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Abstract. We consider the updatable streaming graph model, where
edges of a graph arrive or depart in arbitrary sequence and are pro-
cessed in an online fashion using sub-linear space and time. We study
the problem of estimating aggregate path metrics Pk defined as the num-
ber of pairs of vertices that have a simple path between them of length
k. For a streaming undirected graph with n vertices, m edges and r
components, we present an Õ(m(m − r)−1/4) space1 algorithm for esti-
mating P2 and an Ω(

√
m) space lower bound. We show that estimating

P2 over directed streaming graphs, and estimating Pk over streaming
graphs (whether directed or undirected), for any k ≥ 3 requires Ω(n2)
space. We also present a space lower bound of Ω(n2) for the problems
of (a) deterministically testing the connectivity, and, (b) estimating the
size of transitive closure, of undirected streaming graphs that allow both
edge-insertions and deletions.

1 Introduction

The data streaming model has gained popularity as a computational model for a
variety of monitoring applications, where, data is generated rapidly and continu-
ously, and must be analyzed very efficiently and in an online fashion using space
that is significantly sub-linear in the data size. An emerging class of monitoring
applications is concerned with massive dynamic graphs. For example, consider
the dynamic web graph, where nodes are web-pages and edges model hyperlinks
from one page to another. The edges in the web-graph are generated in a stream-
ing fashion by web-crawlers [8]. Significant changes in the size, connectivity and
path properties of web-communities of interest can be glimpsed by computing
over these stream of edges. Another example is the citations graph [7], where,
nodes are published articles and directed edges denote a citation of one article
by another. Consider the query: find the top-k second-level frequent citations,
where the second-level citation number of an article A is the number of (distinct)
articles C that cite an article B that cite A.

1 f(m) is said to be Õ(g(m)) if f(m) = O( 1

εO(1) (log m)(log n)(log 1
δ
)O(1)g(n)). Simi-

larly, f(m) is said to be Ω̃(g(m)) if g(m) is Õ(f(m)).



Graph Streaming Models. In the updatable edge-streaming model of graphs, the
stream is viewed as a sequence of tuples of the form (u, v, +) or (u, v,−), cor-
responding, respectively, to the insertion or the deletion of the edge (u, v). In
the updatable model, once an edge (u, v) is inserted, it remains current in the
graph until a tuple of the form (u, v,−) appears in the stream to delete the
edge. The current state of the graph G = (V,E) is defined by the set of current
edges E; the set of vertices V are those vertices that are incident to any of the
current edges. Multi-graphs are modelled by allowing an edge to be inserted
multiple times. Edges may be inserted and deleted in arbitrary order; however,
an edge may be deleted at most as many times as it is inserted. The insert-only
streaming model [1, 3, 7] only allows tuples of the form (u, v, +) to appear in the
stream. Graph streaming models that allow use of external memory and extra
passes over stored data have been proposed—these include the semi-streaming
graph model [2] and the W -stream model [1]. In this paper, we do not consider
computational models over streaming graphs that allow multiple passes.

Path Aggregates. The path aggregate Pk is defined as the number of pairs of
vertices (u, v) such that there is a simple path of length k from u to v. In this
work, we consider the problem of estimating the path aggregate Pk, for k ≥ 2
over updatable streaming graphs. The continuous monitoring of path aggregates
enables online detection of changing path properties of a dynamic graph. For
example, an article can be said to be frequently cited at level l, provided, the
number of its level l-citations exceeds Pl/s, for a parameter s. The problem also
has applications in database query size estimation. For example, let R(A,B) be
a binary relation over attributes A and B, over the same domain. Then, the P2

over the binary relation R viewed as a graph represents the number of distinct
pairs in the self-join (the distinct self join) of its relations.

Prior work in estimating path aggregates. [5] presents the jdsketch algorithm
for estimating the Join-Distinct size of two data streams, R = R(A,B) and
S(B, C) defined as jd(R, S) = |πA,C(R ./ S)|. If R = S, then, jd(R, R) = P2

and therefore, the jdsketch algorithm can be used to estimate P2. The space
requirement of the jdsketch algorithm is Õ(m2/P2) [5]. In particular, for
complete bi-partite graphs, chain graphs, etc., the jdsketch requires Ω(m)
space.

Contributions. We present the LDRS algorithm for estimating P2 for undi-
rected streaming graphs and multi-graphs to within accuracy factors of 1 ± ε
and confidence 1− δ, where, 0 < ε, δ < 1. For a graph with n vertices, m edges
and r-components, the algorithm requires O( 1

ε2
m

(m−r)−1/4 (log n)(log 1
δ )) bits. For

graphs with m
2 or less components, the space complexity of the algorithm is

Õ(m3/4) bits. We present a lower bound of O(
√

m) bits for estimating P2 for
undirected and connected streaming graphs. For directed streaming graphs, we
show that the estimating Pk, for any k ≥ 2, to within any approximation factor,
requires Ω(m) bits of space. We also show that estimating Pk, for k ≥ 3, for
undirected streaming graphs to within a factor of 1 ± 3

4 , requires Ω(n2) bits of



space. Finally, we present a space lower bound of Ω(n2) for the problems of (a)
deterministically testing the connectivity, and, (b) estimating the size of transi-
tive closure, of undirected streaming graphs that allow both edge-insertions and
deletions.

Organization. Section 2 presents the LDRS algorithm for estimating P2 and
Section 3 presents lower bound results.

2 Estimating P2

In this section, we present the RS algorithm for estimating P2 for undirected
graphs and multi-graphs. We first consider insert-only streaming graphs and
prove Theorem 1 and then generalize it to updatable edge streaming graphs.

Theorem 1. For 0 ≤ ε < 1
6 and 0 < δ < 1, there exists an algorithm that

takes as input an insert-only streaming graph with r components, m edges and
n vertices and returns an estimate P̂2 satisfying Pr{|P̂2 − P2| ≤ εP2} ≥ 1 − δ
using O(ε−2m(m− r)−1/4(log 1

δ )(log n)) bits.

2.1 Random Subgraph RS of graph streams

Given a graph G = (V,E), the random subgraph RS is obtained by sampling the
vertices of V uniformly and independently with probability p, and storing the
adjacency list of each sampled vertex . We now design an adaptive RS structure
for streaming graphs, given a sampling probability function p(m) (for e.g., p(m) =

1√
m

) and space function s = s(m) = 8mp(m).

Data Structure. The current level counter lcurr is initialized to 1 and takes in-
creasing values between 1 and log|F |. The current sampling probability, denoted
by pcurr, is given by pcurr = 2−lcurr+1. The current upper limit on the number
of edges of the graph is given by mcurr that is initialized to O(1). We maintain
the invariant that mcurr = max(4m,O(1)). The value of mcurr is doubled peri-
odically as necessary. The counter scurr denotes the current space provided to
the portion of the data structure that stores the adjacency list of the sampled
vertices. The invariant scurr = s(mcurr) is maintained. Let S denotes the actual
space (in words) used to store the adjacency lists of the sampled vertices and is
initialized to 0. The set Vl stores the current set of sampled vertices. For every
vertex in Vl, its adjacency list is also stored. The value of m is tracked by the
data structure. This can be done exactly for simple graphs; for multi-graphs,
an ε-approximation to the number m of distinct edges m can be tracked using
space O( 1

ε2 (log n)(log 1
δ )) using a standard technique for counting the number of

distinct items in a data stream [4, 6].
Let e = {u, v} be an incoming streaming edge. The set of vertices that are

adjacent to a given vertex u ∈ V is denoted by adj(u). If u ∈ Vl, then we add v
to adj(u). If u 6∈ Vl, then, we insert u into Vl with probability pcurr and initialize



adj(u) as {v}. If u is not sampled, then, no further action is taken. The procedure
is repeated for v independently and the space incurred S is incremented suitably.
After processing an incoming edge, we check whether S < scurr, that is, whether
there is room for further insertions. If not, then, we perform a sub-sampling
operation, if m < mcurr

2 , or, increase available space, if m ≥ mcurr
2 . In the former

case, we sub-sample, that is, the sampling probability pcurr is halved and for every
u ∈ Vl, we retain u and its adjacency list with probability 1/2 (and, otherwise,
u and and its adjacency list are dropped). In the latter case, if m ≥ mcurr

2 and
S = scurr, then, we increase the available space from scurr to scurr = s(2mcurr)
and update mcurr = 2mcurr.

Analysis. It is quite straightforward to see that the algorithm maintains the
following invariants: scurr = s(mcurr) and mcurr ≤ max(O(1), 4m). The first
invariant holds at initialization and at all subsequent space increases. Therefore,
space used (in words) is S = O(scurr) = O(s(mcurr)) = O(s(4m)) = O(s(m)),
since, s(m) is a sub-linear function, and, therefore, s(4m) ≤ 4s(m).

For u ∈ V , define an indicator variable yu that is 1 iff u ∈ Vl and is 0
otherwise. The space used by the data structure (in words of size log n bits)
is S =

∑
u∈V deg(u)yu. Thus, E

[
S

]
=

∑
u∈V deg(u)Pr{yu = 1} = (2m)pcurr.

By Markov’s inequality, Pr{S ≤ 4E
[
S

]} = Pr{S ≤ 8mpcurr} ≥ 3
4 . Therefore,

Pr{pcurr ≥ S
8m} = Pr{S ≤ 8mpcurr} ≥ 3

4 . In view of this calculation, we keep
s2 = O(log 1

δ ) independent copies of the data structure. Suppose we call the
current state of the data structure as concise if pcurr ≥ S

8m . At the time of in-
ference, we consider only the concise copies, obtain estimates of P2 from the
concise copies and return the median of these estimates. By Chernoff’s bounds,
the number of concise copies is O(log 1

δ ) with probability 1 − δ
2 . The space re-

quirement is O(m·p(m)(log 1
δ )(log n)). The above data structure can be extended

to updatable streaming graphs using a combination of existing data structures
[9].

Estimator. An estimate P̂2 is obtained from a concise copy of the RS structure
with sampling probability p = p(m) as follows. Let EP2 denote the number
of unordered vertex pairs u and v that are both sampled and have a common
neighbor.

P̂2 =
1
p2

EP2 =
1
p2
|{{u, v} | u, v ∈ Vl and adj(u) ∩ adj(v) 6= φ}|

Finally, we return the median of t = O(log 1
δ ) independent estimates.

2.2 Analysis: Graph Based Properties of P2

For an undirected simple graph G = (V, E) and a vertex u ∈ V , let deg(u)
denote the degree of u in G and let deg2(u) denote the number of vertices in
V − {u} that can be reached from u in two hops.

Lemma 2. In any graph G = (V, E), deg2(u) ≤ (4P2)3/4.



Proof. Let r denote deg(u) and let T be the set of vertices, not including u,
that can be reached from u in two hops. Let s = |T |. The vertices adjacent to u
contribute A =

(
r
2

)
to P2. Let B denote the contribution to P2 by vertex pairs in

T . For each fixed value of s, B is minimized if each vertex of adj(u) has either d s
r e

or b s
r c neighbors in T and no two vertices of adj(u) has any common neighbor

(except u). Therefore, B ≥ r
(
s/r
2

)
. Since, each vertex pair may be counted at

most twice, that is once in both A and B, P2 ≥ 1
2 (A + B) ≥ 1

2

(
r
2

)
+ r

2

(
s/r
2

)
. The

expression in the RHS attains a minimum at r ≈ s2/3

21/3 and the corresponding

minimum value of P2 is greater than s4/3

4 . Thus, s = deg2(u) ≤ (4P2)3/4. ut
Lemma 3 presents a lower bound on the value of P2 for simple undirected graph.

Lemma 3. For a connected graph G = (V, E) such that |E| = m, P2 ≥ m−√m.
For a graph with r components, P2 ≥ m−√mr.

Proof. We first show, by induction, that for a connected graph G = (V, E) with
m edges, P2 ≥ m −√m. Base Case: A connected graph G with one edge, that
is, m = 1, 0 = P2 ≥ 1−√1 = 0.

Induction Case. Suppose that the statement of the theorem holds true for
graphs with number of edges between 1 and m−1. Consider a connected graph G
with m edges. Let x be a lowest degree vertex among all vertices in the connected
graph G that are not cut-vertices and let deg(x) = q. (Note that in any graph G,
the end vertices of any longest path are not cut-vertices; hence, we can always
find x.). Let y1, y2, . . . , yq denote the neighbors of x. Let z1, z2, . . . , zs be the set
of neighboring vertices of y1, . . . , yq, not including x.

Suppose s ≥ q. Since x is not a cut-vertex of G, deleting x from G leaves G
connected. In the resulting graph, G′, there are m−q edges, and therefore, by the
induction hypothesis, P2(G′) ≥ m− q−√m− q. In G, x is connected by a path
of length 2 to z1, z2, . . . , zs respectively. Therefore, P2 ≥ m− q −√m− q + s ≥
m−√m, since, s ≥ q.

Suppose s < q. We first claim that none of y1, y2, . . . , yq are cut-vertices.
To prove this, suppose that yj is a cut-vertex. Then, by removing yj from G,
G − {yj} has two or more components. Thus, in G − {yj}, there is a zk that
is in a different component than x and zk is adjacent to yj . The component
in G − {yj} that contains x also contains y1, . . . , yj−1, yj+1, . . . , yq. Therefore,
there is no edge between yi and zk, for, 1 ≤ i ≤ q, i 6= j or between x and zk.
Thus, among the yi’s, zk is attached only to yj . Continuing this argument, we
can show that if yj1 , yj2 , . . . , yjp are cut-vertices in G, then, there exist vertices
zk1 , zk2 , . . . , zkp distinct from each other such that zkr is attached to yjr only
and to none of the other yi’s or to x.

Not all of the yi’s can be cut vertices, since, this implies that the number of
zk’s is at least q, which contradicts the assumption that s < q. Therefore, there
exists at least one of the yi’s that is not a cut-vertex, say ya. Suppose further
that there is at least one cut-vertex yj . Let yj be attached to zk such that zk and
x lie in different components in the graph G−{yj}. Consider the degree of ya. It
is attached to x and is not attached to zk. Therefore, deg(ya) ≤ 1 + (s− 1) = s.



Since, s < q, deg(ya) < q = deg(x). By assumption, x is the vertex with the
smallest degree among all vertices that are not cut-vertices in G. Since, ya is
not a cut-vertex, and deg(ya) < deg(x), this is a contradiction. Thus, the only
conclusion possible is that none of the yi’s are cut-vertices, proving the claim.

Further, since, none of the vertices yi are cut-vertices, their degree is at least
deg(x) = q. Therefore, other than x, each yi is connected to at least q− 1 of the
zi’s. Since s < q, this implies that s = q−1, and each of y1, y2, . . . , yq is attached
to each of x and z1, z2, . . . , zq−1. The subgraph of the yi’s in one partition and
the zj ’s and x in the other partition (yi’s and zj ’s are disjoint, otherwise s ≥ q,
since G is a simple graph) is the complete bi-partite subgraph Kq,q. If there are
no other edges in the graph, then, we can calculate m and P2 for Kq,q as follows.

m = q2, P2 = q(q − 1), and P2 = m−√m

which satisfies the statement of the lemma.
Suppose there are edges in addition to the Kq,q subgraph formed above.

Note that since, s = q − 1, if there is any edge in the graph G other than
the Kq,q subgraph, then, there must be an edge attaching some zk to some
vertex u (since, vertices x and y1, . . . , yq are saturated with respect to degree).
The vertex u is neither x nor one of y1, . . . , yq. We now remove the vertex y1

from G. The reduced graph G′ is still connected since y1 was not a cut-vertex
and has m − deg(y1) = m − q edges. Therefore, by the induction hypothesis,
P2(G′) ≥ m− q− (m− q)1/2. In G, y1 is at distance 2 from each of y2, . . . , yq. In
addition, y1, by virtue of the edges (y1, zk) and (zk, u), has a path of length 2 to u.
Therefore, deg2(y1) ≥ q−1+1 = q. Thus, P2 ≥ (m−q)−(m−q)1/2+q ≥ m−√m.

We can now prove Lemma 3. Let mc denote the number of edges of component
number c, 1 ≤ c ≤ r. Since, each component is connected, therefore, P2 ≥∑r

c=1(mc −√mc) ≥ r
(

m
r −

√
m
r

)
= m−√rm. ut

2.3 Analysis: Space usage of the estimator

For u ∈ V , define an indicator random variable xu such that xu = 1 iff u ∈ Vl.

Lemma 4. E
[
EP2

]
= p2P2 and E

[
P̂2

]
= P2.

Proof. EP2 =
∑
{u,v}∈P2

xuxv. So, E
[
EP2

]
= p2P2 and E

[
P̂2

]
= E

[
EP2
p2

]
= P2.

ut
Lemma 5. Var

[
P̂2

]
= P2

p2 + 1
2p

∑
u∈V deg2

2(u).

Proof. Since, EP2 =
∑
{u,v}∈P2

xuxv,

EP 2
2 = (

∑

{u,v}∈P2

xuxv)2 =
∑

{u,v}∈P2

xuxv

+
∑

{u,v}∈P2
{u,v′}∈P2

v 6=v′

xuxvxv′ +
∑

{u,v}∈P2
{u′,v′}∈P2

{u,v}∩{u′,v′}=φ

xuxvxu′xv′



Taking expectations,

E
[
EP 2

2

] ≤ p2P2 +
∑

u∈V

∑

v∈adj(u)
v′∈adj(u)

v 6=v′

p3 +
∑

{u,v}∈P2
{u′,v′}∈P2

{u,v}∩{u′,v′}=φ

p4

≤ p2P2 + p3
∑

u∈V

(
deg2(u)

2

)
+ (p2P2)2 .

Using Lemma 4,

Var
[
EP2

]
= E

[
EP 2

2

]− (E
[
EP2

]
)2 ≤ p2P2 + p3

∑

u∈V

(
deg2(u)

2

)
.

So, Var
[
P̂2

]
= Var

[
EP2
p2

]
= 1

p4 Var
[
EP2

]
< P2

p2 + 1
2p

∑
u∈V deg2

2(u). ut

Lemma 6. Pr{|P̂2 − P2| > εP2} < 2
9 , if p ≥ max( 3

ε
√

P2
, 6

ε2P 2
2

∑
u∈V deg2

2(u)).

Proof. By Chebychev’s inequality, Pr{|P̂2 − E
[
P̂2

]| > εP2} ≤ Var
[
P̂2

]
25ε2P 2

2
< 1

p2ε2P2
+

P
u∈V deg2

2(u)

ε2P 2
2 p

+ 2
25 < 1

9 + 1
9 . ut

Lemma 7. Let G have r components, m edges and n vertices. Then, Pr{|P̂2 −
P2| ≤ 6εP2} ≥ 1 − δ. The space requirement is O( m

ε2(m−r)1/4 (log 1
δ )(log n)) bits,

with probability 1− δ.

Proof. The space requirement is O(mp), where, by Lemma 6, mp = O(max( m
ε2
√

P2
,

m
ε2P 2

2

∑
u∈V deg2

2(u)))). By Lemma 3, P2 ≥ m−√rm. Therefore, m
ε
√

P2
=

m
ε(m−√rm)

= m1/2

(m−r)1/2 . Further, since,
∑

u∈V deg2(u) = 2P2, we have, by Lemma 2,

∑

u∈V

deg2
2(u) ≤ (max

w∈V
deg2(w))

∑

u∈V

deg2(u) ≤ (4P2)3/4(2P2) ≤ 8P
7/4
2 .

By Lemma 3, P2 ≥ m − √
mr =

√
m(
√

m − √
r) =

√
m m−r√

m+
√

r
≥ m−r

2 ,

since, r ≤ m. Using this, it follows that m
ε2P 2

2

∑
u deg2

2(u) ≤ 8m

ε2P
1/4
2

≤ 16m
(m−r)1/4 .

To boost the confidence to 1 − δ, we keep O(log 1
δ ) independent copies and

return the median from the concise copies. The space required is therefore
O( m

ε2(m−r)1/4 (log 1
δ )(log n)) bits. ut

3 Lower Bounds

In this section, we present space lower bounds.



Lemma 8. An algorithm that estimates P2 for undirected and connected stream-
ing graphs in the insert-only model to within a factor of 1± 1

8 with probability 2
3

requires Ω(n +
√

m) bits.

Proof. We reduce a special case of the two-party set disjointness problem in
which parties A and B are each given a subset of {0, 1, . . . , n − 1} of size at
least n

3 with the promise that the subsets are either disjoint or have exactly one
element in common. The parties have to determine whether the sets are disjoint.
This problem has communication complexity Ω(n) bits. Suppose there is an
algorithm A satisfying the premises of the lemma. A and B each construct in
their local memory a complete graph whose nodes correspond to the items in the
subset given to it. A inserts the edges corresponding to its complete graph into
the data structure for A and sends it to B. B inserts the edges of its complete
graph into the data structure of A and estimates P2. If the sets are disjoint,
then, P2 ≤ 5n2

16 , and otherwise, P2 ≥ 7n2

16 , allowing A to distinguish between the
two cases. Hence, A requires Ω(n) bits. In the constructed graph, m = Θ(n2),
hence, the space complexity is Ω(

√
m).

In the above construction, the graph is either connected (when the subsets
intersect) or has two components (disjoint case). An additional tree-structure
ensures that the graph is always connected. For i ∈ {0, 1, . . . , n − 1}, B inserts
new vertices v2i and v3i, with edges between vi and v2i and between v2i and v3i.
The nodes {v3i : 0 ≤ i ≤ n − 1} are then made the leaf nodes of a complete
binary tree (as much as possible) by adding new vertices. The resulting graph is
connected. The contribution to P2 by the new vertices is as follows. deg2(v2i) =
1 + deg(vi), for 0 ≤ i ≤ n− 1, and the contribution to P2 by the remaining tree
vertices is at most n − 1 (vertex pairs at the same level) + n − 3 (vertex pairs
where one vertex is a grandparent of the other) = 2n− 4. Thus, total P2 of the
new graph is n+2n−4+2 oldP2, where, oldP2 is the P2 of the graph prior to the
addition of the tree structure. The rest of the argument proceeds as before. ut

Lemma 9. Deterministically estimating P2 over streaming graphs to within fac-
tor of (1± 1

4 ) requires Ω(m) space.

Proof. For any set S, we define the undirected graph GS on the set S as GS =
(V, E), where V = S ∪ a, E = {(a, i), ∀i ∈ S} and a does not belong to the
domain of elements from where S is chosen. Therefore number of edges in the
graph GS is same as the number of vertices in the set S. Consider |D| = 4m and
select sets from them of size m such that any two of them have atmost m/2,
elements as common. Number of such sets is 2Ω(m)( can be established from
known results of coding theory). For each such set, create the corresponding
graphs. This gives a family of graphs G of size 2Ω(m), where each graph in the
family has m edges. Select randomly G1, G2 ∈ G and create the graph streams
A(G1, G1) and A(G2, G1) respectively, where A(S, T ) indicates in the stream A
the edges of S arrive before the edges of T . We see P2(A(G1, G1)) = (m

2 ) and
P2(A(G2, G1)) = ((3m/2)

2 ). So any deterministic algorithm that estimates P2,
within accuracy 1± 1

4 , must be able to distinguish between these two cases. By



pigeonhole principle if the space usage of any such deterministic algorithm is
< log|G|, then there exists at least one pair of graphs G1 and G2 in G, such that
the contents of the memory after reading G1 and G2 are same. Therefore the
algorithm will give the same result for both A(G1, G1) and A(G2, G1), by making
an error in at least one of them. So the space requirement of any deterministic
algorithm that estimates P2, with accuracy 1± 1

4 , must use log |G| = Ω(m) space.
ut

Estimating Pk over directed streaming graphs. We show that for directed stream-
ing graphs, estimating Pk for k ≥ 2, to any multiplicative factor requires Ω(m)
space. The reductions use the standard bit vector index problem: Party A is
given a bit-vector v of size r and party B is given an index i, 1 ≤ i ≤ r. B has
to determine whether v[i] = 1. The communication allowed is one-way from A
to B. This problem has communication complexity of Ω(r) [7, 3].

Lemma 10. Estimating Pk for directed streaming graphs to within any multi-
plicative accuracy factor requires Ω(m) bits.

Proof. We will reduce a special case of the bit-vector index problem, where, it is
given that exactly r

2 bits of v have value 1. The communication complexity of this
problem is also Ω(r). Let r = 2n and let A be an algorithm for estimating P2.
For every v[i] = 1 in the bit-vector v, party A inserts a directed edge (r+1, i) to
the summary structure of algorithm A. A then sends the summary structure to
B. Given index j, B adds the set of directed edges {(j, k) | r+2 ≤ k ≤ r+n+2},
to the summary structure that it received from A. If v[j] = 1, then P2 = n, else
P2 = 0, proving the claim for P2. The extension for Pk is analogous. ut
Lemma 11. For k ≥ 3, estimating Pk to within factor of 1± 1

3 with probability
3
4 over undirected streaming graphs with n vertices requires Ω(n2) bits.

Proof. We reduce the bit-vector index problem to the problem of estimating
P3. Let r = n(n−1)

2 and let v[1 . . . r] be the given vector of 0’s and 1’s. Let B
be an algorithm for estimating P2 with the specified accuracy and confidence.
Each index 1 ≤ r ≤ n(n−1)

2 is written uniquely as a pair of distinct numbers,
(u,w), each lying between 0 and n− 1. This mapping is used to create a graph
G = (V, E), where, V = {1, 2, . . . , 9n}. For every index j = (u,w) such that
v[j] = 1, we add an edge (u, w) ∈ E. Next, for the given index i = (c, d), we add
8n new vertices to the graph, and attach 4n of them to c and 4n of them to d.
These edges are given as input stream to B. We now use B to estimate P3. v[b] = 1
iff there is an edge between c and d in G. In this case, P3 ≥ 16n2, and, otherwise,
P3 ≤ 8n2 +

(
n
2

)
. Therefore the space requirement by P3 is Ω(r) = Ω(n2). The

proof can be easily extended to Pk, k > 3. ut
Theorem 12. A deterministic algorithm for testing connectivity of an undi-
rected graph in the updatable streaming graph model requires Ω(n2) space.

Proof. Let G = (V, E) be a connected graph and let G′ = (V, E′) be the edge-
complement graph on the same set of vertices. Consider the family of graphs



for which G and G′ are both connected. For this family of graphs, checking
for edge-membership can proceed as below. (u, v) is an edge in G iff there is a
sequence of edges e1, . . . , ek−1, ek = (u, v) in G, such that after the deletion of
e1, e2, . . . , ek−1 in sequence, the graph remains connected, but gets disconnected
after ek = (u, v) is deleted thereafter. The sequence of edges e1, . . . , ek−1 can be
thought of as a certificate of membership of (u, v) in G. Analogously, if (u, v) is
not in G, then, it is in G′, and therefore, there exists a certificate for membership
of (u, v) in G′. This certificate serves as a certificate that (u, v) is not in G. Hence
checking edge membership reduces to connectivity testing problem.

Given an algorithm that maintains a summary structure for testing connec-
tivity of a streaming graph, we use it to maintain a pair of summaries corre-
sponding to G and its complement G′. This is easily done by letting E = φ
and E′ = Kn, where Kn is the clique of n vertices. Corresponding to each edge
update, we propagate the update to the summary structure for G and propagate
the complement of the update to the summary structure for G′.

We now obtain a lower bound on the number of graph-complement pairs
(G,G′) over n vertices such that both G and G′ are connected. Consider the
complete graph Kn on n vertices, for n > 2. Choose a spanning tree C of Kn

that is a chain. Consider the remaining graph defined by the set of edges in
Kn − C. This graph remains connected for n ≥ 4. Let D be a spanning tree of
the graph defined by edges in Kn − C. Place the set of edges in C in G and
the set of edges in D in G′. The number of remaining edges is

(
n
2

) − 2(n − 1).

Each of these edges can be placed either in G or in G′ in 2(n
2)−2(n−1) ways. Each

of these ways gives a different (G,G′) pair. By construction, G and G′ contain
C and D respectively, and are therefore connected. Therefore, the number of
graph-complement pairs (G,G′) over n vertices such that both G and G′ are
connected is at least 2(n

2)−2(n−1).
The algorithm that tests for edge-membership must have a different memory

pattern for each of the graph-complement pairs (G,G′). Otherwise, given two
distinct pairs (G,G′) and (H,H ′), there are edge pairs (e, e′) that distinguish
them. Mapping them to the same pattern causes the algorithm to make at least
one error when presented with the certificates of the edges e and e′, respectively.
Hence checking edge-membership requires space Ω(log(2(n

2)−2(n−1))) = Ω(n2)
bits . Since edge-membership can be reduced to connectivity testing, the state-
ment of the lemma follows. ut
Corollary 13. Deterministic algorithms for the following problems require Ω(n2)
space in the updatable graph streaming model: (a) estimating the size of the tran-
sitive closure of an undirected graph to within a factor of 1± 1

5 , and (b) estimating
the diameter of an undirected graph to within any approximation factor.

Proof. Let G be a graph consisting of n vertices, N = {1, 2, .., n}. Two chain
graphs, Pa = a1 − a2 − ... − an/2 and Pb = b1 − b2 − ... − bn/2 are created,
where a1, b1 ∈ N, a1 6= b1, and the other vertices do not belong to N . If G is
connected, then transitive closure of G is

(
2n−2

2

) ≈ 2n2. Otherwise, there exists
a1 and b1, such that they belong to different components of G. In that case



transitive closure size is <
(
3n/2

2

)
+

(
n/2
2

) ≈ 5n2

4 . If ε ≤ 1
5 , then for all a1 and b1,

if G is connected, transitive closure size is ≥ 2n2(1− 1
5 ) = 8n2

5 . Else there exists
a1 and b1, for which transitive closure size < 5n2

4 (1 + 1
5 ) = 3n2

2 . An algorithm
that measures transitive closure with accuracy 1 ± 1

5 , can distinguish between
these two cases. So we have a reduction from transitive closure to connectivity
testing. Since connectivity testing requires Ω(n2) bits of space, any deterministic
algorithm estimating transitive closure with accuracy 1± 1

5 must use space Ω(n2)
bits.

(b) If the graph is connected, then its diameter is at most n− 1, otherwise it
is ∞. This reduces the connectivity testing problem to diameter estimation. ut

Note that testing connectivity and maintaining the size of transitive closure
is easily solved using O(n log n) space in the insert-only streaming model [7, 3].
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