω(k log(mn/k)) bits.

Proof (Of Lemma 1). Let k < n/2. Suppose f, g are distinct k-sparse vectors
such that ‖f‖∞ ≤ m/2 and ‖g‖∞ ≤ m/2. We first show that there exists
h ∈ {−m, . . . ,m}n such that both f + h and g + h are non-negative and one
of them is k-sparse and the other is not k-sparse. This would imply that any
k-sparsity tester must map distinct k-sparse vectors in {0, . . . , bm/2c}n to dis-
tinct summaries. Since, the number of k-sparse vectors in {0, . . . , bm/2c}n is∑k

r=0

(
n
k

)
(bm/2c + 1)r, the space requirement would be at least the logarithm

of this quantity, which is O(k log(mn/k)).
Let Sf and Sg denote the set of coordinates of f and g respectively with

non-zero entries. Let T be any set of size k − |Sg| such that T ∩ (Sf ∪ Sg) = φ.
Such a T exists since, k < n/2. Denote by 1T the characteristic vector of T . Let



h = g + 1T . Then g + h = 2g + 1T and is k-sparse. Further, f + h = f + g + 1T

and therefore,

|Sf+g+1T
| = |(Sf ∪ Sg)|+ |T | > |Sg|+ 1 + |T | = k + 1

and so, f + h is not k-sparse. ut

2.1 Sparsity separator structure

We first define the (k, l)-sparsity separator structure that will be used later to
test k-sparsity in sub-linear space.

Definition 1. A (k, l)-sparsity separator structure, where, k ≤ l, is a data struc-
ture that (a) supports updates corresponding to any stream σ over [n], and,
(b) supports a deterministic operation called SeparateSparsity that returns
true if the sparsity of f(σ) is at most k and returns false if the sparsity of
f(σ) is at least l. ut

There is an indeterminate region, namely, if the sparsity of f(σ) is between k+1
and l − 1, then the function SeparateSparsity(f) is allowed to return either
true or false.

Lossless expander graphs. We design a (k, 2k) sparsity separator structure using
lossless expander graphs. We first recall some standard concepts from expander
graphs [19]. Let G = (VL, VR, E, d) denote a left-regular bipartite graph where,
VL = {v1, . . . , vn} is the set of vertices in the left partition, VR = {u1, . . . , ur} is
the set of vertices in the right partition, E is the set of edges of G and d is the
degree of each vertex in the left partition.

Definition 2 (Lossless Expanders [19].). A left-regular bipartite graph G =
(VL, VR, E, d) is said to be be a (Kmax, ε)-lossless expander if every set of K ≤
Kmax vertices from the left partition has at least (1− ε)dK neighbors in VR. 1

The work in [4] presents non-trivial, explicit constructions of lossless expanders
using the zig-zag product of expanders.

Theorem 2 ([4]). For any ε > 0 and r ≤ n, there is an explicit family of
left-regular bipartite graphs with |VL| = n, |VR| = r that is an (c′εr/d, ε)-lossless
expander with left degree D(ε, n, r) ≤ (n/εr)c for some constants c, c′ > 0. The
neighbors of any left vertex may be found in time O(d · logO(1)(n)). ut

Denote by R(ε, n, k) the smallest value of r for which there is a known efficiently
constructible (k, ε)-lossless expander with n left vertices and r right vertices.
Theorem 2 is optimized for the case r = Θ(n), in which case, the degree d = d(n)
is constant. Our approach will be the following. We will be interested in (K, ε)-
lossless expander graphs with r as small as possible. We use Theorem 2 to obtain
1 More accurately, an expander is a family of bipartite graphs {Gn}n≥n0 , for some n0,

where, Kmax = Kmax(n), ε = ε(n) and d = d(n).



expander graphs with the desired lossless expansion property to give us the wire-
frame of an algorithm for the problem. We then replace the expander by a more
explicit and low-space construction of a bipartite graph G with a smaller value
of r and that has the desired lossless expansion property.

A (k, 2k)-sparsity separator using lossless expander graphs. Given n and using
Theorem 2, we consider a left-regular bipartite graph G = (VL, VR, E, d) that is
a (2k, ε = 1/4)-lossless expander such that

|VL| = n, |VR| = r and left-degree d = D(ε, n, r) .

Keep r = |VR| integer counters denoted as an r-dimensional vector g = [g1, . . . , gr],
where, gs is the counter associated with vertex us ∈ VR. All counters are initial-
ized to 0. The counter gs maintains the following sum over the data stream.

gs =
∑

(vi,us)∈E

fi(σ), s = 1, 2, . . . , r .

Alternatively, if we let B be the r×n matrix such that As,i = 1 if vi is adjacent
to us and As,i = 0 otherwise, then, g = A(f(σ)). The counters are easily updated
corresponding to a stream update (pos, i, v) as follows:

gs := gs + v, ∀s ∈ [r] such that us is adjacent to vi .

Equivalently, in matrix notation, g := g + Ai, where, Ai is the column corre-
sponding to vertex vi. Since, the neighbors of any left vertex vi can be computed
in d · polylog(n) time and d = D(ε, n, r), the update can be performed in time
D(ε, n, 4k) · polylog(n).

A procedure for SeparateSparsity(k, 2k) can be designed as follows. It
first checks if g is not (1− 1/4)2dk = 3dk

2 -sparse in which case it returns false.
Otherwise, the procedure returns true.

procedure SeparateSparsity(k, 2k)
Data Structure: A (k, 2k)-sparsity separator structure.

if g is not
(

3
2dk − 1

)
-sparse return false else return true

We now show that the algorithm SeparateSparsity(k, 2k) correctly solves the
approximate sparsity problem with parameter k, 2k.

Lemma 2. Algorithm SeparateSparsity(k, 2k) correctly solves the problem
SeparateSparsity(k, 2k).

Proof. Suppose that f is not 2k − 1-sparse. Then, it has at least 2k non-zero
entries. Let Sf = {vi ∈ VL | fi > 0}. Then, |Sf | ≥ 2k. Choose any subset
T ⊂ Sf such that |T | = 2k. Let Γ (S) denote the neighbors of any set T ⊂ VL. By
property of the (2k, 1/4)-lossless expander graph, (1−1/4)d(2k) ≤ |Γ (T )| ≤ 2dk,
that is, 1.5dk ≤ |Γ (T )| ≤ 2dk. For each s ∈ Γ (T ), gs > 0, since, gs is the sum
of the (positive) fi’s of those i’s such that vi is adjacent to us. Therefore, g



procedure SparsityTest(k)
Input: Data Stream σ with frequency vector f(σ) ∈ {0, . . . , m}n.
Output: Returns true if f is k-sparse and false otherwise.
Data Structure: (a) A (k, 2k)-sparsity separator structure over {0, . . . , m}n, and,
(b) a 2k-set structure over {−m, . . . , m}n that supports operation RetrieveVector(2k) [15].
begin

1. if SeparateSparsity(k, 2k) = false return false
2. else if Sparsity(RetrieveVector(2k)) ≤ k return true
3. else return false

end.

Fig. 1. Procedure for testing k-sparsity

has at least 1.5dk non-zero entries and the algorithm returns false. On the
other hand, if f is k-sparse, |Γ (Sf )| ≤ kd and therefore g is kd-sparse and the
algorithm returns true. Hence the algorithm satisfies the properties of testing
SeparateSparsity(k, 2k). ut
The space requirement of Algorithm SeparateSparsity consists of the r-
dimensional vector g, each of whose entries is an integer between 0 and mn.
Then, the space requirement is O(R(ε, n, 2k) log(mn)). The time requirement to
process each stream update is D(ε, n,R) ·O(logO(1)(n)).

2.2 Algorithm for testing k-sparsity

We now use the sparsity separator (k, 2k) of Section 2.1 together with the k-set
reconstruction procedure of [15] to design an algorithm for k-sparsity test.

We keep two data structures, namely, a 2k-set structure for 2k-set reconstruc-
tion as presented in [15] and a (k, 2k)-sparsity separator structure, presented in
Section 2.1. Both structures are maintained independently and in parallel in the
face of stream updates. The procedure k-SparsityTest is presented in Fig-
ure 1 and is described as follows. It first uses the (k, 2k) sparsity separator test
on the r-dimensional vector g. If the approximate sparsity test returns false,
then, we know that f cannot be k-sparse. (Otherwise, the (k, 2k)-sparsity sep-
arator test would have returned true, by definition.) However, if the sparsity
separator procedure returns true, then, f is 2k-sparse (otherwise, the sparsity-
separator(k, 2k) would have returned false). The reconstruction procedure of
the 2k-set structure [15] is then invoked to obtain f , and from f , we obtain
its sparsity. If the sparsity is at most k, then the procedure returns true, and
otherwise returns false. We summarize these properties and the space and time
bounds in the following theorem.

Theorem 3. There exists a k-sparsity tester for frequency vector of data stream
in {0, . . . ,m}n using space O(R(1/4, n, 2k) log mn)), where, R = R(1/4, n, 2k) is
the smallest value of r for which a (2k, 1/4)-lossless expander can be efficiently
constructed with n vertices in the left vertex partition VL. The time required to
process each stream update is O(D(1/4, n,R) · logO(1)(n)). ut



Improving the expander based sparsity test. The space requirement of the
the expander based k-sparsity separator presented in Section 2 can be improved
by using a different construction of an (approximate) expander graph than the
one given by Theorem 2. The set of vertices adjacent to a given subset of vertices
S in a graph is denoted as Γ (S).

Lemma 3. For any n ≥ 2, d > 3 log(ne/4k) and r ≥ 8kd, there exist bipartite
graphs G = (VL, VR, E) with |VL| = n, |VR| = r satisfying the following property:
for any subset S ⊂ VL such that |S| ≤ k, |Γ (S)| ≤ k and for any subset S ⊂ VL

such that |S| ≥ 4k, |Γ (S)| > k. Moreover, the bipartite graph can be succinctly
represented by a string of size kd2 bits. The adjacency of a vertex in the left
partition may be computed in time O(kd2).

Proof (Of Lemma 3). Let VL = {1, 2, . . . , n} and VR = {1, 2, . . . , r}. Define d
independently chosen random hash functions h1, . . . , hd each mapping [n] → [r].
For i ∈ VL and s ∈ VR, we say that there is an edge (i, s) provided there exists
j ∈ {1, . . . , d} such that hj(i) = s.

By construction, for any S ⊂ VL be a set of left vertices of size k, |Γ (S)| ≤ kd.
Now suppose S ⊂ VL and |S| = 4k. For s ∈ VR, define an indicator variable ys

that is 1 if us ∈ Γ (S) and 0 otherwise.

Pr {ys = 1} = 1− (1− |S|/r)d = p (say) .

Thus,
|S|d
r

− d2|S|2

2r2
≤ p ≤ kd

r
.

Let

WS =
r∑

s=1

ys .

Therefore,

E [WS ] = rp ≥ kd− d2k2

r
.

Further,

E
[
W 2

S

]
=

( r∑
s=1

ys

)2 =
r∑

s=1

ys + 2
∑

1≤s1<s2≤r

ys1ys2

= rp + 2
(

r

2

)
p2 .

Thus,

σ2(WS) = Var
[
WS

]
= E

[
W 2

S

]
− (E [WS ])2 = rp + 2

(
r

2

)
p2 − (rp)2

= rp− rp2 .



Therefore,
σ2(WS) ≤ rp ≤ kd .

If the hash functions h1, . . . , hd are each t-wise independent, then, the ys’s are at
least t-wise independent. By Chernoff’s bound for t-wise independent variables
[24], we have,

Pr {|WS − E [WS ]| > T} ≤
(

t max(t, σ2(WS))
e2/3T 2

)t/2

[24] .

Choose the degree of independence as t = kd and let the deviation from the
expectation be T = E [WS ]− (kd + 1). Then,

T ≥ rp− (kd + 1) ≥ 4kd− 16k2d2

r
≥ 2kd

by choosing r ≥ 8kd. Substituting, we have

Pr {WS ≤ k} ≤ Pr {|WS − E [WS ]| > T} ≤
(

(kd)(4kd)
e2/3(2kd)2

)kd/2

= e−kd/3 .

Therefore,

Pr {WS ≤ k, for some S s.t. |S| = 4k} ≤
(

n

4k

)
e−kd/3 ≤ ek ln(ne/4k)−kd/3 < 1

provided, d ≥ 3 ln(ne/4k) Thus,

Pr {∀S, |S| = 4k, WS > 4k} > 0

This proves the existence of a bipartite graph with the properties as stated in
the Lemma.

Such a bipartite graph may be generated as follows. The random seed length
is kd2 log n bits, since, each of the hash functions may be implemented as a
degree kd− 1 polynomial over a field of size O(n). We iterate over the space of
kd2 log n bit strings, generate the corresponding bipartite graph and check for
the property. If the property holds, then, the kd2 log n bit seed is stored as the
generator for the bipartite graph. The above proof assures us of the existence of
such a seed. ut

(k, 4k)-Sparsity separator. A (k, 4k)-sparsity separator can be designed based
on a succinctly representable bipartite graph G = (VL, VR, E) obtained us-
ing Lemma 3 such that |VL| = n, d = 4 log(ne/k) and |VR| = r = 16kd. By
Lemma 3, for any subset S ⊂ VL, if |S| ≥ 4k, then, |Γ (S)| > 2k and if |S| ≤ k,
then, |Γ (S)| ≤ k. A (k, 4k)-sparsity separator is designed as follows. Keep r
counters, g1, . . . , gr, one each corresponding to each right vertex us ∈ VR ; all
initialized to 0. The counter gs maintains the following sum: gs =

∑
i:(vi,us)∈E fi.



Corresponding to update (pos, i, v) on the stream, the counters are updated as
follows.

Update(pos, i, v) : gs = gs + v, ∀s such that (i, s) ∈ E .

The space requirement is O(r) = O(k log(n/k)) counters of size O(log(mn)) bits
plus the succinct description length O(kd2) = O(k log2(n/k)) bits. The time
required to process each stream update of the form (pos, i, v) is to evaluate d
polynomials of degree kd each to obtain the adjacency of vertex vi; this re-
quires time O(kd2) = O(k log2(n/k)). The (k, 4k)-SeparateSparsity test is as
follows.

procedure Bipartite-SeparateSparsity(k, 4k)
1. if g is not k-sparse then return false else return true.

Rephrasing Lemma 3, if f is k-sparse, then, g is k-sparse, and, if f is not 4k-
sparse, then, g is not k sparse. The problem of k-sparsity testing can now be read-
ily solved as before. Keep a (k, 4k)-sparsity separator for vectors in {0, . . . ,m}n

based on succinct bipartite graphs and a 4k-set structure from [15]. The algo-
rithm for k-sparsity testing is identical to that presented in Figure 1, with the
only change being that the use of the 2k-set structure is replaced by a 4k-set
structure. We therefore have the following theorem.

Theorem 4. There exists a structure for testing k-sparsity of vectors in {0, . . . ,m}n

updated coordinate-wise as a data stream using space O(k log(n/k) log(mn)). The
time taken to process each coordinate-wise update is O(k log2(n/k)). ut

The space requirement of the succinct bipartite graph based k-sparsity tester is
within a logarithmic factor of the space lower bound of Ω(k log(mn/k)) proved
in Lemma 1.

3 Deterministic estimation of frequency vector

In this section, we present a novel, deterministic algorithm for approximating
the frequency vector of a data stream based on the use of lossless expander
graphs. Consider a (2, ε/2)-lossless expander graph G = (VL, VR, E, d), where,
VL = {v1, . . . , vn}, VR = {u1, . . . , ur}. By Theorem 2, a (2, ε/2)-lossless ex-
pander has r = O(D(ε, n,O(1))/ε) and d = D(ε, n, r), where, D(ε, n,O(1)) is
the current best known degree function for an (O(1), ε)-lossless expander given
by Theorem 2. As before, we keep an integer counter gs corresponding to each
vertex us ∈ VR. The counters are initialized to 0 and are updated corresponding
to stream update exactly in the same manner as discussed in Section 2.1. The
estimate f̂i is the following.

f̂i =
1
d

∑
s:(vi,us)∈E

gs, i ∈ [n] .

Lemma 4. |f̂i − fi(σ)| ≤ ε‖f(σ)‖1.



Proof. For simplicity, fix the input stream σ and let f denote f(σ). Fix i. By
property of (2, ε)-lossless expander, for any i, j ∈ [n], i 6= j,

|Γ (vi) ∩ Γ (vj)| = 2d− |Γ (vi) ∪ Γ (vj)| ≤ 2d− (1− ε/2)(2d) ≤ εd . (1)

Therefore,

∑
s:(vi,us)∈E

gs =
∑

s:(vi,us)∈E

∑
j:(vj ,us)∈E

fj =
n∑

j=1

fj |Γ (vj) ∩ Γ (vi)|

= dfi +
∑

1≤j≤n
j 6=i

fj |Γ (vj) ∩ Γ (vi)| = dfi +
∑

1≤j≤n
j 6=i

fj(εd), by (1) .

Dividing by d, transposing and taking absolute values, we have,∣∣1
d

∑
s:(vi,us)∈E

gs − fi

∣∣ ≤ ∣∣∑
j 6=i

εfj

∣∣ ≤ ε‖f‖1 − |fi| .

Since, 1
d

∑
s:(vi,us)∈E gs = f̂i, this proves the lemma. ut

Theorem 2 can be applied by setting r = O( 1
ε D(ε, n, 1)) and d = D(ε, n, r),

thereby obtaining a (K, ε)-lossless expander, for some K ≥ 2. We summarize
this in the following theorem.

Theorem 5. There exists a deterministic algorithm for solving ApproxFreq(ε)
over a data stream using space O(R(ε, n, 2) log(mn)). The time taken to process
each stream update is O(D(ε, n, R) logO(1) n). ut

An exercise along the lines of producing a succinctly representable bipartite
graph using the probabilistic method instead of using the lossless expander family
of Theorem 2 can be carried out (and has a slightly simpler argument). We state
this in the following lemma.

Lemma 5. There exists a bipartite graph G(n, ε) = (VL, VR, E, d) such that
|VL| = n, |VR| = O((1/ε2) log(n/ε)), d = O(log n) such that the degree of every
vertex in VL is between (1 − ε)d and d and for any vi, vj ∈ VL, i 6= j, the
number of common neighbors of vi and vj do not exceed εd. Moreover, such a
bipartite graph can be succinctly represented using O((log(n/ε))(log n)) bits. The
neighbors of any vertex in VL can be computed in time O(log(n/ε)(log n)). ut

Note that the bipartite graph of Lemma 5 is not left-regular, but rather almost
left-regular: (1−ε)d ≤ deg(vi) ≤ d. The analysis of Lemma 4 goes through with a
slight modification, since the division by d gives rise to a factor that lies between 1
and 1/(1−ε), thereby, increasing the error factor by O(ε). Replacing the (2, ε/2)-
expander graph by the succinct bipartite graph G(n, ε/4) from Lemma 5 yields
an algorithm for ApproxFreq(ε). This is summarized in the following theorem.



Theorem 6. There exists a deterministic algorithm for solving ApproxFreq(ε)
over a data stream using space O(ε−2 log(n/ε) log(mn)) bits. The time taken to
process each stream update is O(log(n/ε)(log n)). ut

The only known previous algorithm for deterministic estimation of frequency is
the CR-Precis algorithm [14] which requires space O(ε−2(log−2(1/ε))(log2 n)·
(log mn)). The algorithm of Theorem 6 is slightly better in its space requirement
than the CR-Precis algorithm [14] by a small poly-logarithmic factor.

It is interesting to note that the primes residue based structure used by
the CR-Precis structure [15] is an explicit construction of a (2, ε/2)-lossless
expander as follows. For t distinct primes p1, . . . , pt, we define the bipartite graph
GCR(p1, . . . , pt) = (VL, VR, E, d) where, VL = {v1, . . . , vn} and VR = {uj,l | 1 ≤
j ≤ t and 0 ≤ l ≤ pj−1}. There is an edge between left vertex vi and right vertex
uj,l if and only if l = i mod pj . The degree of each left vertex is by construction
t, since, each number has exactly one residue respectively for p1, . . . , pt. For any
1 ≤ i < j ≤ n, each common neighbor uj,l of vi and vj means that pl|j − i. If
there are s distinct common neighbors, then, there are s distinct primes that
divides j − i. Since, j − i ≤ n − 1, and each pl ≥ 2, s < log n. This shows that
the graph is a (2, ε/2)-lossless expander for t = 2(log n)/ε and for any choice of
primes p1, . . . , pt. Since, r = |VR| = p1 + . . .+ pt, r is minimized by choosing the
first 2 log n/ε primes as p1, . . . , pt. The well-known prime number theorem then
guarantees that p1+. . .+pt = O(ptt) = O(t2 ln t) = O((log2 n/ε2) log((log n)/ε)).
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